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a b s t r a c t 

This paper addresses the robust sparse recovery problem in the presence of impulsive measurement 

noise. In order to overcome the poor performance of � 2 -norm loss function with the outliers under the 

impulsive noise, we employ the � 1 -norm as the loss function for the residual error, which is less sen- 

sitive to outliers in the measurements than the popular � 2 -loss. To rise to the challenges introduced by 

the non-smooth problem, we first employ two smoothing strategies to approximate the � 1 -norm loss 

function: one introduces a relaxation factor in the � 1 -norm and the other uses the infimal convolution 

smoothing technique to transform it into a smooth counterpart. Both of them can approximate the � 1 - 

norm with arbitrary degree of accuracy and provide a Lipschitz continuous gradient loss function. Then, 

we employ the accelerated proximal gradient (APG) and monotone APG (mAPG) frameworks for the con- 

vex and non-convex regularization functions, respectively. The convergence performance is discussed for 

generalized regularization penalty. The simulation result demonstrates our conclusions and indicates that 

the algorithm proposed in this paper can improve the reconstruction quality. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Background 

In recent years, sparse optimization is a very attractive field

hich has been found wide applications, for example, compressive

ensing (CS), machine learning and medical imaging. In the CS

ramework, it can sample the sparse or compressible signals below

he Nyquist rate, whilst still allowing perfect reconstruction of the

ignal [1] . Let x ∈ R 

N be the unknown signal, which is sparse, or

an be sparsely represented on an appropriate basis or dictionary.

S samples x with an M × N measurement matrix A ∈ R 

M×N ,

here M is much smaller than N , yielding the measurement

ector y ∈ R 

M . It can be expressed as: 

 = Ax + n (1) 

here the sensing matrix A is usually chosen to be a random ma-

rix, such as Gaussian matrix, Bernoulli matrix, or partial Fourier

atrix, and n ∈ R 

M denotes the measurement error or noise. 

Reconstructing the sparse signal x is an underdetermined

roblem, which can be formulated as the following minimization

roblem 

in 

x 
F ( x ) ≡ f ( Ax − y ) + g ( x ) (2) 
∗ Corresponding author. 
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here f is the loss function related to (1) , and g is the regu-

arization function to penalize the sparsity of x . Intuitively, g ( x )

hould be the � 0 -norm ‖ x ‖ 0 , representing the number of nonzero

lements of x . Unfortunately, minimizing the � 0 -norm is equivalent

o finding the sparsest solution, which is known to be an NP-hard

roblem. A favorite and common approach is using the � 1 -norm

onvex approximation, i.e., g ( x ) = ‖ x ‖ 1 = 

∑ N 
i =1 | x i | instead of the

 0 -norm. This convex relaxation model has been widely used

n many different fields, such as synthetic aperture radar (SAR)

mages processing [2] , direction of arrival (DOA) estimation [3] and

agnetic resonance imaging (MRI) [4] . It has been proved that

he sparse signal x can be recovered by the � 1 -norm minimization

nder some assumptions of the sensing matrix A , such as the

estricted isometry property (RIP) [1] . However, the � 1 -norm

egularization sometimes tends to underestimate high-amplitude

omponents of x as it uniformly penalizes the amplitude, unlike

hat all nonzero entries have equal contributions in the � 0 -norm.

his may lead to failure recovery in some cases [5] , such as the

ndesirable blocky images in the CT [6,7] . To address this issue,

any non-convex regularizations, which are interpolated between

he � 0 -norm and the � 1 -norm, have been proposed to approximate

he � 0 -norm more accurately and bring better reconstructions,

ecently. This can be illustrated by the � p (quasi)-norm with

 ∈ (0, 1) [8–10] , capped � 1 -norm [11,12] , reweighted � 1 -norm

5] , the difference of the � 1 and � 2 -norms ( � 1 −2 ) [13,14] , log-sum

enalty (LSP) [7] , smoothly clipped absolute deviation (SCAD) [15] ,

https://doi.org/10.1016/j.neucom.2019.08.035
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minimax-concave penalty (MCP) [16–18] , correntropy induced

metric (CIM) penalty [19,20] . 

On the other hand, f ( Ax − y ) = ‖ Ax − y ‖ 2 2 , which is the � 2 -

norm of the residuals, is often used as the loss function to measure

the data fidelity. This is because that the measurement noise is

usually Gaussian distributed or approximately Gaussian, and the

� 2 -norm makes the reconstruction problem convex and simplifies

the derivation of the recovery algorithms. However, the noise

sometimes exhibits non-Gaussian properties in practical applica-

tions, such as the impulsive noise, i.e., including salt-and-pepper

noise and random-valued noise, which are often found in image

processing [18,21] . Under the impulsive noise, due to the fact that

the least-squares (LS) based algorithms perform poorly with the

outliers, the normal CS recovery algorithm with the � 2 -norm loss

function is rather inefficient [22] . In order to obtain the robust

recovery under the condition of impulsive measurement noise, var-

ious sparse optimization algorithms have been proposed recently

based on different loss functions. For example, Huber penalty

function [22,23] , � p -norm loss with p ∈ [0, 2) in [20,24–27] , and

maximum correntropy criterion (MCC) based function [19,28] have

achieved better performance than the � 2 -norm loss function.

Among them, the algorithms that combining the robust loss

function with the nonconvex regularization function have achieved

impressive performance under non-Gaussian environments, such

as the CIMMCC [19] using MCC and CIM, and CIMLMP [20] using

least mean p-power (LMP) and CIM. Meanwhile, one particular

interest is the � 1 -norm loss function as f ( Ax − y ) = ‖ Ax − y ‖ 1 ,
which is optimal when the impulsive noise is modeled as a Cauchy

distribution [29] . 

In this paper, we consider the following g ( ·)-regularized

least-absolute (LA) sparse recovery problem 

min 

x 
F ( x ) ≡ f ( Ax − y ) + g ( x ) = ‖ 

Ax − y ‖ 1 + g ( x ) (3)

where g ( x ) is the convex or generalized non-convex penalty for

sparsity inducing, such as hard-thresholding, � p -norm penalty,

� 1 −2 penalty, LSP, SCAD, or MCP. 

Generally, the problem (3) is difficult to solve, which is due to

that the loss function f is non-smooth and the penalty function

maybe nonconvex. To address the non-smooth � 1 -norm, many

researchers using the alternating direction method of multipliers

(ADMM) [24,26] , in which the loss term and the penalty term are

naturally separated. Using an auxiliary vector, the problem can be

reformulated as 

min 

x , u 
{ ‖ 

u ‖ 1 + g ( x ) } subject to Ax − y = u (4)

Some researchers transform the non-smooth � 1 -norm into a

smooth counterpart and employ the ADMM [30] or difference of

convex algorithm (DCA) [18] to solve the recovery problem. As

will be shown later, there is a link between the auxiliary vector

method and the proposed infimal convolution smoothing method. 

1.2. Contributions 

The main contributions of this work are summarized as follows.

First, we propose two smoothing strategies for the non-smooth

loss function, one introduces a relaxation factor to approximate

the � 1 -norm, the other uses the infimal convolution smoothing

technique to transform the non-differentiable ‖ Ax − y ‖ 1 into a

smooth counterpart. Both of them can obtain a continuously dif-

ferentiable loss function, whose gradient is Lipschitz continuous.

As it will be shown in the later section, this property is crucial for

the convergence of the new algorithm. 

Second, the convergence performance of the algorithm is

discussed under the accelerated proximal gradient (APG) [31] and

monotone APG (mAPG) [32] frameworks for the convex and

non-convex regularize functions, respectively. 
Finally, we discuss some properties of these smoothing strate-

ies which can be easily extended to other sparse recovery

roblems. We also evaluate the effectiveness of the proposed

lgorithm via numerical experiments. 

.3. Outline and notation 

The rest of this paper is structured as follows. In Section 2 ,

e introduce two smoothing strategies. In Section 3 , we employ

he APG and mAPG frameworks for the minimization problem and

rovide some theorems to demonstrate the convergence of the

roposed algorithm. In Section 4 , we extend the smoothing strate-

ies to other sparse recovery problems. Section 5 presents the nu-

erical results. In the end, we provide our conclusion in Section 6 .

Here, we define our notation. We define the � p -norm of the

ector x ∈ R 

N as ‖ x ‖ p = 

(∑ 

n | x n | p 
) 1 

p . Especially, we define � 1 , � 2 

nd � ∞ 

-norms of x as ‖ x ‖ 1 = 

∑ 

n | x n | , ‖ x ‖ 2 = 

(∑ 

n | x n | 2 
) 1 

2 and

 

x ‖ ∞ 

= max n | x n | , respectively. Given a matrix A ∈ R 

M×N , A m 

is

efined as the m -th column of A, A 

T is defined as the transpose

f A , ‖ A ‖ 2 2 is defined as the maximum eigenvalue of A 

T A , denoted

y λmax ( A 

T A ), and [ Ax ] m 

is defined as the component m of Ax .

