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Image Regression With Structure Cycle Consistency
for Heterogeneous Change Detection

Yuli Sun , Lin Lei , Dongdong Guan, Junzheng Wu, Gangyao Kuang, and Li Liu , Senior Member, IEEE

Abstract— Change detection (CD) between heterogeneous
images is an increasingly interesting topic in remote sensing.
The different imaging mechanisms lead to the failure of homo-
geneous CD methods on heterogeneous images. To address
this challenge, we propose a structure cycle consistency-based
image regression method, which consists of two components: the
exploration of structure representation and the structure-based
regression. We first construct a similarity relationship-based
graph to capture the structure information of image; here, a
k-selection strategy and an adaptive-weighted distance metric
are employed to connect each node with its truly similar
neighbors. Then, we conduct the structure-based regression with
this adaptively learned graph. More specifically, we transform
one image to the domain of the other image via the structure
cycle consistency, which yields three types of constraints: forward
transformation term, cycle transformation term, and sparse
regularization term. Noteworthy, it is not a traditional pixel
value-based image regression, but an image structure regres-
sion, i.e., it requires the transformed image to have the same
structure as the original image. Finally, change extraction can
be achieved accurately by directly comparing the transformed
and original images. Experiments conducted on different real
datasets show the excellent performance of the proposed method.
The source code of the proposed method will be made available
at https://github.com/yulisun/AGSCC.

Index Terms— Adaptive graph (AG), cycle consistency, het-
erogeneous, image regression, multimodal, unsupervised change
detection (CD).

NOMENCLATURE

X̃, Ỹ Preevent and postevent images.
X̃�, Ỹ� Regression images of Ỹ and X̃.
X̃i i th superpixel of X̃.
X, Y Feature matrices of X̃ and Ỹ.
X�, Y� Regression feature matrices of Y and X.
X̃�� Back transformed image of Ỹ�.
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X�� Back transformed feature matrix of Y�.
X(m) mth feature matrix of X̃.
X(m)

i mth feature vector of the i th superpixel X̃i .
dist X

m,i, j mth feature distance between X̃i and X̃ j .
SX Weighting matrix representing the structure of X̃.
wX

m Weight of the mth feature of X(m).
LX , LY � Graph Laplacian matrices.
� Changed feature matrix.
IN N × N identity matrix.
1N N × 1 column vector of ones.

I. INTRODUCTION

A. Background

CHANGE detection (CD) is a well-known task in remote
sensing (RS), which is to identify the changes on Earth’s

surface by comparing images acquired over the same area
but at different times [1]. CD has been widely used in many
applications, including environmental monitoring, agricultural
surveys, and disaster assessment [2]–[4].

Currently, most CD algorithms are based on the homoge-
neous images, that is, the multitemporal images are acquired
from the same sensor, such as homogeneous CD of optical
images [5], synthetic aperture radar (SAR) images [6], [7],
and hyperspectral images [8], [9]. However, in some cases,
homogeneous images cannot be acquired in time, and we
have to focus on heterogeneous CD, i.e., using images from
different sensors to detect changes, which roughly contains
two types: cross-sensor or multisensor images acquired by
different sensors with the same sensor type (such as two
multispectral images from Sentinel-2 and Landsat-8) and
multisource images acquired by different types of sensors
(such as a pair of optical and SAR images). Heterogeneous
CD is particularly attractive in two aspects. First, it can
improve the temporal resolution of change trend analysis or
extend the time frame of long-term monitoring by inserting
heterogeneous data along the timeline [10]. Second, it can
shorten the response time of CD analysis in emergency natural
disasters (such as floods and earthquakes) and rescue opera-
tions. In such scenarios, heterogeneous CD allows to use the
first acquired image to analyze changes without having to wait
for homogeneous images, and more importantly, sometimes
the acquired homogeneous images may be unavailable due to
the accompanying adverse light and weather conditions.

Since the heterogeneous images usually have different rep-
resentations for the same object and show different statistical
properties, they can not be directly compared to generate the
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difference image (DI) as in homogeneous CD. Therefore, the
core of heterogeneous CD is to make the “incomparable”
images “comparable.” Let X and Y be the coregistered images
to be compared and x and y be the data samples at the same
position in X and Y, respectively, which can be pixels (i.e.,
the smallest item of information in an image), square patches
(i.e., a small square piece of an image), or superpixels (i.e.,
a group of pixels that are similar in color and other low-
level properties), according to the CD method’s basic unit of
analysis. In the coregistered images, x and y represent the
same position on the ground. In the homogeneous CD, we can
directly compare x and y to measure the change level by using
some algebraic operations, such as image differencing [11]
and image ratioing/log ratioing [12]. In the heterogeneous
CD, we need to transform X and Y into the same domain
to make x and y comparable, which relates to the topic of
image transformation.

Depending on whether training samples are required in
the transformation process, heterogeneous CD methods can
be classified as supervised or unsupervised; according to the
method used for transformation, heterogeneous CD methods
can be divided into deep learning-based and traditional signal
processing-based. Meanwhile, based on the transformed com-
mon domain, heterogeneous CD methods can also be roughly
divided into three categories as follows.

1) Image Classification-Based Methods: In these meth-
ods, the heterogeneous images are transformed into
a common category space. They detect the changes
by comparing the classification results of multitempo-
ral images, such as the postclassification comparison
(PCC) [13], multitemporal segmentation and compound
classification (MS-CC) [14], and the classified adversar-
ial network-based method (CAN) [15]. The advantage
of such methods is that they are intuitive and easy to
implement, and they can provide categories of changes
(indicating what kind of change has occurred) along
with the detection of changes. However, they also have
the following drawbacks: the CD accuracy is limited by
the accuracy and precision of classification, and there
is also the risk of suffering from the accumulation of
classification errors.

2) Feature Transformation-Based Methods: In these meth-
ods, the heterogeneous images are transformed into a
common constructed or learned feature space. Some of
them manually construct the modality-invariant similar-
ity measures, such as Kullback–Leibler (KL) distance
based on copula theory [16], manifold distance [17], ker-
nel canonical correlation analysis (kCCA) [18], and non-
local pixel pairwise energy-based model (NLPEM) [19].
Some of them learn the latent features of heteroge-
neous images by using deep neural networks (DNNs),
such as symmetric convolutional coupling network
(SCCN) [20], probabilistic model based on bipartite
convolutional neural network (BCCN) [21], spatially
self-paced convolutional network (SSPCN) [22], com-
monality autoencoder-based common feature learning
(CACFL) [23], and transfer learning-based semisuper-
vised Siamese network (S3N) [24]. For these feature

transformation-based methods, the CD performance
relies on the extracted features, and they often face these
challenges: it is difficult to obtain the common feature
when the scene is very complex (the ground features
vary greatly), the noise in image is severe (especially
for SAR image), or the training samples are not enough
or mixed with wrong samples.