·, ·〉 denotes the inner product. B 	A means that the matrix A − B

s positive semidefinite. I N represents an N × N identity matrix,

nd sign( ·) represents the sign of a quantity with sign ( 0 ) ∈ [ −1 , 1 ] .

he set of proper lower semicontinous convex functions from R 

N 

o R 

⋃ { + ∞ } is defined as �0 

(
R 

N 
)
. 

. Smoothing approximation methods 

This section is devoted to construct two functions to smooth

he least-absolute loss function. The first one introduces a relax-

tion factor and approximate the � 1 -norm as the sum of � p -norm.

he second one uses the infimal convolution with the convex

unction 

1 
2 ‖ B ( ·) ‖ p 2 

. 

.1. � ε , p -norm smoothing approximation method 

efinition 1. Let x ∈ R 

M , the � ε , p -norm ( p > 1) function

 

x ‖ ε,p : R 

M → R is defined as ‖ x ‖ ε,p := 

∑ 

m 

(| x m 

| p + ε p m 

) 1 
p , where

 = diag ( ε 1 , ε 2 , . . . , ε M 

) with every εm 

> 0. 

From Definition 1 , we can find that the � ε , p degenerates into

he ‘ � 1, ε ’ in [30] if we choose p = 2 and ε 1 = ε 2 = · · · = ε M 

. Fig. 1

lot the � 1 , ‘ � 1, ε ’ and � ε , p for comparison. From this, we can find

hat the � ε , p -norm have more flexible strategies in smoothing

pproximation with different choices of ε and p . 

Easily, we have that ‖ x ‖ ε , p is smooth and differentiable. As

ax m 

εm 

→ 0, ‖ x ‖ ε , p → ‖ x ‖ 1 , ‖ x ‖ ε , p can approximate ‖ x ‖ 1 when

ach element in ε is sufficiently small. By using the � ε , p -norm,

e have a smoothing strategy for the non-smooth loss function

f ( Ax − y ) = ‖ Ax − y ‖ 1 , defined as 

f ε,p ( Ax − y ) = ‖ 

Ax − y ‖ ε,p = 

∑ 

m 

(| e m 

| p + ε p m 

) 1 
p (5)

here e m 

= [ Ax − y ] m 

= ( 
∑ 

n a mn x n ) − y m 

, a mn is the ( m, n )-th

lement of matrix A . From (5) , we have 

 ≤ f ε,p ( Ax − y ) − f ( Ax − y ) ≤
∑ 

m 

ε m 

≤ M ε max (6)

here ε max = max m 

ε m 

. The gradient of f ε,p ( Ax − y ) is given by 

 f ε,p ( Ax − y ) = A 

T T (7)
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Fig. 1. The scalar � ε , p with different ε and p . 
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here T = [ t 1 , . . . , t M 

] 
T ∈ R 

M with t m 

= 

| e m | p−1 sign ( e m ) 

( | e m | p + ε p m ) 
p−1 

p 

. And the

essian Matrix of f ε,p ( Ax − y ) is 

 

2 f ε,p ( Ax − y ) i j = 

∂ 2 f ε,p ( Ax − y ) 

∂ x i ∂ x j 
= 

∑ 

m 

a mi a m j 
( p − 1 ) | e m 

| p−2 ε p m (| e m 

| p + ε p m 

)2 − 1 
p 

, 

i = 1 , . . . , N j = 1 , . . . , N (8) 

y substituting 
| e m | p−2 ε p m 

( | e m | p + ε p m ) 
2 − 1 

p 
≤ min 

{ 
ε p m 

| e m | p+1 , 
| e m | p−2 

ε p−1 
m 

} 
into (8) , we

ave 

 

2 f ε,p ( Ax − y ) i j ≤
∑ 

m 

a mi a m j 
( p − 1 ) 

ε m 

(9) 

hen we have 

 

2 f ε,p ( Ax − y ) 	 ( p − 1 ) A 

T ε −1 A (10) 

here ε −1 = diag ( 1 / ε 1 , 1 / ε 2 , . . . , 1 / ε M 

) . From this we can find

hat the gradient of smoothing function f ε,p ( Ax − y ) is Lipschitz

ontinuous, which is crucial for the solution of minimization

roblem (3) as will be shown in Section 3 . 

.2. The infimal convolution smoothing method 

In this subsection, we first recall the definition of infimal

onvolution. For two functions h and ϕ from R 

M to R 

⋃ { + ∞ } , the

nfimal convolution [33] is given by 

( h �ϕ ) ( x ) = inf 
u ∈ R M 

{ h ( u ) + ϕ ( x − u ) } (11) 

In the notation of infimal convolution, the Moreau envelope

34] with a scale parameter β > 0 of function h is defined as 

 

M 

β ( x ) = h ( x ) �
1 

2 β
‖ 

x ‖ 

2 
2 = inf 

u ∈ R M 

{ 
h ( u ) + 

1 

2 β
‖ 

u − x ‖ 

2 
2 

} 
(12) 

hen, we introduce the second smoothing method by using the

nfimal convolution with the convex function 

1 
2 ‖ B ( ·) ‖ p 2 

. 

efinition 2. Let x ∈ R 

M , B ∈ R 

M×M . We define the infimal convo-

ution smoothing function h B ,p : R 

M → R ( p > 1) as 

 B ,p ( x ) := inf 
u ∈ R M 

{ 
h ( u ) + 

1 

2 

‖ 

B ( u − x ) ‖ 

p 
2 

} 
(13) 
From Definition 2 , we can find that the h B , p degenerates into

oreau envelope if we choose p = 2 and set B 

T B to be the scale

dentity matrix 1 
β

I M 

. 

Figs. 2 and 3 show the curves of h B , p with different scale

atrices B and p , where B = I M 

and p = 2 correspond to the well-

nown Huber function. Intuitively, we can find that with a bigger

 , the h B , p is smoother, and h B , p is closer to h with larger matrix B .

roposition 1. Let h ∈ �0 

(
R 

M 

)
and be coercive, and x ∈ R 

N , y ∈ R 

M ,

 ∈ R 

M×N , B ∈ R 

M×M , then h B ,p ( Ax − y ) (p > 1 ) is a proper lower

emicontinuous convex function, and the infimal convolution is exact,

.e., 

 B ,p ( Ax − y ) = min 

u ∈ R M 

{ 
h ( u ) + 

1 

2 

‖ 

B ( u − Ax + y ) ‖ 

p 
2 

} 
(14) 

roof. Set ϕ ( x ) = 

1 
2 ‖ B ·‖ p 2 

( p > 1) in (11) , then we have

 B ,p ( ·) = ( h �ϕ ) ( ·) . Since h, ϕ ∈ �0 

(
R 

M 

)
and h is coercive, and

is bounded below, then we can obtain that h B ,p ∈ �0 

(
R 

M 

)
and it

s exact at every point of its domain by Proposition 12.14 in [35] .

y using the preserving convexity property of affine mapping, we

ave h B ,p ( Ax − y ) ∈ �0 

(
R 

M 

)
. �

Next, we will show that h B ,p ( Ax − y ) can approximate

 ( Ax − y ) at any given precision when we choose proper scale

atrix B . �

roposition 2. Let h ∈ �0 

(
R 

M 

)
and be coercive, and the scale matrix

 satisfies B 

T B 
β2 I M 

, suppose that the subgradients of h over R 

M are

ounded by L h , 
∥∥h ′ ( z ) 

∥∥
2 

≤ L h for any z ∈ R 

M and h ′ ( z ) ∈ ∂h ( z ) . Then,

t follows that 

 ( Ax − y ) − δB ,p ( L h ) 
p 

p−1 ≤ h B ,p ( Ax − y ) ≤ h ( Ax − y ) (15) 

here p > 1 and δB ,p = 

p−1 
2 

(
2 

pβ

) p 
p−1 

. 

See Appendix A for the Proof of Proposition 2 . 

If we choose p = 2 , then we have 

 ( Ax − y ) − 1 

2 β
L 2 h ≤ h B , 2 ( Ax − y ) ≤ h ( Ax − y ) (16) 

Next, we focus on the gradient of h B ,p ( Ax − y ) under the

ondition of h ( Ax − y ) = ‖ Ax − y ‖ 1 and B 

T B = diag 
(
b 2 1 , b 

2 
2 , . . . , b 

2 
M 

)
s diagonal. If h ( Ax − y ) = ‖ Ax − y ‖ 1 , we define a function
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Fig. 2. The scalar h B , p with different b and p ( h ( x ) = ‖ x ‖ 1 ). 

Fig. 3. The level curves of h B , p with different B and p ( h ( x ) = ‖ x ‖ 1 ). 
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g : R 

M → R as 

g ( u ) = ‖ 

u ‖ 1 + 

1 

2 

‖ 

B ( u − Ax + y ) ‖ 

p 
2 

(17)

Then from (14) , we have that h B ,p ( Ax − y ) is the minimization

of g ( u ), and we suppose that h B ,p ( Ax − y ) = g ( ̃  u ) . Since g ( ̃  u ) is

convex, we have that ˜ u minimizes g ( u ) if and only if 0 ∈ g ( ̃  u ) ,

where the subdifferential of g ( ̃  u ) is given by 

0 ∈ g ( ̃  u ) = ∂ ‖ ̃

 u ‖ 1 + 

p 

2 

d 
p 
2 −1 B 

T B ( ̃  u − Ax + y ) (18)

where d = ‖ B ( ̃  u − Ax + y ) ‖ 2 2 and ∂ ‖ ̃  u ‖ 1 = SIGN ( ̃  u ) =∏ 

m 

sign ( ̃  u m 

) ⊂ R 

M with 

sign ( ̃  u m 

) := 

{ { 1 } , ˜ u m 

> 0 

[ −1 , 1 ] , ˜ u m 

= 0 

{ −1 } , ˜ u m 

< 0 

(19)
rom the definition of h B ,p ( Ax − y ) in (14) , we have 

 h B ,p ( Ax − y ) = ∂ ̃  u 

T ( ∂ ‖ ̃

 u ‖ 1 ) + 

p 

2 

d 
p 
2 −1 
(
A 

T −∂ ̃  u 

T 
)
B 

T B ( Ax −y − ˜ u ) 

= ∂ ̃  u 

T 
(
∂ ‖ ̃

 u ‖ 1 + 

p 

2 

d 
p 
2 −1 B 

T B ( ̃  u − Ax + y ) 

)
+ 

p 

2 

d 
p 
2 −1 A 

T B 

T B ( Ax − y − ˜ u ) (20)

e define the support of ˜ u as �∗=supp { ̃  u } , which is the index set

abeling the non-zero elements in ˜ u , and define the corresponding

ero elements in ˜ u as �0 , then we have 

 ̃  u 

T 
(
∂ ‖ ̃

 u ‖ 1 + 

p 

2 

d 
p 
2 −1 B 

T B ( ̃  u − Ax + y ) 

)
= 

(
∂ ̃  u 

T 
)
�∗

(
∂ ‖ ̃

 u ‖ 1 + 

p 

2 

d 
p 
2 −1 B 

T B ( ̃  u − Ax + y ) 

)
�∗

+ 

(
∂ ̃  u 

T 
)
�0 

(
∂ ‖ ̃

 u ‖ 1 + 

p 

2 

d 
p 
2 −1 B 

T B ( ̃  u − Ax + y ) 

)
�0 

(21)

or ∀ m ∈ �∗ , from (18) , we have 

 ‖ ̃

 u ‖ 1 + 

p 

2 

d 
p 
2 −1 B 

T B ( ̃  u − Ax + y ) = 0 (22)

or ∀ m ∈ �0 , we have 

∂ ̃  u 

T 
)

m 

= 0 (23)

ubstitute (23) and (22) into (21) , we can obtain 

 h B ( Ax − y ) = 

p 

2 

d 
p 
2 −1 A 

T B 

T B ( Ax − y − ˜ u ) (24)

y using (18) , we have that 

p 

2 

d 
p 
2 −1 
∥∥B 

T B ( Ax − y − ˜ u ) 
∥∥

∞ 

≤ 1 (25)

ubstitute this into (24) , it follows that 
∣∣[∂ h B ,p ( Ax − y ) 

]
n 

∣∣ ≤
 M 

m =1 | a mn | . 
If B 

T B = diag 
(
b 2 

1 
, b 2 

2 
, . . . , b 2 

M 

)
, by substituting it into (18) and

onsidering the convex separable properties of g ( u ), we have 

˜  = shrink 

(
Ax − y , 

2 

p 

(
B 

T B 

)−1 
( d ) 

1 − p 
2 

)
(26)

hen we can use an iterative framework for the solution of ˜ u : 
 

 

 

˜ u 

k = shrink 

(
Ax − y , 

2 

p 

(
B 

T B 

)−1 (
d k 
)1 − p 

2 

)
d k +1 = 

∥∥B 

(
˜ u 

k − Ax + y 
)∥∥2 

(27)
2 
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here shrink( x, λ) denotes the soft shrinkage operator given by 

 

shrink ( x , λ) ] m 

= sign ( x m 

) max { | x m 

| − λm 

, 0 } (28) 

hen, by using (24) , we have 

 h B ,p ( Ax − y ) = A 

T v (29) 

here v = [ v 1 , v 2 , . . . , v M 

] with 

 m 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 , [ Ax − y ] m 

> 

2 

pb 2 m 

d 
1 − p 

2 

pb 2 m 

2 

d 
p 
2 

−1 

[ Ax − y ] m 

, | [ Ax − y ] m 

| ≤ 2 

pb 2 m 

d 
1 − p 

2 

−1 , [ Ax − y ] m 

< − 2 

pb 2 m 

d 
1 − p 

2 

(30) 

hen, we can calculate the gradient of h B ,p ( Ax − y ) with an ap-

roximate d by using the iterative framework of (27) after proper

terations. 

emark 1. If we choose p = 2 , then the gradient of h B , 2 ( Ax − y )
s equal to ∂ h B , 2 ( Ax − y ) = A 

T v with 

 m 

= 

⎧ ⎨ 

⎩ 

1 , [ Ax − y ] m 

> 1 / b 2 m 

b 2 m 

[ Ax − y ] m 

, | [ Ax − y ] m 

| ≤ 1 / b 2 m 

−1 , [ Ax − y ] m 

< −1 / b 2 m 

(31) 

hich does not need to calculate (27) iteratively. 

roposition 3. Let h ( Ax − y ) = ‖ Ax − y ‖ 1 and B 

T B =
iag 
(
b 2 

1 
, b 2 

2 
, . . . , b 2 

M 

)
, the Hessian Matrix of h B ,p ( Ax − y ) satisfies 

 

2 h B ,p ( Ax − y ) 	

⎧ ⎨ 

⎩ 

p 

2 

d 
p 
2 −1 A 

T B 

T BA , 1 < p < 2 

p ( p − 1 ) 

2 

d 
p 
2 −1 A 

T B 

T BA , p ≥ 2 

(32) 

nd if p ≥ 2, the gradient ∇ h B ,p ( Ax − y ) is ρ‖ BA ‖ 2 2 -Lipschitz contin-

ous with ρ = ( p − 1 ) 
(

p 
2 

) 1 
p−1 

( √ 

M 

b min 

) p−2 
p−1 

, where b 
min 

= min m 

{ b m 

} . 
See Appendix B for the Proof of Proposition 3 . 

emark 2. If we choose p = 2 , we have that ∇ h B ,p ( Ax − y ) is

 

BA ‖ 2 2 -Lipschitz continuous, which can be obtained by using

roposition 3 directly. Meanwhile, this conclusion can be extended

o any h that h ∈ �0 

(
R 

M 

)
and be coercive with normal matrix

 ∈ R 

M×M . See Appendix C for the Proof. 

Propositions 1 and 3 help the smoothed loss function

 B ,p ( Ax − y ) ( p ≥ 2) to fit the requirement of the APG and mAPG

rameworks, which is quite important for the proposed algorithm

s will be shown in the next section. 

. Algorithm for the smoothing based recovery problem 

.1. APG and mAPG frameworks for the convex and nonconvex 

roblems 

Rewrite the g ( ·)-regularized least-absolute recovery problem as

in 

x 
F ( x ) ≡ f ( Ax − y ) + g ( x ) = ‖ 

Ax − y ‖ 1 + g ( x ) (33) 

Firstly, we use the above two smoothing strategies to transform

he non-differentiable and non-separable ‖ Ax − y ‖ 1 into a smooth

ounterpart with Lipschitz continuous gradient and choose the

roximal gradient (PG) framework to solve the minimization. 