3) Image Regression-Based Methods: These methods trans-
form one image to the domain of the other image,
which can be regarded as the image-to-image trans-
lation. The homogeneous pixel transformation (HPT)
method [25] builds up the relationship between pixel
values of heterogeneous images by using a k-nearest
neighbor (KNN)-based multivalue estimation strategy,
which is supervised by the unchanged pixels. To avoid
the reliance on unchanged samples, an affinity matrix
difference-based image regression (AMD-IR) method
is proposed [26], which uses AMD to pick pixels
that have a high probability of being unchanged as
the pseudo-training set. Some DNN-based regression
methods have also been proposed, such as the deep
translation-based CD network (DTCDN) [27], con-
ditional generative adversarial network (cGAN) [28],
AMD-based X-Net and adversarial cyclic encoder
network (ACE-Net) [29], cycle-consistent adversarial
network (CycleGAN)-based [30] unsupervised change
detection network (USCDN) [31], and the image style
transfer (IST)-based method [32]. Since the regression
process usually needs to be trained with unchanged pairs
of heterogeneous data (pixels or square patches), these
regression-based methods either require a labeled train-
ing set (such as HPT) or the pseudo-training set/change
prior to guide the regression process (such as AMD-IR,
ACE-Net, and X-Net) or use a complex iterative coarse-
to-fine process to filter the training data (such as cGAN
and IST).

Generally, since reference samples are often not available
in practical applications, the unsupervised CD methods seem
to be more attractive than supervised methods [22], [33].
At the same time, the datasets for heterogeneous CD are
relatively limited until now, which is because constructing a
ground-truth map that reflects real change information requires
a high cost of manual operation and great expert knowledge
in practice. There is currently no large publicly available
dataset to support a pretrained model for heterogeneous CD,
and most deep learning-based methods detect the changes
based on the preevent and postevent images themselves [20],
[21], [23], [27], [29]. Therefore, the traditional unsupervised
heterogeneous CD methods are still very appealing: on the one
hand, they can quickly and automatically extract change infor-
mation; and on the other hand, they can provide assistance to
deep learning-based methods, such as supporting the training
process [29] or constructing high confidence pseudo-training
sets, similar to the unsupervised CD methods proposed in [8]
and [34].

B. Motivations

In this article, we aim to propose an unsupervised image
regression-based method for heterogeneous CD, which is
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based on the structure consistency between heterogeneous
images. Recently, the structure features have been used as
modality-invariant similarity metrics by transformation-based
methods [35], [36], which compare the structures of heteroge-
neous images in the same domain to calculate the DI by graph
projection. Meanwhile, instead of directly focusing on the
structure difference between images, some regression-based
methods first use the structure consistency to complete the
image translation and then compare the translated preevent
(or postevent) image and original postevent (or preevent)
image to calculate the DI, such as the fractal projection
and Markovian segmentation (FPMS)-based method [37],
patch similarity graph matrix-based method (PSGM) [38], and
sparse constrained adaptive structure consistency (SCASC)-
based method [39].

FPMS [37], PSGM [38], and SCASC [39] translate the
preevent image to the domain of postevent image as X

S−→ Y�
by fractal projection with fractal code S, image reconstruction
with self-expression graph matrix S, and image decomposition
with adaptive probabilistic graph S, respectively, where these S
can represent the relationships between image patches/blocks.
Specifically, structural consistency in FPMS [37] is expressed
as follows. If image X can be encoded by the fractal code S,
then the regression image can be decoded by fractal projection
with image Y and S. In PSGM [38], the structural consis-
tency is expressed as follows. If the preevent image can be
represented by X = XS with the self-expression graph matrix
S (here, X is the patch group matrix), then the unchanged
postevent image should conform to this structure S and also
satisfy Y = YS. Meanwhile, the structural consistency in
SCASC [39] can be expressed by the fact that if Xi and
X j in the preevent image are very similar, Yi and Y j in
the postevent image should also be similar in the absence of
changes (here, Xi and Yi and X j and Y j represent superpixels
at the same position, respectively), which means that the
similarity relationship between superpixels within the image
is consistent across different modalities. Recently, a structured
graph-based image regression with Markovian segmentation
(GIR-MRF) [40] has been proposed, which can be regarded
as a combination of PSGM and SCASC to capture both global
and local structural information, thereby improving image
regression and CD performance.

In these heterogeneous CD methods with structure-based
image regression, there are two key aspects: first, how to
construct S to capture the image structure, and second, how to
complete the regression to detect the changes. Although these
existing structure-based image regression methods achieve
relatively good results [37]–[40], they still have two limitations
as follows.

First, the constructed graph is not robust enough and it
is difficult to fully characterize the structure of image. For
example, the self-expression-based graph S in PSGM [38] uses
the global �1-norm �S�1 to guarantee the sparsity of S, but it
ignores the local properties of each node. The SCASC [39] and
GIR-MRF [40] use the KNN probabilistic graph to connect
each node with its KNN to ensure sparsity and capture the
image structure, but they directly use the Euclidean distance

metric in the graph construction and ignore the differences
between different features. In this article, we propose an
adaptive graph (AG) to capture the structure information of
image by treating each superpixel as a node, which belongs
to a KNN graph. To address the two challenges of the KNN
graph, the choice of k and the distance metric, first, we use
an in-degree-based adaptive k-selection strategy to choose a
suitable k for each node instead of a fixed k in the common
KNN graph; second, we use an adaptive-weighted distance
metric that automatically determines the feature weights in the
distance between superpixels, instead of a common Euclidean
distance metric that gives the same weight to all the features
without considering the distinguishability of different features
in different images. Therefore, by combining the adaptive k
and adaptive-weighted distance metric, we can find the truly
similar neighbors for each node and assign suitable connection
weights, thus better characterizing the image structure.

Second, the previous structure-based image regression meth-
ods of PSGM [38], SCASC [39], GIR-MRF [40], and
FPMS [37] only consider one-way transformation of X→ Y�
or Y → X� and do not consider the inverse transformations
of Y� → X or X� → Y, where X� and Y� denote the
translated images. Inspired by the cycle GAN [30], which
can perform a compound translation of data from domain
X to domain Y and then to domain X (i.e., X → Y� →
X), we propose a structure cycle consistency-based image
regression model. We decompose the postevent image into a
translated image and a changed image by using three types of
regularization terms: a forward transformation term (X→ Y�)
to constrain the preevent image and translated image to have
the same structure; a cycle transformation term to enable Y�
to be retransformed back to the original domain of X as
Y� → X; and a sparse regularization term based on the prior
sparse knowledge of changes that only a small part of the
area changed and most areas remain unchanged during the
event in the CD problem. By combining these regularization
terms, we can obtain a better regression image and a more
accurate DI with less noise, which further improves the CD
performance.

C. Contributions

The main contributions of our work can be summarized as
follows.

1) We propose an image regression-based heterogeneous
CD method by using adaptive graph and structure cycle
consistency (AGSCC), which combines two compo-
nents: the exploration of structure representation and the
structure-based regression.

2) We construct an adaptive distance-induced probabilistic
graph to better capture the structure information of
image, which combines the adaptive k-selection strategy
and adaptive-weighted distance metric.

3) We design a structure cycle consistency-based image
regression model by combining three types of reg-
ularization terms: forward transformation term, cycle
transformation term, and sparse regularization term.
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Fig. 1. Framework of the proposed heterogeneous CD method.

4) Comprehensive experiments on six real datasets verify
the superiority of the proposed method compared with
some state-of-the-art (SOTA) methods.

II. STRUCTURE CONSISTENCY

Assume that two heterogeneous images of X̃ ∈ R
I×J×CX

and Ỹ ∈ R
I×J×CY are acquired by different sensors over the

same region before and after a change event, respectively.
Here, I , J , and CX (CY) represent the height, width, and
number of channels of image X̃ (Ỹ), respectively. We denote
the pixel of each image as x̃(i, j, c) and ỹ(i, j, c). The purpose
of CD is to find the changed regions from the heterogeneous
images. However, since X̃ and Ỹ are obtained by different
sensors, they have different representations for the same object
and show quite different statistical properties. Therefore,
directly comparing their pixel values is meaningless.