1) The first approach uses the � ε , p -norm smoothing approx-

mation method to transform the problem (33) , and solves the

ollowing smoothed problem 

in 

x 
F ε,p ( x ) ≡ f ε,p ( Ax − y ) + g ( x ) (34) 
iven a symmetric positive semidefinite matrix H ∈ R 

N×N , we de-

ne the quadratic approximation of F ε , p ( x ) at a given point z as 

 H ( x , z ) = g ( x ) + f ε,p ( Az − y ) + 〈 ∇ f ε,p ( Az − y ) , x − z 〉 
+ 

1 

2 

〈 x − z , H ( x − z ) 〉 (35) 

or any x , z ∈ R 

N , if we choose the symmetric positive semidefinite

atrix H that satisfies 

f ε,p ( Ax − y ) + g ( x ) ≤ Q H ( x , z ) (36) 

hen, for any x 0 ∈ R 

N , the k -th iteration of proximal gradient (PG)

31] for solving (34) is 

 

k +1 = arg min 

x 
Q H 

(
x , x 

k 
)

(37) 

pecially, we set H = L ε I N with L ε ≥ ( p − 1 ) ‖ A ‖ 2 2 / ε min , or

 = ( p − 1 ) A 

T ε −1 A . Then, from (10) , easily we have that condi-

ion of (36) holds for any x , y ∈ R 

N . 

When H = L ε I N with L ε ≥ ( p − 1 ) ‖ A ‖ 2 2 / ε min , we have 

 

k +1 = arg min 

x 
Q H 

(
x , x 

k 
)

= arg min 

x 

{ 
g ( x ) + f ε,p 

(
A x 

k − y 
)

+ 

〈∇ f ε,p 

(
A x 

k − y 
)
, x − x 

k 
〉

+ 

L ε 

2 

〈
x − x 

k , x − x 

k 
〉} 

= arg min 

x 

{
g ( x ) + 

L ε 

2 

∥∥∥x − x 

k + 

1 

L ε 
A 

T T 

k 

∥∥∥2 

2 

}
(38) 

he last equation comes from the gradient calculation of

f ε,p ( Ax − y ) in (7) . 

Similarly, when H = ( p − 1 ) A 

T ε −1 A , we have 

 

k +1 = arg min 

x 

{ 
g ( x ) + f ε,p 

(
A x 

k − y 
)

+ 

〈 
∇ f ε,p 

(
A x 

k − y 
)
, x − x 

k 
〉 

+ 

p − 1 

2 

〈
x − x 

k , A 

T ε −1 A 

(
x − x 

k 
)〉} 

= arg min 

x 

{
g ( x ) + 

p − 1 

2 

∥∥∥ε −1 / 2 A 

(
x − x 

k 
)

+ 

1 

p − 1 

ε 1 / 2 T 

k 

∥∥∥2 

2 

}
(39) 

here ε −1 / 2 = diag ( 1 / 
√ 

ε 1 , 1 / 
√ 

ε 2 , . . . , 1 / 
√ 

ε M 

) . 

2) The second smoothing strategy is replacing the non-smooth

unction f ( Ax − y ) by its infimal convolution f B ,p ( Ax − y ) , then

he recovery problem becomes 

in 

x 
F B ,p ( x ) ≡ f B ,p ( Ax − y ) + g ( x ) (40) 

owever, in order to calculate the gradient of f B ,p ( Ax − y ) , we only

onsider a common simple case that B 

T B = diag 
(
b 2 

1 
, b 2 

2 
, . . . , b 2 

M 

)
s diagonal with b m 

> 0 in this paper. From the definition of the

f B ,p ( Ax − y ) , one can find that the infimal convolution smoothing

unction can also be thought as an extension of the generalized

uber function in [17] but with different p . However, in this

aper, we mainly consider this generalized Huber function as an

nfimal convolution smoothing approximation of the � 1 -norm loss

unction, and discuss the relationship between them from the

spect of smoothing approximation. 

Similar as the first � ε , p -norm smoothing strategy, we also define

he quadratic approximation of F B , p ( x ) at a given point z as: 

 H ( x , z ) = g ( x ) + f B ,p ( Az − y ) + 

〈∇ f B ,p ( Az − y ) , x − z 
〉

+ 

1 

2 

〈
x − z , H ( x − z ) 

〉
(41) 

ere we set H = L B I N with L B ≥ ρ‖ BA ‖ 2 2 or H = ρA 

T B 

T BA with

= ( p − 1 ) 
(

p 
2 

) 1 
p−1 

( √ 

M 

b min 

) p−2 
p−1 

to satisfy the condition f B ,p ( Ax − y ) +
 ( x ) ≤ P ( x , z ) for any x , z ∈ R 

N by using Proposition 3 . 
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Table 1 

Smoothing based APG and mAPG methods for convex and non-convex regularized LA loss function. 

Algorithm 1. Smoothing based APG and mAPG methods 

Initialization: 

Given A, y . Select H , ε, β , N iter and ξ 0 . 

Initialize x 1 = x 0 = 0 , t 1 = t 0 = 1 . 

Main iteration loop: 

for k = 1 , 2 , . . . , N iter do 

APG: x-updating: x k = x k + 

t k −1 −1 
t k 

(
x k − x k −1 

)
� ε , p -norm smoothing: x k +1 = arg min 

x 
Q H 
(
x , x k 

)
with (38) or (39) 

infimal convolution smoothing: x k +1 = arg min 
x 

P H 
(
x , x k 

)
with (42) or (43) 

mAPG: z -updating: z k = x k + 

t k −1 −1 
t k 

(
u k − x k 

)
+ 

t k −1 −1 
t k 

(
x k − x k −1 

)
u, v -updating: � ε , p -norm smoothing: u k +1 = arg min 

x 
Q H 
(
x , z k 

)
and v k +1 = arg min 

x 
Q H 
(
x , x k 

)
with (38) or (39) 

infimal convolution smoothing: u k +1 = arg min 
x 

P H 
(
x , z k 

)
and v k +1 = arg min 

x 
P H 
(
x , x k 

)
with (42) or (43) 

x -updating: � ε , p -norm smoothing: x k +1 = 

{
u k +1 , if F ε,p 

(
u k +1 

)
≤ F ε,p 

(
v k +1 
)

v k +1 , otherwise 

infimal convolution smoothing: x k +1 = 

{
u k +1 , if F B ,p 

(
u k +1 

)
≤ F B ,p 

(
v k +1 
)

v k +1 , otherwise 

t -computation: t k +1 = 

(
1 + 

√ 

4 
(
t k 
)2 + 1 

)
/ 2 

Exit criterion: ξ k +1 = 

∥∥x k +1 − x k 
∥∥

2 
/ 
∥∥x k 
∥∥

2 

if ξ k +1 < ξ0 then 

exit 

end if 

end for 
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Similar as (38) , when H = L B I N with L B ≥ ρ‖ BA ‖ 2 2 , we have 

x 

k +1 = arg min 

x 
P H 
(
x , x 

k 
)

= arg min 

x 

{
g ( x ) + 

L B 
2 

∥∥∥x − x 

k + 

1 

L B 
∇ f B ,p 

(
A x 

k − y 
)∥∥∥2 

2 

}
(42)

By using (27), (29) and (30) , the ∇ f B ,p 

(
A x k − y 

)
can be calcu-

lated with an approximate d when we choose p > 2, or by using

Eq. (31) directly when we choose p = 2 . 

When H = ρA 

T B 

T BA , we have 

x 

k +1 = arg min 

x 
P H 
(
x , x 

k 
)

= arg min 

x 

{ 
g ( x ) + f B ,p 

(
A x 

k − y 
)

+ 

〈∇ f B ,p 

(
A x 

k − y 
)
, x − x 

k 
〉

+ 

ρ

2 

〈
x − x 

k , A 

T B 

T BA 

(
x − x 

k 
)〉} 

= arg min 

x 

{ 
g ( x ) + 

ρ

2 

∥∥BA 

(
x − x 

k 
)

+ ρ−1 B 

−1 v k 
∥∥2 

2 

} 
(43)

where B 

−1 = diag ( 1 / b 1 , 1 / b 2 , . . . , 1 / b M 

) and v k can be calculated

by (30) or (31) . 

Secondly, we apply an acceleration method for the PG frame-

work. The main disadvantage of the PG method is that its

convergence rate O ( 1 /k ) is relatively slow, and it requires g ( x ) be-

ing convex. To overcome these, the accelerate versions: accelerate

proximal gradient (APG) for convex problem [33] and monotone

APG for nonconvex problem [32] are proposed, respectively. Both

of them have convergence rates O 

(
1 / k 2 

)
for convex programs. 

By using the APG and mAPG framework, which uses a proximal

gradient step as the monitor, we summarize our algorithm in

Table 1 , where N iter is the max number of reconstruction itera-

tions, ξ k +1 is the � 2 -distance between two recoveries x k +1 and

x k . The exit criterion ξ k +1 < ξ0 means that there is no longer any

appreciate changes in the iteration and the algorithm runs into

convergence. 

3.2. Some supplements of the proposed algorithm 

First, we focus on fast solutions for the non-convex regular-

izations. From Table 1 , we can find that the main computation

of mAPG is concentrating on the non-convex minimization for u
nd v -updating. However, for some frequently-used convex and

on-convex regularizes (penalties), problems (38) and (42) have

losed-form or fast solutions. In this subsection, we provide some

ast solutions for the non-convex problem 

 

k +1 = pro x Lg ( d ) = arg min 

x 

{
g ( x ) + 

1 
2 L ‖ 

x − d ‖ 

2 
2 

}
(44)

here prox Lg ( d ) is the proximal operator. Table 2 lists some

xamples of closed-form expressions of the proximal operators of

arious functions. In Ref. [38] , Table 10.2 lists some other functions

n �0 

(
R 

N 
)

with closed-form expressions. 

Here, we consider other two special penalty functions. 

(i) Generalized MCP, g ( x ) = λ( ‖ x ‖ 1 − S Z ( x ) ) , where

 Z ( x ) is the generalized Huber function that defined as

 Z ( x ) = inf 
v ∈ R N 

{‖ v ‖ 1 + 

1 
2 ‖ Z ( x − v ) ‖ 2 2 

}
in [17] . When Z 

T Z is diagonal,

.e., Z 

T Z = diag 
(
z 2 1 , z 

2 
2 , . . . , z 

2 
N 

)
, problem (44) has a closed-form

olution: 

 

k +1 
i 

= arg min 

w i ∈ �

{
1 
2 L ( w i − d i ) 

2 + λ( | w i | − s z i ( w i ) ) 
}

(45)

here s z i ( w i ) is the scalar Huber function, defined as: 

 z i ( x i ) = 

{
z 2 

i 
x 2 

i 
/ 2 , | x i | ≤ 1 / z 2 

i 
, z i � = 0 

| x i | − z 2 
i 
/ 2 , | x i | > 1 / z 2 

i 
, z i � = 0 

(46)

nd s 0 ( x i ) := 0 when z = 0 ; and � is a set composed of 6 elements

= 

{ 
0 , z i , 

1 

z 2 
i 

, − 1 

z 2 
i 

, 
d i −λL 

1 −λLz 2 
i 

, 
d i + λL 

1 −λLz 2 
i 

} 
. 

(ii) s -difference penalty. the penalty is g ( x ) = R ( x ) − R ( x s ) ,

here x s is the best s term approximation to x . In Ref. [39] , we

ive the closed-form solutions for some commonly used R ( x ), such

s � 1 , � 2 , � 1 −2 , MCP, LSP. For example, if g ( x ) = λ( ‖ x ‖ 1 − ‖ x s ‖ 1 ) ,
hen the solution x k +1 is 

 

k +1 
i 

= 

{
d i , i ∈ �s 

d 

shrink ( d i , λL ) , else 
(47)

here �s 
d 

denotes the index set of top- s elements of vector d in

bsolute value. 

Second, we analyze the complexity of the proposed smoothing

ased recovery methods in Table 1 . We assume that arithmetic

ith individual elements has complexity O ( 1 ) . Take the APG for

xample, the main computational complexity comes from the cal-

ulation of x k +1 . For the � ε , p -norm smoothing strategy, calculating
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Table 2 

Some proximal operators with closed-form expressions. 

Function type g ( x ) prox Lg ( d ) 

� 1 -norm penalty g ( x ) = λ‖ x ‖ 1 x k +1 
i 

= shrink ( d i , λL ) 

Hard-thresholding g ( x ) = λ‖ x ‖ 0 x k +1 
i 

= 

{
0 , | d i | ≤

√ 

2 λL 

d i , else 

� p -norm penalty g ( x ) = λ‖ x ‖ p p , 0 < p < 1 p = 1 / 2 or p = 2 / 3 in [8] ; Otherwise, it can be solved as in [36] 

� 1 −2 penalty g ( x ) = λ( ‖ x ‖ 1 − α‖ x ‖ 2 ) Lou and Yan [14, Lemma 1] 

SCAD g ( x ) = 

∑ 

i g i ( x i ) g i ( x i ) = 

⎧ ⎨ 

⎩ 

λ| x i | , | x i | < λ
2 αλ| x i | −x 2 

i 
−λ2 

2 ( α−1 ) 
, λ ≤ | x i | < αλ

( α + 1 ) λ2 / 2 , | x i | ≥ αλ

and α > 2 The corresponding solution can be found in [15] 

LSP g ( x ) = λ
∑ 

i log ( 1 + | x i | /θ ) ; θ > 0 The corresponding solution can be found in [37] 

MCP g ( x ) = λ( ‖ x ‖ 1 − S ( x ) ) S ( x ) = inf 
v ∈ R N 
{‖ v ‖ 1 + 

1 
2 ‖ x − v ‖ 2 2 

}
The corresponding solution can be found in [37] 

x  

b  

u  

g  

o  

c  

b  

s  

t  

l  

t  

f  

w  

t  

i  

t  

a  

a  

d

3

 

p

 

c  

t  

s  

t
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(  

t  
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o
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r

F

F

w

δ
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h
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k +1 = arg min 

x 
Q H 

(
x , x k 

)
by (38) includes: the proximal operator

y using (44) and the calculation of gradient ∇ f ε,p ( Ax − y ) by

sing (7) . The former depends on the choice of penalty function

 ( x ). For example, if we choose g ( x ) = λ‖ x ‖ 1 , then the proximal

perator costs O ( N ) as shown in Table 2 . The latter needs to

ompute the vector T and the matrix multiplication of A 

T T , which

oth need to cost O ( MN ) . For the infimal convolution smoothing

trategy, calculating x k +1 = arg min 

x 
P H 
(
x , x k 

)
by (42) also includes

he proximal operator (44) and the gradient ∇ f B ,p ( Ax − y ) calcu-

ation. The latter needs to compute a matrix multiplication of A 

T v

hat it costs O ( MN ) , and calculate the vector v . If we choose p = 2

or the f B , p , calculating v requires O ( MN ) by using (31) . Otherwise,

e need to use the iterative framework (27) and (30) to obtain

he approximate v for p � = 2, which requires O 

(
MN + 2 i f M 

)
with

 f standing for the iteration number of the framework (27) . For

he mAPG, the computational complexity is twice that of the APG

s there is an additional monitor in the mAPG. From the above

nalysis, we can find that the proposed two smoothing strategies

o not increase the computational complexity too much. 

.3. Convergence analysis 

The purpose of this subsection is to analyze the convergence

erformance of the proposed smoothing based algorithm. 

We first look at the convergence performance under the convex

ondition. Let the sequence 
{

x k ε,p 

}
and 

{
x k 

B ,p 

}
being generated by

he algorithm 1 based on the � ε , p -norm and infimal convolution

moothing strategies, and x ∗ε,p and x ∗
B ,p 

are optimal solutions of

he smoothed problems of (34) and (40) , respectively. 

roposition 4 (Ref. [31] , Theorem 4.4; Ref. [40] , Theorem 2.1). For

onvex g ( x ), the 
{

x k ε,p 

}
or 
{

x k 
B ,p 

}
generated by algorithm 1 satisfies 

 ε,p 

(
x 

k 
ε,p 

)
− F ε,p 

(
x 

∗
ε,p 

)
≤

2 

∥∥x 

0 − x 

∗
ε,p 

∥∥2 

H 

( k + 1 ) 
2 

or 

 B ,p 

(
x 

k 
B ,p 

)
− F B ,p 

(
x 

∗
B ,p 

)
≤

2 

∥∥x 

0 − x 

∗
B ,p 

∥∥2 

H 

( k + 1 ) 
2 

(48) 

here 
∥∥x 0 − x ∗ε,p 

∥∥2 

H 
is defined as 

∥∥x 0 − x ∗ε,p 

∥∥2 

H 
= 

x 0 − x ∗ε,p , H 

(
x 0 − x ∗ε,p 

)〉
, and 

∥∥x 0 − x ∗
B ,p 

∥∥2 

H 
has a similar meaning. 

Proposition 4 means that the proposed algorithm can ensure

o obtain an O 

(
1 / k 2 

)
convergence rate for the convex problem.

owever, one may be more interested in the original problem

33) rather than the smoothed problem (34) or (40) , which means

hat we need to consider the expressions of F 
(
x k ε,p 

)
− F ( x ∗) and

 

(
x k 

B ,p 

)
− F ( x ∗) . Here x ∗ stands for the optimal solution for the

riginal non-smooth problem (33) . 
emma 1. For convex g ( x ), the difference F 
(
x k ε,p 

)
− F ( x ∗) or

 

(
x k 

B ,p 

)
− F ( x ∗) is bounded by a term that depends on ε or B and p,

espectively. 