In this article, we use the structure consistency to establish
the connection between heterogenous images. We first segment
each image into small parts with the same segmentation
map and use the similarity relationships between the image
blocks within the same image to represent the image structure.
Then, the structure consistency can be expressed as follows.
If X̃i and X̃ j represent the same kind of object (showing
that they are very similar) and neither of them changes
during the event, then Ỹi and Ỹ j also represent the same
kind of object (also showing that they are very similar).
Because this nonlocal similarity within the image itself could
eliminate the discrepancy between heterogeneous images, the
similarity relationship-based structure can be well preserved
across different imaging modalities. Therefore, we can use
this structure consistency between heterogeneous images to
translate the preevent image to the domain of postevent image,
then calculate the DI to measure the change level, and finally
compute the change map (CM).

The proposed method consists of four steps: 1) preprocess-
ing, which includes superpixel segmentation and feature
extraction; 2) structure representation by learning graph; 3)
image translation with structure consistency; and 4) binary CM
computation by segmentation or clustering methods, as shown
in Fig. 1.

III. ADAPTIVE GRAPH

A. Preprocessing

As aforementioned, we need to consider the pairwise simi-
larity relationships to represent image structures. Therefore,
the superpixel that internally represents the same object is
chosen as the basic analysis unit in AGSCC, which can bring
two benefits compared to the individual pixel or square Patch.
First, superpixel can maintain the shape and edge of object and
contain contextual information. Second, it can greatly reduce
the computational complexity by reducing the size of graph.

The simple linear iterative clustering (SLIC) method [41]
is selected to generate the superpixels for its superiority
in terms of efficiency (linear complexity of the number of
image pixels) and boundary protection. SLIC is easy to
use, and it offers flexibility in terms of the compactness
and number of generated superpixels. For different types of
preevent image X̃, such as optical image with RGB bands,
multispectral image with CX > 3, and SAR image, we have
some adjustments on the SLIC to generate the superpixels
as in SCASC [39]. Once the preevent image X̃ is segmented
into N superpixels as X̃n , n = 1, . . . , N , we can obtain
the segmentation map � = {�n|n = 1, . . . , N } with �n =
{(i, j)|x̃(i, j, c) ∈ X̃n, c = 1, . . . , CX}. Then, � is mapped to
the postevent image Ỹ to generate the superpixels Ỹn , n =
1, . . . , N with Ỹn = {ỹ(i, j, c)|(i, j) ∈ �n, c = 1, . . . , CY},
which can make X̃n and Ỹn represent the same region.

After the superpixel segmentation, different kinds of feature
information can be extracted to represent the superpixel,
such as the spatial, spectral (intensity), and textural informa-
tion. We extract M features for each band and denote the
mth feature extraction operator as F (m), and then, we can
obtain the feature vectors of X(m)

n = F (m)(X̃n) ∈ R
CX and

Y(m)
n = F (m)(Ỹn) ∈ R

CY . By stacking these feature vectors,
we can obtain the stacked feature matrices of X ∈ R

M×CX×N

and Y ∈ R
M×CY×N , where the mth feature matrices are

denoted as X(m) = Xm,:,: ∈ R
CX×N and Y(m) = Ym,:,: ∈

R
CY×N .

B. Structure Representation by AG

1) Graph Learning Model: In order to characterize the
image structure that is represented by the similarity rela-
tionship between superpixels, we first construct a weighted
directed graph G = (V, E, SX ) by setting each superpixel
as a vertex, where the vertex set is V = {X̃i |i = 1, . . . , N }
and the edge set is E = {(X̃i , X̃ j)|SX

i, j �= 0; i, j = 1, . . . , N }
with SX

i, j being the weight from X̃i to X̃ j . It is intuitive that
the weight SX

i, j is larger if the distance between X̃i and X̃ j

is smaller. In [42], a distance-induced probabilistic graph is
used, which learns the probability matrix SX by solving the
following minimization model:

min
SX

N�
i, j=1

distX
i, j SX

i, j + α
�
SX

i, j

�2
, s.t.

N�
i=1

SX
i, j = 1, SX

i, j ≥ 0

(1)

where α > 0 is a tuning parameter and distX
i, j is the distance

between X̃i and X̃ j . As will be shown latter, SX can be
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column k-sparse when the appropriate α is chosen. From (1),
there are two points that directly affect the performance of
this KNN-type graph: the α that controls the number (k) of
NNs and the distance metric dist X that affects the weight and
neighbor location of SX . In other words, α determines how
many nonzero elements there are in SX , and dist X determines
the position and values of each nonzero element in SX .

The Euclidean distance is often used directly for construct-
ing the graph [39], [43], [44]. However, since different features
represent different information, it is not appropriate to directly
use the Euclidean distance metric that gives the same weight
to all the features without considering the distinguishability of
different features in different images. On the other hand, since
the proportions of different kinds of objects in the image are
also different, a fixed α for all superpixels that generates a
common number k of NNs is also inappropriate, which may
underconnect those superpixels that represent dominant occu-
pied objects and overconnect those superpixels that represent
nondominant occupied objects.

To address these challenges, we propose an AG that selects
the appropriate neighbors for each node with adaptive k
and adaptive-weighted distance metric by using the following
minimization model:

min
SX ,wX

N�
i, j=1

�
M�

m=1

wX
m distX

m,i, j SX
i, j

�
+ αi

�
SX

i, j

�2
,

s.t.
N�

i=1

SX
i, j = 1, SX

i, j ≥ 0,

M�
m=1

�
wX

m

�η = 1, wX
m ≥ 0 (2)

where distX
m,i, j = �X(m)

i − X(m)
j �2

2 is the mth feature distance
between X̃i and X̃ j , wX

m is the weight for the mth feature
distance, and αi > 0 and 0 < η < 1 are tuning parameters.
Compared to model (1), the graph learning model (2) intro-
duces adaptive parameters αi for each node and wX

m for each
feature, which are used to select k and the distance metric.

Define 1N as the N × 1 column vector of ones, SX
i as the

i th column of SX that represents the local structure of the i th
superpixel, and distX

m,i as the feature distance vector with the
j th element being distX

m,i, j ; problem (2) can be rewritten as
the following model:

min
SX ,wX

N�
i=1

�
SX

i

�T

�
M�

m=1

wX
m distX

m,i

�
+ αi

��SX
i

��2

2

s.t. 1T
N SX

i = 1, SX
i, j ≥ 0,

M�
m=1

�
wX

m

�η = 1, wX
m ≥ 0. (3)

The smooth term of αi�SX
i �2

2 is used to avoid trivial solution
and make SX

i sparse together with the conditions of 1T
N SX

i = 1,
SX

i, j ≥ 0. Specially, if we set αi = 0, problem (3) has a trivial
solution for SX

i of SX
i,i = 1 and SX

j,i = 0, j �= i , that is,
X̃i is only connected with itself with probability 1. On the
other hand, if we set αi →∞, the optimal solution for SX

i is
that SX

i = 1N/N , that is, all the superpixels connect X̃i with
the same probability 1/N . The distance-induced regularization
term enables neighbors with small distances to gain larger
weights, the weighting vector wX is used to distinguish the

contribution of different features in the graph construction, and
the parameter η is used to control the distribution of weights.