 

(
x 

k 
ε,p 

)
− F ( x 

∗) ≤
2 

∥∥x 

0 − x 

∗
ε,p 

∥∥2 

H 

( k + 1 ) 
2 

+ 

∑ 

m 

ε m 

or 

 

(
x 

k 
B ,p 

)
− F ( x 

∗) ≤
2 

∥∥x 

0 − x 

∗
B ,p 

∥∥2 

H 

( k + 1 ) 
2 

+ δB ,p M 

p 
2 ( p−1 ) (49) 

here δB , p is defined as 

B ,p = 

p − 1 

2 

(
2 

p b min 

) p 
p−1 

(50) 

roof. By using the inequality (6) , we have 

 ( x ) ≤ F ε,p ( x ) ≤ F ( x ) + 

∑ 

m 

ε m 

, ∀ x ∈ R 

N (51)

ote that x ∗ε,p is an optimal solution of F ε , p ( x ), by using (48) , we

ave 

 

(
x 

k 
ε,p 

)
− F ( x 

∗) ≤ F ε,p 

(
x 

k 
ε,p 

)
− F ε,p ( x 

∗) + 

∑ 

m 

ε m 

≤ F ε,p 

(
x 

k 
ε,p 

)
− F ε,p 

(
x 

∗
ε,p 

)
+ 

∑ 

m 

ε m 

(52) 

≤
2 

∥∥x 

0 − x 

∗
ε,p 

∥∥2 

H 

( k + 1 ) 
2 

+ 

∑ 

m 

ε m 

imilarly, for the infimal convolution smoothing method, by using

roposition 2 , the following inequality holds 

f ( Ax − y ) − δB ,p 

(
L f 
) p 

p−1 

≤ f B ,p ( Ax − y ) ≤ f ( Ax − y ) (53) 

ere we use the property of the convex function f ( z ) = ‖ z ‖ 1 , z ∈
 

M , that the subgradients of f are bounded by L f = 

√ 

M . Contrast-

ng with (52) , we have 

 

(
x 

k 
B ,p 

)
− F ( x 

∗) ≤ F B ,p 

(
x 

k 
B ,p 

)
− F B ( x 

∗) + δB ,p M 

p 
2 ( p−1 ) 

≤ F B ,p 

(
x 

k 
B ,p 

)
− F B ,p 

(
x 

∗
B ,p 

)
+ δB ,p M 

p 
2 ( p−1 ) (54) 

≤
2 

∥∥x 

0 − x 

∗
B ,p 

∥∥2 

H 

( k + 1 ) 
2 

+ δB ,p M 

p 
2 ( p−1 ) 

his completes the proof. �

heorem 1. Let ς > 0, if we choose the symmetric positive semidef-

nite matrix H as H = ρA 

T B 

T BA with ρ = ( p − 1 ) 
(

p 
2 

) 1 
p−1 

( √ 

M 

b min 

) p−2 
p−1 

nd select b max = 2 b 
min 

= 

4 
√ 

M 

p 

(
p−1 
ς 

) p−1 
p 

, then an ς-optimal solu-

ion of (40) , i.e., F 
(
x k 

B 

)
− F ( x ∗) ≤ ς, can be obtained by using the
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Fig. 4. The scalar g B , p ( x ) with different b and p . 
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∇  
proposed infimal convolution smoothing based APG method after at

most iterations of 

k = max 

{ (
4 ( p − 1 ) 

√ 

2 M/p 
∥∥A 

(
x 

0 − x 

∗
ε,p 

)∥∥
2 
/ς 

)
− 1 , 1 

} 
(55)

Proof. Taking b max = 2 b 
min 

= 

4 
√ 

M 

p 

(
p−1 
ς 

) p−1 
p and H = ρA 

T B 

T BA , and

using Lemma 1 , we have 

F 
(
x 

k 
B ,p 

)
− F ( x 

∗) ≤
2 ρb 2 max 

∥∥A 

(
x 

0 − x 

∗
B ,p 

)∥∥2 

2 

( k + 1 ) 
2 

+ δB ,p M 

p 
2 ( p−1 ) 

= 2( p−1 ) 
(

p 

2 

) 1 
p−1 

(√ 

M 

b min 

) p−2 
p−1 

b 2 max 

∥∥A ( x 

0 −x 

∗
B ,p ) 
∥∥2 

2 

( k + 1 ) 
2 

+ 

p − 1 

2 

(
2 

p b min 

) p 
p−1 

M 

p 
2 ( p−1 ) (56)

= 

16 M ( p − 1 ) 
2 
∥∥A 

(
x 

0 − x 

∗
ε,p 

)∥∥2 

2 

pς ( k + 1 ) 
2 

+ 

ς 

2 

Therefore, to guarantee the inequality F 
(
x k 

B ,p 

)
− F ( x ∗) ≤ ς, the

iteration number k needs to satisfy that 

4 ( p−1 ) 
√ 

2 M ‖ 

A ( x 0 −x ∗1 ,ε ) ‖ 

2 √ 

p ( k +1 ) 
≤ ς 

(57)

This means that after at most k =
max 

{ (
4 ( p − 1 ) 

√ 

2 M /p 
∥∥A 

(
x 0 − x ∗ε,p 

)∥∥
2 
/ς 

)
− 1 , 1 

} 
iterations,

we can obtain an ς-optimal solution of the original problem. This

completes the proof. �

For the � ε , p -norm smoothing method, we have a similar result

without proof. 

Theorem 2. For convex g ( x ), let ς > 0, if we choose the smoothing

matrix ε as 
∑ 

m 

ε m 

= 2 M ε min = ς/ 2 and the symmetric positive

semidefinite matrix H as H = ( p − 1 ) A 

T ε −1 A , then an ς-optimal

solution of (34) , i.e., F 
(
x k ε,p 

)
− F ( x ∗) ≤ ς, can be obtained by using

the proposed � ε , p -norm smoothing based APG method after at most

iterations of 

k = max 

{ (
4 

√ 

M ( p − 1 ) 
∥∥A 

(
x 

0 − x 

∗
ε,p 

)∥∥
2 
/ς 

)
− 1 , 1 

} 
(58)

From (55) and (58) , we can find that the most iteration num-

bers have a same expression if we choose p = 2 . Meanwhile,

if we choose the symmetric positive semidefinite matrix H as
 = ( p − 1 ) ‖ A ‖ 2 2 I N / ε min and H = ρ‖ BA ‖ 2 2 I N for � ε , p -norm and infi-

al convolution smoothing methods, we have similar conclusions

s Theorems 1 and 2 , respectively. 

For the non-convex penalty function, since we employ the

APG framework to solve the optimization problem and the

moothed functions f ε,p ( Ax − y ) and f B ,p ( Ax − y ) have Lipschitz

ontinuous gradients, same as the analysis of Theorem 1 in [32] ,

e can obtain the convergence performance under the nonconvex

ondition. 

heorem 3 (Ref. [32] , Theorem 1 ). Let g ( x ) be a proper and lower

emicontinuous, for non-convex and non-smooth g ( x ), assume that

 ε , p ( x ) and F B , p ( x ) are coercive. Let x ∗ε,p and x ∗
B ,p 

be any accu-

ulation points of 
{

x k ε,p 

}
and 

{
x k 

B ,p 

}
, we have 0 ∈ ∂ F ε,p ( x ∗) and

 ∈ ∂ F B ,p ( x 
∗) , respectively, i.e., x ∗ε,p and x ∗

B ,p 
are critical points. 

. Extensions 

In this section, we discuss some related algorithms for solv-

ng problem (3) , show a link between the smoothing strategy

ith other methods, and simply extend the infimal convolution

moothing method to construct a non-convex penalty function. 

.1. Related algorithms 

Here, we discuss some related algorithms. First, we look at

he Moreau envelope. From the definition of h B , p , we can find

hat the Moreau’s proximal h M 

β ( Ax − y ) is a special case of the

nfimal convolution function h B ,p ( Ax − y ) under the condition of

p = 2 and B 

T B is the scale identity matrix 1 
β

I M 

. Then, by using

ropositions 1 –3 , we can obtain three important properties of the

oreau’s proximal operator, which can also be find in [41–43] . 

Let h : R 

M → R 

⋃ { ∞ } be a closed proper convex function and

et A ∈ R 

M×N be a given matrix. For any x ∈ R 

N , y ∈ R 

M and β > 0,

he following results hold: 

(1) h M 

β ( x ) = h 
(
pro x βh ( x ) 

)
+ 

1 
2 β

∥∥pro x βh ( x ) − x 
∥∥2 

2 

(2) h M 

β ( Ax − y ) is continuously differentiable and its gradient

s Lipschitz continuous with constant ‖ A ‖ 2 2 /β . The gradient of

 

M 

β ( Ax − y ) is given by 

h 

M 

β ( Ax − y ) = 

1 

β
A 

T 
(
Ax − y − pro x βh ( Ax − y ) 

)
(59)
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Fig. 5. Level curves of � 1 , � 1/2 and g B , p ( x ) with different B and p . 

Fig. 6. Recovery performance versus sparsity for the compared methods: (a) Gaussian mixture noise, (b) Cauchy distribution noise. 
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(3) Suppose that the subgradients of h over R 

M are bounded by

 h , then 

 ( Ax − y ) − βL 2 
h 

2 

≤ h 

M 

β ( Ax − y ) ≤ h ( Ax − y ) (60) 

Second, for the non-smooth optimization problem (3) , one

ommon alternative is to transform the non-differentiable problem

nto a smooth counterpart, for example, the Nesterovs smoothing-

ased method [41,44] . Another commonly used method is the

ecomposition based algorithm [45] or alternating minimization

AM) method [46] , which introduce an auxiliary vector u in

3) and consider the following optimization problem 

in 

x , u 

{
‖ 

u ‖ 1 + 

β

2 

‖ 

u − Ax + y ‖ 

2 
2 + g ( x ) 

}
(61) 

n Ref. [47] and [48] , the authors have shown that there is a close

elationship between the Moreau’s proximal smoothing model and

he decomposition model. Indeed, by fixing x and minimizing the
bjective function of (61) with respect to u , we can obtain 

in 

x , u 

{
‖ 

u ‖ 1 + 

β

2 

‖ 

u − Ax + y ‖ 

2 
2 + g ( x ) 

}
= min 

x 

{
h 

M 

1 /β ( Ax − y ) + g ( x ) 
}

(62) 

ere, we can also find a connection between the proposed infimal

onvolution smoothing technique and the AM algorithm. The infi-

al convolution smoothing technique can be thought as a develop-

ent of the AM with a more flexible punishment of Ax + y = z : 

in 

x , z 

{ 
F B ,p ( x ) = ‖ 

u ‖ 1 + 

1 

2 

‖ 

B ( u − Ax + y ) ‖ 

p 
2 
+ g ( x ) 

} 
(63) 

omparing (63) with (61) , the infimal convolution smoothing is

qual to the AM algorithm if we choose B 

T B = βI M 

and p = 2 . 

From the convergence analysis in Section 3 , we can find that

he recovery performance is significantly dependent on the choice

f the scale matrix B and the parameter p . With b → ∞ , (63) is
min 
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Fig. 7. Recovery performance of the compared methods under Gaussian mixture noise: (a) LqLA-ADMM, Rel.Err = 4.37%, (b) � ε,p=1 . 5 -LqLA with fixed ε , Rel.Err = 1.74%, 

(c) � ε,p=2 . 5 -LqLA with fixed ε , Rel.Err = 4.41%, (d) � ε,p=2 -LqLA with adaptive ε , Rel.Err = 0.82%, (e) � ε,p=1 . 5 -LqLA with adaptive ε , Rel.Err = 0.79% and (f) � ε,p=2 . 5 -LqLA with 

adaptive ε , Rel.Err = 0.91%. 

Fig. 8. Reconstruction errors ˆ x − x ∗ of the LqLA-ADMM, � ε,p=1 . 5 -LqLA with fixed ε and � ε,p=1 . 5 -LqLA with adaptive ε . 
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equivalent to the constrained problem (4) . However, with a very

large B , the algorithm would be very slow and impractical. Specifi-

cally, we can use a self-adjustment strategy for b m 

with a properly

small starting value and gradually increase it until reaching the

target value based on the convergence speed. A simple strategy

is that we compare 
∣∣[A x k − y 

]
m 

/ 
[
A x k −1 − y 

]
m 

∣∣ with a constant

γ ∈ (0, 1) after the x updating: if its value is bigger than γ ,

then b k +1 
m 

= min 

{
b target , b 

k 
m 

/γ
}
, else b k +1 

m 

= b k m 

. For the choice of

matrix ε of � ε , p -norm smoothing algorithm, we have a similar

self-adjustment strategy as B . This adjustment strategy based

on the convergence speed leads to some improvements in our

experiment as shown in Section 5 . 

4.2. Extend to construct non-convex penalty function 

Inspired by the generalized MCP in [17] and the integral con-

volution based penalty function in [49] , we can construct a new
enalty function that may improve the sparsity 

 B ,p ( x ) = ‖ 

x ‖ 1 − h B ,p ( x ) (64)

r g B ,p ( Dx ) = ‖ Dx ‖ 1 − h B ,p ( Dx ) when Dx is sparse. 

Fig. 4 plots the scalar g ( x ) with different parameters and

ig. 5 shows the contours of various regularizations. From

igs. 4 and 5 , we can find that the g ( x ) approaches the � 0 -norm

loser than the normal � 1 -norm ‖ x ‖ 1 , hence promoting sparsity. 

By using this infimal convolution based penalty function, the

parse recovery problem (2) turns into 

in 

x 
F ( x ) = f ( x ) + ‖ 

x ‖ 1 − h B ,p ( x ) (65)

f f ( x ) is convex or 
L f 
2 ‖ x ‖ 2 2 − f ( x ) is convex, we can use the DCA

50] or the proximal DCA (PDCA) [51] to solve this minimization

roblem. The DCA solves (65) by decomposing the objective

unction as the difference of f ( x ) + ‖ x ‖ 1 and h B , p ( x ). Then the
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Fig. 9. Recovery performance of the compared methods under Cauchy distribution noise: (a) LqLA-ADMM, Rel.Err = 2.62%, (b) h B ,p=2 -mAPG with fixed B , Rel.Err = 2.38%, 

(c) h B ,p=2 . 5 -mAPG with fixed B , Rel.Err = 2.45%, (d) h B ,p=2 -mAPG with adaptive B , Rel.Err = 1.58%, (e) h B ,p=2 . 5 -mAPG with adaptive B , Rel.Err = 2.29% and (f) h B ,p=3 -mAPG with 

adaptive B , Rel.Err = 2.37%. 

Fig. 10. Reconstruction errors ˆ x − x ∗ of the LqLA-ADMM, h B ,p=2 -mAPG with fixed B and h B ,p=2 -mAPG with adaptive B . 
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ubproblem of the corresponding DCA takes the following form: 

 

k +1 = arg min 

x 

{
f ( x ) + ‖ 

x ‖ 1 −
(
h B ,p 

(
x 

k 
)

+ 

〈
∂ h B ,p 

(
x 

k 
)
, x − x 

k 
〉)}
(66) 

here ∂h B , p ( x 
k ) can be calculated by using (29) . 

Another DC decomposition of (65) is the difference of
L f 
2 ‖ x ‖ 2 2 + ‖ x ‖ 1 and 

L f 
2 ‖ x ‖ 2 2 − f ( x ) + h B ,p ( x ) , and the corre-

ponding DCA subproblem is 

 

 

 

 

 

 

 

w 

k ∈ ∂ 

(
L f 

2 

∥∥x 

k 
∥∥2 

2 
− f 
(
x 

k 
)

+ h B ,p 

(
x 

k 
))

x 

k +1 = arg min 

x 

{
‖ 

x ‖ 1 + 

L f 

2 

∥∥x − w 

k / L f 
∥∥2 

2 

} (67) 

s it can be solved by using the proximal operator (44) , this

ethod can also be called as PDCA. Since the infimal convolution
ased penalty ‖ x ‖ 1 − h B ,p ( x ) can approximate the original � 0 -

orm better and the corresponding solution process is also simple,

e believe that this new penalty function is expected to have

otential value on other sparse reconstruction problems, which is

lso our next work. 

. Numerical experiments 

In this section, simulations are performed to demonstrate

he proposed conclusions and evaluate the performance of the

roposed smoothing based APG and mAPG algorithms. We call the

 ε , p -norm and the infimal convolution smoothing approximation

ethods as the � ε , p -APG (mAPG) and h B , p -APG (mAPG) for short,

espectively. All experiments are performed in MATLAB 2015b

unning on ASUS laptop with Intel(R) Core(TM) i7-8550U CPU, 8

B of RAM and 64 bit Windows 10 operating system. 
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Fig. 11. Recovery performance of the compared methods with � 1 −2 -norm penalty under Gaussian mixture noise: (a) h B ,p=2 . 5 -mAPG, Rel.Err = 3.9%, (b) � ε,p=2 . 5 -mAPG, Rel.Err 

= 5.6% and (c) errors comparison. 

Fig. 12. Recovery performance the compared methods on different images under Gaussian mixture noise: (a) the first row corresponds to Shepp-Logan, (b) the second row 

corresponds to FORBILD head and (c) the third row corresponds to MRI image. 
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In our experiments, we consider two types of impulsive noise.