2) Optimization: Problem (3) can be efficiently solved by
using the alternating direction method of multipliers (ADMM),
which can iteratively update one variable at a time and fixed
the others. ADMM separates (3) into SX -subproblem and wX -
subproblem.

a) SX -subproblem: Since each column of SX is inde-
pendent with fixed wX

m in model (3), by defining dX
i =

(
�M

m=1 wX
m distX

m,i ), the minimization of (3) with respect to SX

can be reformulated as

min
1T

N SX
i =1,SX

i, j≥0

����SX
i +

1

2αi
dX

i

����
2

2

. (4)

The Lagrangian function of (4) is

L�
SX

i , ξ, ς
� = ����SX

i +
1

2αi
dX

i

����
2

2

− 2ξ
�
1T

N SX
i − 1

�− ςT SX
i

(5)

where ξ ∈ R and ς ∈ R
N are two Lagrangian multipliers. With

the Karush–Kuhn–Tucker (KKT) condition, the closed-form
solution of SX

i is given by

SX
i =

	
− 1

2αi
dX

i + ξ



+

(6)

where the operator (Z)+ turns negative elements in Z to
zero while keeping the rest unchanged. We can find that
SX

i is a sparse vector, which means that each superpixel is
only connected with superpixels that are similar to itself.
Then, we assume that SX

i has ki nonzero elements. We sort
dX

i in ascending order denoted as d X
(1),i , d X

(2),i , . . . , d X
(N),i .

By using (6), the following inequalities hold:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−d X

(ki ),i

2αi
+ ξ > 0

−d X
(ki+1),i

2αi
+ ξ ≤ 0.

(7)

Substituting the constraint of 1T
N SX

i = 1 into (6), we have

ki�
h=1

�
−d X

(h),i

2αi
+ ξ

�
= 1. (8)

Substituting (8) into (7), we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αi >
ki

2
d X

(ki ),i −
1

2

ki�
h=1

d X
(h),i

αi ≤ ki

2
d X

(ki+1),i −
1

2

ki�
h=1

d X
(h),i .

(9)

Then, we can find that the regularization parameter αi can
be replaced by the number of neighbors ki when we set

αi = ki

2
d X

(ki+1),i −
1

2

ki�
h=1

d X
(h),i . (10)

Therefore, the value of αi can be determined by ki , that
is, the tuning of parameter αi is replaced by the tuning of
ki , which is more intuitive (ki has explicit meaning) and
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easier (ki is an integer). With the number ki of NNs, the SX -
subproblem can be solved as

SX
( j),i =

⎧⎪⎨
⎪⎩

d X
(ki+1),i − d X

( j),i

ki d X
(ki+1),i −

�ki
h=1 d X

(h),i

, j ≤ ki

0, j > ki .

(11)

It can be found that SX
i is a sparse vector with ki nonzero

elements, which means that X̃i is connected to ki NNs with
the weight of the j th neighbor being SX

( j),i .
b) wX -subproblem: The minimization of (2) with respect

to the wX can be reformulated as

min
wX

M�
m=1

wm

N�
i, j=1

distX
m,i, j SX

i, j , s.t.
M�

m=1

�
wX

m

�η = 1, wX
m ≥ 0.

(12)

By denoting gm = �N
i, j=1 distX

m,i, j SX
i, j , the Lagrangian

function of (12) is

L�
wX , ξ, ς

� = M�
m=1

wX
m gm − ξ

�
M�

m=1

�
wX

m

�η − 1

�
− ςT wm

(13)

where ξ ∈ R and ς ∈ R
M are two Lagrangian multipliers.

With the KKT condition, the closed-form solution of wX is
given by

wX
m = g

1
η−1
m

�
M�

m=1

g
η

η−1
m

�− 1
η

. (14)

From (14), we can find that the feature with smaller distance
contribution (gm) will get larger weight coefficient. We can
also observe that when η→ 1, we will assign 1 to the weight
factor of the feature whose gm value is the smallest and assign
0 to the weights of other features. By tuning η between (0, 1)
we can reach a balance between all the features.

3) k-Selection: It can be found from (6) and (11) that
the learned probabilistic graph SX is a KNN-type graph,
whose number ki of NNs for each vertex is controlled by the
parameter αi . Obviously, a very small ki will underconnect the
graph and make the graph not robust enough, whereas a very
large ki tends to overconnect the graph and leads to confusion.
Here, we use a k-selection strategy proposed in [44] with the
goal that “each superpixel is connected to as many truly similar
superpixels as possible,” which is an in-degree-based strategy
with the following steps.

Step 1: Set kmax = 

√

N� and kmin = 

√

N/10� with 
·�
denoting the rounding up operation, and find the kmax NNs
of each vertex. Step 2: Calculate the in-degree di(X̃i) for the
i th vertex, that is, the number of times that the i th vertex
occurs among the kmax NNs of all vertexes. Step 3: Set ki =
min{kmax, max{di(X̃i), kmin}} for the i th vertex.

With this k-selection strategy, we can select a larger ki for
the superpixel that represents more-dominant occupied object
(has more truly similar superpixels) and select a smaller ki for
the superpixel that represents less-dominant occupied object
(has fewer truly similar superpixels).

The construction process of AG SX is reported as Algo-
rithm 1, where the algorithm terminates when the maximal
number of iterations is reached or the relative difference
between two iteration results �[t+1] < �[0] with �[t+1] =
(�SX [t+1] − SX [t]�F )/(�SX [t+1]�F ). We can find that it finds
the truly similar neighbors for each vertex with two methods:
adaptive k-selection strategy and adaptive-weighted distance
metric.

Algorithm 1 AG Learning
Input: The feature matrix X, parameter η ∈ (0, 1).
Initialize: Calculate the distance matrix dist X , adaptively
select ki , and set wX = 1M .
Repeat:

1: Calculate the weighted distance vector dX
i and sort dX

i .
2: Calculate the SX

i through (11).
3: Calculate the gm and update the wX through (14).

Output: The learned probability matrix SX and weighting
vector wX .

IV. STRUCTURE CYCLE CONSISTENCY-BASED

IMAGE REGRESSION

The main goal of the image regression-based heterogeneous
CD is to map the image from one domain to the domain of the
other image. Because the superpixel is used as the basic unit
and the features are extracted to represent the superpixel, then
we need to find the regression function between the feature
matrices. Defining the mapping function from the domain of
X to the domain of Y as M : X → Y and the regression
feature matrix of X in the domain of Y as Y�, then we have
Y� = M(X). Similarly, we define the opposite mapping
function from the domain of Y to the domain of X as: G :
Y → X , and the regression feature matrix of Y in the domain
of X as X�; then, we have X� = G(Y). If we define F−1 as
the operators for extracting pixel values from features, e.g.,
directly treating the mean feature as the value of each pixel
within the superpixel, then we have the regression function
between heterogeneous images as F−1MF and F−1GF with

Ỹ� = F−1�Y�
� = F−1(M(X)) = F−1�M�F�

X̃
���

X̃� = F−1�X�
� = F−1(G(Y)) = F−1�G�F�

Ỹ
���

(15)

where Ỹ� and X̃� are the translated images. Next, we need to
use the structure consistency property between heterogeneous
images to complete the regression functions of M and G by
using three types of regularization terms. Fig. 2 shows the
structure cycle consistency-based image regression.

A. Forward Transformation

The forward transformation-based regularization (FTR) is
used to constrain the regression image and the original image
to have the same structure, i.e., the same similarity relation-
ships between superpixels. Specifically, if superpixels in the
preevent image (X̃i and X̃ j ) are very similar (representing the
same kind of objects), then the superpixels in the transformed
image (Ỹ�i and Ỹ�j ) corresponding to this superpixel pair should
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Fig. 2. Illustration of structure cycle consistency-based image regression.

also be very similar (with small distance). Since the structure
information (i.e., similarity relationships) of the image X̃ is
characterized by the AG SX , then we have the following FTR:

min
M�

m=1

wY �
m

N�
i, j=1

distY
�

m,i, j SX
i, j + β

��SX − SY ���2
F

(16)

where distY
�

m,i, j = �Y�(m)
i − Y�(m)

j �2
2 is the mth feature distance

between Ỹ�i and Ỹ�j , β > 0 is a tuning parameter, and SY � is
the structure graph of translated image Ỹ� that can be learned
by using a similar model of (2) as

min
SY � ,wY �

N�
i, j=1

�
M�

m=1

wY �
m distY

�
m,i, j SY �

i, j

�
+ αi

�
SY �

i, j

�2

s.t.
N�

i=1

SY �
i, j = 1, SY �

i, j ≥ 0,

M�
m=1

�
wY �

m

�η = 1, wY �
m ≥ 0 (17)

where wY �
m is the weight for the mth feature that is similar as

wX
m in the AG learning model of (2). FTR makes the regressed

superpixels corresponding to the instances connected in the
edge of SX be similar to each other.

Denote the degree matrix DX ∈ R
N×N of graph SX as

diagonal matrix with the i th entry being the summation of
all the probabilities related to X̃i , i.e.,

�N
j=1 (SX

i, j + SX
j,i)/2,

and denote the graph Laplacian matrix as LX = DX −
((SX + (SX )

T
)/2); then, we have

N�
i, j=1

distY
�

m,i, j SX
i, j = 2T r

	
Y�(m)LX

�
Y�(m)

�T



. (18)

B. Cycle Transformation
The cycle transformation-based regularization (CTR) is

inspired by the cycle GAN [30], where it pointed out that
domain translations should comply with the principle of cycle
consistency, that is, the regressed data can be transformed back
to the original domain as

X�� = G�
Y�

� = G(M(X))  X. (19)

Therefore, we propose the following cycle
consistency-based CTR as:

min
M�

m=1

wX
m

N�
i, j=1

distX ��
m,i, j SY �

i, j + γ

M�
m=1

���X(m) − X��(m)
���2

F
(20)

where distX ��
m,i, j = �X��(m)

i − X��(m)
j �2

2 and γ > 0 is a tuning
parameter. In the CTR, the first term is based on the structure
consistency between the transformed back image and the

transformed image (i.e., the constraint of X�� = G(Y�)), and the
second term requires that the transformed back data are very
similar to the original data (i.e., the constraint of X��  X).

By defining the graph Laplacian matrix as LY � = DY � −
(SY � + ((SY �)

T
)/2) with DY � being the degree matrix of graph

SY � , CTR can be rewritten as

min
M�

m=1

2wX
m T r

	
X��(m)LY �

�
X��(m)

�T


+ γ

���X(m) − X��(m)
���2

F
.

(21)

C. Sparse Regularization

One of the challenges in unsupervised image regression or
heterogeneous CD problem is to avoid that changed pixels
affect the transforming functions. To reduce the influence
of changed pixels on the regression process, we decompose
postevent image into a regressed image and a changed image,
and then, we have Y = Y� −�, where � ∈ R

M×CY×N is the
changed feature matrix. Based on the fact that only a small
part of the area changed and most areas remain unchanged
during the event in the practical CD problem, we have the
following prior sparsity-based regularization (PSR) as:

min λ

M�
m=1

���(m)
��

2,1, s.t. Y�(m) = Y(m) +�(m) (22)

where λ > 0 is a penalty parameter. The �2,1-norm ��(m)�2,1

is defined as ��(m)�2,1 = �N
i=1 ��(m)

i �2, which is a convex
relaxation of the original �2,0-norm of ��(m)�2,0 that equals
the number of nonzero columns in �(m).

D. Image Regression Model

By combining the above regularization terms of FTR (16),
CTR (20), PSR (22), and the graph learning model (17),
we can obtain the structure cycle consistency-based image
regression model as

min
X��,Y�,�,SY � ,wY �

M�
m=1

2wY �
m Tr

	
Y�(m)

(LX + LY �)
�

Y�(m)
�T




+ 2wX
m T r

	
X��(m)LY �

�
X��(m)

�T



+ γ
���X(m) − X��(m)

���2

F
+ λ

���(m)
��

2,1

+
N�

i=1

αi

���SY �
i

���2

2
+ β

���SX − SY �
���2

F

s.t.
N�

i=1

SY �
i, j = 1, SY �

i, j ≥ 0,

M�
m=1

�
wY �

m

�η = 1, wY �
m ≥ 0

Y�(m) = Y(m) +�(m). (23)

With the regression model (23), it can be found that the
regressed Y and Y� are in the same domain, for two reasons.
First, Y� is separated from Y and only a few of them are
different (� is column sparse), i.e., Y�i = Yi ideally holds for
most i = 1, . . . , N . Second, for the changed Y�j , the model
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constrains it to be similar to its neighborhood of {Y�i |SX
i, j �=

0, i = 1, . . . , N}, which prevents anomalous Y�j .
By using the ADMM and defining the objective function

of (23) as �(X��, Y�,�, SY � , wY �), we rewrite the model (23)
as the minimization of following augmented Lagrangian
function:
L(SY � , X��, Y�,�, wY � , P)

= �+
M�

m=1

Tr

	�
Y�(m) − Y(m) −�(m)

�T
P(m)




+
M�

m=1

μ

2

���Y�(m) − Y(m) −�(m)
���2

F

s.t.
N�

i=1

SY �
i, j = 1, SY �

i, j ≥ 0,

M�
m=1

�
wY �

m

�η = 1, wY �
m ≥ 0 (24)

where P(m) ∈ R
CY×N is a Lagrangian multiplier and μ > 0 is

a penalty parameter. The minimization problem of (24) can
be divided into the following subproblems.

1) SY � -Subproblem: By defining dY �
i =�M

m=1 (wY �
m distY

�
m,i +wX

m distX ��
m,i ) − 2βSX

i , the minimization of
(24) with respect to SY � can be reformulated as

min
1T

N SY �
i =1,SY �

i, j≥0

����SY �
i +

1

2(αi + β)
dY �

i

����
2

2

. (25)

Similar to the process of solving SX in (11), the solution
for SY � is

SY �
( j),i =

⎧⎪⎨
⎪⎩

dY �
(ki+1),i − dY �

( j),i

ki dY �
(ki+1),i −

�ki
h=1 dY �

(h),i

, j ≤ ki

0, j > ki

(26)

where ki of SY � for the i th vertex is same as ki of SX with the
k-selection strategy in Section III-B3.

2) X��-Subproblem: The minimization of (24) with respect
to X�� can be reformulated as

min
X��

M�
m=1

2wX
m T r

	
X��(m)LY �

�
X��(m)

�T


+ γ

���X(m) − X��(m)
���2

F
.

(27)

Then, we have the optimal X�� as

X��(m) = 2γ X(m)
�
4wX

m LY � + 2γ IN
�−1

(28)

where IN ∈ R
N×N represents an identity matrix.

3) Y�-Subproblem: The minimization of (24) with respect
to Y� can be reformulated as

min
Y�

M�
m=1

2wY �
m T r

	
Y�(m)

(LX + LY �)
�

Y�(m)
�T




+ Tr

	�
Y�(m)

�T
P(m)



+μ

2

���Y�(m)− Y(m)−�(m)
���2

F
. (29)

The Y�-subproblem can be solved by taking the first-order
derivative of the objective function to zero, and then, we have

Y�(m)=�
μY(m) + μ�(m) − P(m)

��
4wY �

m (LX + LY � )+ μIN

�−1
.

(30)

4) Δ-Subproblem: The minimization of (24) with respect
to � can be rewritten as

min
�

M�
m=1

���(m)
��

2,1 +
μ

2λ

�����(m) + Y(m) − Y�(m) − P(m)

μ

����
2

F

.

(31)

By defining Q(m) = −Y(m)+Y�(m)+(P(m)/μ) and the prox-
imal operator proxa f (b) = arg minx f (x) + (1/2a)�x − b�2

F ,
the closed-form solution of (31) can be obtained by �(m) =
prox(λ/μ)�·�2,1

(Q(m)) as in [45] with

�
(m)
i = max

����Q(m)
i

���
2
− λ

μ

�
Q(m)

i���Q(m)
i

���
2

(32)

where we follow the convention 0 · (0/0) = 0.
5) wY � -Subproblem: The minimization of (24) with respect

to wY � can be reformulated as

min
wY �

M�
m=1

wY �
m

N�
i, j

�
SX

i, j + SY �
i, j

�
distY

�
m,i, j

s.t.
M�

m=1

�
wY �

m

�η = 1, wY �
m ≥ 0. (33)

By denoting ρm = �N
i, j (SX

i, j + SY �
i, j )distY

�
m,i, j , the

wY � -subproblem can be solved similarly as wX -subproblem
of (12), and then, we have

wY �
m = ρ

1
η−1

m

�
M�

m=1

ρ
η

η−1
m

�− 1
η

. (34)

Finally, the Lagrangian multiplier P can be updated by

P(m)← P(m) + μ
�

Y�(m) − Y(m) −�(m)
�
. (35)

The procedure of solving the problem (23) is summarized
as Algorithm 2. The stopping criterion of Algorithm 2 is
that the maximum number of iterations is reached or the
relative difference between two iteration results ε[t+1] =�M

m=1 ��(m)[t+1] −�(m)[t]�F/
�M

m=1 ��(m)[t+1]�F is less than
the tolerance threshold ε[0], which means that there is no
longer any appreciate updates in the iteration and the algorithm
runs into convergence.

E. Change Extraction

Once the regressed feature matrix Y� and changed feature
matrix � are output from Algorithm 2, the regression image
can be obtained by using Ỹ� = F−1

�
Y�

�
, and the DI can be

calculated by

DI(i, j) =
M�

m=1

���(m)
n

��2

2, (i, j) ∈ �n, n = 1, . . . , N. (36)

After the DI is obtained, the binary CM solution can be
regarded as an image segmentation problem, which can be
solved by thresholding methods or clustering methods as used
in homogeneous CD. Since the main purpose of this work is to
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Algorithm 2 Structure Cycle Consistency-Based Image
Regression

Input: The matrices of X, Y, SX and wX , parameters
β, γ, λ > 0.
Initialize: Set X�� = X, Y� = Y, wY � = wX , and P = � = 0.
Repeat:

1: Update SY � through (26) by computing and sorting dY �
i .

2: Update X�� through (28) by computing LY � .
3: Update Y� through (30).
4: Update � through (32) by computing Q.
5: Update wY � through (34) by computing ρm .
6: Update the Lagrangian multiplier through (35).

Until stopping criterion is met.
Output: The regressed feature matrix Y� and changed fea-
ture matrix �.

propose the AGSCC-based image regression method for het-
erogeneous CD, a complex segmentation method for comput-
ing final CM is outside the focus of this article, which may also
conceal the contribution of this article. Therefore, we directly
use the superpixel-based segmentation method proposed in
SCASC [39] to divide DI into changed and unchanged classes,
which exploits spatial context information and change infor-
mation of DI with a Markov random field (MRF) model that
can be solved by using the min-cut/max-flow algorithm [46].
The only hyperparameter that needs to be manually set in this
MRF-based segmentation method is the balanced parameter,
which is fixed to 0.05 according to SCASC [39].

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Heterogeneous Datasets and Evaluation Metrics

Six heterogeneous datasets are presented to evaluate the
proposed AGSCC as listed in Table I, which contains different
types of heterogeneity: multisensor image pairs (e.g., #1, #2,
and #3) and multisource image pairs (e.g., #4, #5, and #6).
These datasets reflect quite different CD conditions: different
resolution levels (varying from 0.52 to 30 m), different image
sizes (varying from 300 to 4135 pixels in length or width), and
different change events (lake overflow, flooding, and construc-
tion), which can evaluate the generalizability and robustness
of the algorithm.

Two types of evaluation metrics are employed. First, the
DI can be evaluated by the empirical receiver operating char-
acteristics (ROC) curve and the precision–recall (PR) curve,
and the corresponding areas under ROC curve (AUR) and PR
curve (AUP) are used as the quantitative criteria, respectively.
Second, the final CM can be evaluated by the overall accuracy
(OA), F1-measure (Fm), and Kappa coefficient (Kc), which
are computed as: OA = (TP + TN)/(TP + TN + FP + FN),
Fm = (2TP)/(2TP + FP + FN), and Kc = (OA − PRE)/
(1 − PRE) with

PRE = (TP+ FN)(TP+ FP)+ (TN+ FP)(TN+ FN)

(TP + TN+ FP + FN)2
(37)

where TP, FP, TN, and FN represent the true positives, false
positives, true negatives, and false negatives, respectively.

Fig. 3. Heterogeneous datasets, regression images, and DIs. From top to bot-
tom, they correspond to Datasets #1–#6. (a) Preevent image X̃, (b) postevent
image Ỹ, (c) ground truth, (d) back transformed image X̃��, (e) regression
images Ỹ�, (f) DI between Ỹ and Ỹ�, and (g) DI calculated by using changed
feature matrix � with (36).

Combining the comprehensive metrics (OA, Kc and Fm) with
the individual metrics (TP, FP, TN, and FN marked in different
colors in the qualitative results) allows us to better assess the
CM.

For all the experiments of AGSCC, we set N = 5000 for the
superpixel segmentation and extract the mean, variance, and
median values of each band as the features of each superpixel;
set η = 0.5 for Algorithm 1; and set β = γ = 5 × �wX�1

and λ = 0.1 × �wX�1 for Algorithm 2. The impact of these
parameters will be analyzed in detail in Section V-D in the
Supplementary Material.

B. Regression Image and DI Performance

In Fig. 3(d) and (e), the back transformed images X̃�� and
the regression images Ỹ� of the preevent image are shown,
which are computed by X̃�� = F−1(X��) and Ỹ� = F−1(Y�)
with F−1 being the operator of extracting the mean features
from the feature matrix, that is, we set the pixel value within
each superpixel of X̃�� (or Ỹ�) to the mean feature of each
band of this superpixel in X�� (or Y�). From Fig. 3(a) and (d),
we can find that the back transformed image X̃�� and the
original preevent image X̃ are very similar, except that X̃��
is blurred due to the use of mean features. By comparing the
translated image Ỹ� in Fig. 3(e), the original preevent image
X̃ in Fig. 3(a), and the postevent image Ỹ in Fig. 3(b), we can
find that the structures of Ỹ� and X̃ are consistent in both the
changed and unchanged regions, and Ỹ� and Ỹ have the same
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TABLE I

DESCRIPTION OF THE SIX HETEROGENEOUS DATASETS

Fig. 4. ROC (left) and PR (right) curves of AGSCC generated DIs.

image style (i.e., their statistical properties are similar). This
means that the proposed structure consistency-based AGSCC
can well translate the heterogeneous images from different
domains.

Fig. 3(f) shows the DI between Ỹ and Ỹ�, which is computed
by directly using the differencing operator as DI(i, j) =
(
�CY

c=1 (ỹ(i, j, c)− ỹ �(i, j, c))2)1/2. Fig. 3(g) shows the DI
calculated by using changed feature matrix � with (36).
From Fig. 3(f) and (g), we can see that both DIs are able
to well distinguish the changed and unchanged parts, which
demonstrates the effectiveness of Algorithms 1 and 2 in the
structure representation and image transformation with the
structure cycle consistency, respectively. We can also find that
the DIs with � in Fig. 3(g) are sparse by using the PSR.
Therefore, it is able to obtain a satisfactory CD performance by
directly segmenting the DI with a simple thresholding method
(such as the Otsu [47]) or clustering method (such as K-means
clustering [48] and fuzzy c-means clustering [49]), which is
also confirmed by the ROC and PR curves in Fig. 4. The AUR
of the ROC curves and the AUP of PR curves are reported in
Table II. Focusing on Fig. 4 and Table II, the DIs generated by
AGSCC on Datasets #2 and #6 are not as good as others. For
Datasets #2 and #6, they contain more types of ground objects
than other datasets, such as buildings, grass, trees, roads, and
pitches of Dataset #2, and rivers, farmland, roads, buildings,
forests, and mountains of Dataset #6. At the same time, the
proportion of these ground objects is quite uneven and the res-
olution of Dataset #2 is very high (0.52 m), as shown in Fig. 3.
Therefore, due to the complex image structure of Datasets
#2 and #6, it is difficult to accurately capture the structure
information and thus accomplish a good structure-based image
regression. In contrast, the DIs of Datasets #3, #4, and #5 can
obtain very high metrics, for example, the AUPs are 0.719,
0.797, and 0.787, respectively. In addition, we believe that the
proposed method can be further expanded by incorporating

TABLE II

AUR AND AUP OF DIS GENERATED BY AGSCC ON THE

HETEROGENEOUS DATASETS

with deep learning-based methods. For example, AGSCC can
be associated with some homogeneous CD methods after
acquiring the regression image [7], [8]; and AGSCC can also
provide assistance to some deep learning-based CD methods,
such as supporting the training process [29] or constructing
high confidence pseudo-training sets [22], [34].

C. CM Performance

To verify the effectiveness of the proposed method,
we select the recently proposed M3CD1 [50], NPSG2 [36],
ALSC [43], IRG-McS (with the similarity criterion)3 [44],
FPMS4 [37], SCASC5 [39], PSGM [38]. and GIR-MRF6 [40]
for comparison. The default parameters are used in their
codes, which are also consistent with their original papers.
Fig. 5 shows the binary CMs of different methods on all the
evaluated datasets, and Table III lists the corresponding criteria
of OA, Kc, and Fm. From Fig. 5, we can find that the AGSCC
can well detect the changes between most heterogeneous
images with relatively small FP and FN. At the same time,
by comparing the quantitative measures of different methods
in Table III, it can be found that some methods do not perform
robustly enough and their performance degrades considerably
on some complex scenarios, such as M3CD on Dataset #6 (Kc
is 0.021), NPSG on Dataset #4 (Kc is 0.413), and FPMS and
ALSC on Dataset #2 (Kc are 0.215 and 0.312, respectively).
In contrast, the proposed AGSCC can obtain robust detection
results on different datasets under different types of CD
conditions. The average OA, Kc, and Fm of AGSCC on
all the evaluated datasets are about 0.955, 0.661, and 0.684,
respectively, which are higher than other comparison methods.
For example, the average Kc of AGSCC is 1.5% higher than

1M3CD is kindly available at http://www-labs.iro.umontreal.ca/˜mignotte
2NPSG is available at https://github.com/yulisun/NPSG
3IRG-McS is available at https://github.com/yulisun/IRG-McS
4FPMS is kindly available at http://www-labs.iro.umontreal.ca/˜mignotte
5SCASC is available at https://github.com/yulisun/SCASC
6GIR-MRF is available at https://github.com/yulisun/GIR-MRF
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Fig. 5. Binary CMs of different methods on heterogeneous datasets. From
top to bottom, they correspond to Datasets #1–#6. Binary CMs generated by
(a) M3CD, (b) NPSG, (c) ALSC, (d) IRG-McS (with the similarity criterion),
(e) FPMS, (f) SCASC, (g) PSGM, (h) GIR-MRF, and (i) AGSCC. In the
binary CM, white indicates TP, red indicates FP, black indicates TN, and
green indicates FN.

Fig. 6. Binary CMs of different methods on Dataset #6: (a) AGSCC,
(b) cGAN, (c) ACE-Net, (d) X-Net, (e) USCDN, and (f) DTCDN. In the
binary CM, white indicates TP, red indicates FP, black indicates TN, and
green indicates FN.

the second ranked GIR-MRF and 2.4% higher than the image
regression-based SCASC. This demonstrates the effectiveness
of the AGSCC-based image regression.

We also provide a comparison with some heterogeneous CD
methods based on GAN, such as cGAN [28], ACE-Net [29],
X-Net [29], USCDN [31], and DTCDN [27]. Fig. 6 shows
the CMs generated by these comparison methods on the
challenging Dataset #6, where we have marked the evaluation
scores of OA, Kc, and Fm. It can be seen from Fig. 6 that
DTCDN obtains quite accurate results, much better than
other methods. However, DTCDN is a supervised method,
which uses 50% of the ground truth as training data, 20%
as the validation set, and 30% as the test set in the deep
translation network and the CD network. For the rest unsu-
pervised methods, the proposed AGSCC is still very compet-
itive, achieving better detection results with higher OA, Kc,
and Fm.

In addition, in order to further evaluate the performance of
AGSCC, some other representative and SOTA methods other
than M3CD, NPSG, IRG-McS, FPMS, SCASC, and PSGM

Fig. 7. Regression images and DIs of AGSCC on Dataset #2 with different
N ’s. (a) N = 2500. (b) N = 5000. (c) N = 10 000. From (a) to (c), the
AUR of DIs are 0.793, 0.802, and 0.804, respectively, and the AUP of DIs
are 0.505, 0.534, and 0.540, respectively.

are selected for comparison as listed in Table IV, including
DFR-MT [51], CACFL [23], MDS [52], AFL-DSR [53],
RMN [54], PUSM [55], NLPEM [19], DPFL [56], X-Net [29],
ACE-Net [29], SCCN [20], LT-FL [57], AMD-IR [26], and
SSL [58]. Among these comparison approaches, DFR-MT,
CACFL, AFL-DSR, PUSM, DPFL, X-Net, ACE-Net, SCCN,
LT-FL, and SSL are deep learning-based methods. For the sake
of fairness, we directly quote the results of the corresponding
datasets in their original published papers. Because the datasets
used in each paper are not identical, Table IV is not aligned.
As can be seen in Table IV, the AGSCC can consistently gain
better or very competitive accuracy by comparing with these
SOTA approaches across different datasets.

D. Discussion

1) Parameter Analysis: The main parameters in AGSCC
are: the number of superpixels N ; the feature weight con-
trolling parameter η in the AG learning of Algorithm 1;
and the penalty parameters of β, γ , and λ that con-
trol the weights of regularization terms in the regression
model (23).

Generally, N should be selected according to the image
resolution and granularity requirement of CD task. A larger N
will make the segmented superpixel smaller, which improves
the detection granularity but also increases the computational
complexity, as analyzed in the following subsection of com-
plexity analysis. Fig. 7 plots the regressed images and DIs
generated by AGSCC on Dataset #2 with N = 2500, 5000, and
10 000, where we mark some details with the ellipse. We can
find that when N is very small (e.g., N = 2500), the size of the
generated superpixels is very large. In this case, some super-
pixels may not be internally homogeneous, i.e., they may con-
tain several different kinds of objects. As a result, some details
in the regressed image are easy to be ignored, and the block
effect of the DI is more obvious, as shown in Fig. 7. On the
other hand, a very large N increases the number of nodes in
the graph, which in turn increases the complexities of the AG
learning (Algorithm 1) and structure cycle consistency-based
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TABLE III

QUANTITATIVE MEASURES OF BINARY CMS ON THE HETEROGENEOUS DATASETS. THE HIGHEST AND SECOND-HIGHEST

SCORES ARE HIGHLIGHTED IN BOLD AND UNDERLINED, RESPECTIVELY

TABLE IV

ACCURACY RATE OF CMS GENERATED BY DIFFERENT METHODS ON DIFFERENT DATASETS. THE RESULTS OF THESE COMPARISON METHODS ARE

REPORTED BY THEIR ORIGINAL PUBLISHED PAPERS. ITALICIZED AND UNDERLINED MARKS ARE USED FOR DEEP LEARNING-BASED METHODS

image regression (Algorithm 2). In this article, we simply set
N = 5000 as a compromise choice. In addition, we directly
assign the segmentation map � of image X̃ to the image Ỹ in
the preprocessing of AGSCC. Although this operation is very
simple, it may introduce inaccurate boundaries of CD. How
to better segment the image in the preprocessing of AGSCC,
i.e., selecting suitable cosegmentation methods and optimal
segmentation scales [60] or fusing multiscale information [7],
needs to be further investigated.

To measure the impact of other parameters, the AUR
and OA are adopted to evaluate the generated DI and CM,
respectively, which can describe the general performance of
AGSCC. We take the approach of adjusting the parameter
under investigation and fixing the other parameters. In Fig. 8,
we vary the parameter η from 0.2 to 0.8 with step 0.05, let
β = γ and set them to {1, 2, . . . , 10} × �wX�1, and set the
parameter λ to {0.05, 0.1, . . . , 0.5} × �wX�1. From Fig. 8,
we can see that AGSCC achieves good results for a fairly large
range of the parameters β and γ , which indicates that AGSCC
is certain robust to β and γ . In contrast, AGSCC is more
sensitive to the parameters η and γ . The larger η is, the more
unevenly the weights of wX (14) and wY (34) are distributed.
In our experiments, we set η = 0.5 as a compromise choice.
For the parameter λ that controls the weights of PSR, its value
should be set according to the sparsity level (proportion of the
changed regions). Generally, the smaller the changed regions,

the larger λ should be. Based on Fig. 8, we fix λ = 0.1×�wX�1

in this article for simplicity.
2) Complexity Analysis: The main complexity of AGSCC

is concentrated in the AG learning (Algorithm 1) and structure
cycle consistency-based image regression (Algorithm 2).

Algorithm 1: in Step 1, calculating the weighted distance
matrix dX between all the superpixels needs O(MCX N2/2)
and sorting all columns of dX needs O(N2 log N ). In Step 2,
calculating the SX with the closed form (11) needs O(N2).
In Step 3, updating wX with gm needs O(M N2).

Algorithm 2: In Step 1, updating SY � through (26) by
computing and sorting dY �

i needs O(N2(M(CX + CY)/
2+ log N + 1)). In Step 2, updating X�� through (28) requires
O(M N3) for matrix inversion of (4wX

m LY � + 2γ IN )−1 and
O(MCX N2) for matrix multiplication. In Step 3, updating
Y� through (30) also requires O(M N3) for matrix inversion
of (4wY �

m (LX + LY � )+ μIN )−1 and O(MCY N2) for matrix
multiplication. In Step 4, updating � through (32) requires
O(MCY N) with the closed-form proximal operator. In Step 5,
updating wY � with ρm requires O(M N2). In Step 6, updating
the Lagrangian multiplier through (35) requires O(MCY N )
for matrix multiplication.

Although the complexity of AGSCC is very high in the
above theoretical analysis, which requires O(M N3) for matrix
inversion of each iteration in Algorithm 2, it can be accelerated
by using some iterative solvers for updating X�� with (28) and

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on February 29,2024 at 13:44:33 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: IMAGE REGRESSION WITH STRUCTURE CYCLE CONSISTENCY 1625

Fig. 8. Sensitivity analysis of parameters in AGSCC: (a) η, (b) β and γ , and (c) λ.

TABLE V

COMPUTATIONAL TIME (SECONDS) OF AGSCC

Y� with (30). The linear systems of updating X�� and Y� can
be rewritten as

X��(m)�4wX
m LY � + 2γ IN

� = 2γ X(m)

Y�(m)
�

4wY �
m (LX + LY �)+ μIN

�
= �

μY(m) + μ�(m) − P(m)
�
.

(38)

Since the matrices of LY � and LX are Laplacian matrices,
which are sparse, real, symmetric, and positive definite, the
linear systems of (38) can be solved efficiently by using the
conjugate gradient (CG) method. In addition, some precondi-
tioners can also be used to accelerate the CG method [61], such
as Jacobi, incomplete Cholesky (IC), and successive overre-
laxation (SOR). In our experiments, we use the preconditioned
CG with IC preconditioner for updating X�� and Y�.

Table V reports the computational time of AGSCC with
different superpixel numbers N on Datasets #1 and #2. The
algorithm is performed in MATLAB 2016a running on a
Windows Laptop with Intel Core i9-10980HK CPU and 64 GB
of RAM. In Table V, tA1 and tA2 represent the computational
time of Algorithms 1 and 2, respectively, and ttotal represents
the total computational time of AGSCC. As can be seen from
Table V, the main factor that determines the running time of
AGSCC is the superpixel number N rather than the image size,
and the time spent by Algorithm 2 accounts for the major part
of AGSCC.

VI. CONCLUSION

In this work, we proposed an unsupervised image regression
method to address the problem of heterogeneous CD. In partic-
ular, the proposed method first constructs an AG to represent
the structure of preevent image, which connects each super-
pixel with its truly similar neighbors by using a k-selection
strategy and adaptive-weighted distance metric. Based on the
fact that the similarity relationship-based structure can be well

preserved across different imaging modalities, the AG can be
used to translate the preevent image to the domain of postevent
image with three types of regularization: forward transforma-
tion term, cycle transformation term, and sparse regularization
term. By solving this structure cycle consistency-based image
regression model with ADMM, a more accurate DI can be
computed to measure the change level, which can be further
used to calculate the CM by image segmentation methods.
Extensive experiments show that the proposed method can
effectively improve the detection accuracy compared with
other related methods under different CD conditions.

In the future work, we will attempt to improve the com-
putation efficiency of AGSCC and design an effective fusion
strategy to fuse the forward regression (translating X into Y�)
and backward regression (translating Y into X�) along with
the cycle consistency, so as to improve the CD accuracy.
Besides, in the regression model, we directly use the learned
graph to complete the image regression, without exploring
the high-order neighborhood information hidden in the graph.
We will try to improve the regression performance by using
the hypergraph and graph spectral analysis in future.
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