(1) Gaussian mixture noise, which is a two-component Gaussian

mixture model with probability density function given by 

n = ηN 

(
0 , σ 2 

)
+ ( 1 − η) N 

(
0 , κσ 2 

)
(68)

The first term of this model is the Gaussian thermal noise, which

stands for the normal background noise, while the second one

stands for the impulsive behavior of the noise. The ratio and

strength of the outliers in the noise are controlled by the param-

eters η ∈ (0, 1) and κ > 1, respectively. We use the signal-to-noise

ratio (SNR) as SNR=20lo g 10 

(∥∥A ̂ x − E 
{

A ̂ x 
}∥∥

2 
/ ‖ n ‖ 2 

)
to quantify the

strength of noise, where ˆ x denotes the true signal. (2) Cauchy
istribution noise, which is a special case of both the stable

istribution and the t-distribution. The characteristic function

f Cauchy distribution with scale γ and location δ is given by

 ( t ) = exp ( jδt − | γ t | ) . Then we measure the different Cauchy

istribution noise levels with the scale parameter γ . We test two

ypes of matrices A : the random Gaussian matrix with i.i.d. stan-

ard Gaussian entries and being normalized that each column has

nit norm, and the random partial DCT matrix which is formed by

andomly selecting rows from the full DCT matrix. 

We apply two methods in comparison with the proposed

lgorithm: the � 1 -norm loss and � 1 -norm penalty based YALL1

s in [24] by using the alternating direction algorithm, and the
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Fig. 13. Recovery performance the compared methods on different images under Cauchy distribution noise: (a) the first row corresponds to Shepp–Logan, (b) the second 

row corresponds to FORBILD head, (c) the third row corresponds to MRI image. 
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qLA-ADMM as in [30] by using the � q -norm penalty and the

mooth strategy on the � 1 -loss function. We select three penalty

unctions: (1) � 1 -norm penalty, g ( x ) = λ‖ x ‖ 1 ; (2) � 0.5 -norm

enalty, g ( x ) = λ‖ x ‖ 1 / 2 1 / 2 
; (3) � 1 −2 penalty, g ( x ) = λ( ‖ x ‖ 1 − α‖ x ‖ 2 )

ith α= 1 . We also apply the � ε , p -norm smoothing strategy for

qLA-ADMM to replace the original ‘ � 1, ε ’ smoothing strategy,

hich is a special case of � ε , p with ε = εI and p = 2 . We can find

hat the � ε , p also meets the convergence condition of [30] , and we

enote this � ε , p smoothing LqLA-ADMM as � ε , p -LqLA for short. The

nitial value for all the methods is an approximated solution of the

 1 minimization using ADMM after N iterations. The max iteration

or all these methods is 5 N , and the stopping condition is set to

e 

∥∥x [ k ] −x [ k −1] 
∥∥

2 

max { ‖ x [ k ] ‖ 2 , 1 } < 10 −5 . Meanwhile, we initialize the parameters

or the matrix ε and B as ε m 

∝ | [ Ax − y ] m 

| and b m 

∝ 1 / | [ Ax − y ] m 

| ,
espectively. This can be illustrated by Fig. 2 , when the amplitude

f [ Ax − y ] m 

is very large, which means that y m 

may be contam-

nated by the impulsive noise, then we need to reduce the value

f b m 

to reduce the impact of noise. The weighting parameter λ
s selected to balance the regularization and data fitting. On the

ne hand, λ should be big enough to weaken the influence of

tting the corrupted data. On the other hand, if λ is too big, the

econstruction is mostly over regularized. We vary the regulariza-

ion parameter λ from 10 −4 to 10 (with 30 logarithmically equally

paced) for each method and noise condition, and then select the

est one as the result. 

In the first study, we look at the success rates with 100 random

nstances under different noise conditions: Gaussian mixture noise
 w  
ith η = 0 . 9 , κ = 10 3 , SNR=30 dB and Cauchy distribution noise

ith γ = 10 −4 . For the original K-sparse vector ˆ x , we generate

t with random index set and draw non-zero elements with stan-

ard normal distribution. We set the size of random Gaussian ma-

rix A as 100 × 256, and consider a recovery x ∗ as successful if the

elative error of recovery (Rel.Err) satisfies 
∥∥x ∗ − ˆ x 

∥∥
2 
/ 
∥∥ˆ x 
∥∥

2 
≤ 10 −2 .

ig. 6 shows the success rates of the comparing methods for both

aussian mixture noise and Cauchy distribution noise. From Fig. 6 ,

e can find that the � ε , p -APG and h B , p -APG outperform the YALL1

nder � 1 -norm penalty, and the h B , p -mAPG and � ε , p -LqLA outper-

orm the LqLA-ADMM under � 0.5 -norm penalty. Meanwhile, by

omparing recovery performance of � 1 and � 0.5 -norm penalties, we

an find that the non-convex � 0.5 -norm penalty function bring bet-

er performance than the convex � 1 -norm penalty function. This is

ainly due to that the non-convex penalties can approximate the

 0 -norm more closely than the convex � 1 -norm. 

In the second study, we focus on the recovery quantities of

hese methods. We set the size of random Gaussian matrix A as

00 × 512 and the sparsity of vector ˆ x is K = 30 . Fig. 7 presents

he recovery signals of different methods with � 0.5 -norm penalty

nder Gaussian mixture noise with η = 0 . 9 , κ = 10 3 , SNR = 20 dB.

ig. 8 presents the reconstruction errors ˆ x − x ∗ of the LqLA-

DMM, � ε,p=1 . 5 -LqLA with fixed ε and � ε,p=1 . 5 -LqLA with adaptive

 . Fig. 9 presents the recovery signals of different methods

ith � 0.5 -norm penalty under Cauchy distribution noise with

=5 × 10 −4 . Fig. 10 presents the reconstruction errors ˆ x − x ∗ of

he LqLA-ADMM, h B ,p=2 -mAPG with fixed B and h B ,p=2 -mAPG

ith adaptive B . From Figs. 7 to 10 , it is clear that all these
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compared methods work well on these impulsive noise conditions

and can obtain nice reconstructions with a few minor mistakes,

which once again demonstrates the effectiveness of the proposed

smoothing strategies based reconstruction algorithm. Meanwhile,

we can also find that the smoothing strategies based mAPG can

obtain a better reconstruction, and when the smoothing scale

p becomes larger (from 1.5 to 2.5), the recovery performance

decreases. Moreover, the smoothing � ε , p and h B , p based methods

with adaptive matrix ε and B can gain better reconstructions than

fixed ε and B , respectively. 

Fig. 11 (a) and (b) shows the reconstructions of h B ,p=2 . 5 -mAPG

and � ε,p=2 . 5 -mAPG with � 1 −2 -norm penalty under Gaussian mix-

ture noise with η = 0 . 9 , κ = 10 3 , SNR=20 dB . Fig. 11 (c) shows the

errors comparison. The Rel.Err of h B ,p=2 . 5 -mAPG and � ε,p=2 . 5 -mAPG

are 3.9% and 5.6%, respectively. It can be observed that the h B , p 
smoothing strategy is better than the � ε , p smoothing strategy with

the same smoothing scale p = 2 . 5 . 

Finally, we evaluate the performance of the methods on image

reconstruction. We test three images, the Shepp–Logan phantom,

the 2D FORBILD head phantom [52] , and an MRI image. Each image

has a size 256 × 256 ( N = 65 , 536 ). We take M = round(0 . 4 N) mea-

surements, and employ a random partial DCT matrix as the sensing

matrix A . We use the Haar wavelets as the sparsity representation

basis and consider two noise conditions, the Gaussian mixture

noise with η = 0 . 9 , κ = 10 3 , SNR=20 dB and Cauchy distribution

noise with γ = 10 −4 . The quality of reconstructed image is mea-

sured by the peak signal to noise ratio (PSNR) refer to the original

phantom. Figs. 12 and 13 show the original truth images and re-

constructions of the compared YALL1 and h B ,p=2 -APG with � 1 -norm

penalty, LqLA-ADMM and � ε,p=1 . 5 -LqLA with � 0.5 -norm penalty

under Gaussian mixture noise and Cauchy distribution noise,

respectively. It can be found that the smoothing strategies also

work well on image reconstruction under these noise conditions.

Here, we observe that the magnitudes of improvement by both the

smoothing strategies and the nonconvex penalty are weakened as

the sparsity increases from simple Shepp–Logan phantom to com-

plicated FORBILD head phantom and then to the real MRI image. 

6. Conclusion 

In this paper, we mainly considered the � 1 -norm loss function

for the residual error to deal with the sparse recovery problem

under the impulsive noise condition. To solve the non-smooth

problem, we proposed two smoothing strategies to transform the

� 1 -norm loss function into a smooth counterpart with Lipschitz

continuous gradient, and then adopted the APG and mAPG frame-

works for the convex and non-convex regularization functions,

respectively. We proved the convergence of the proposed algorithm

by the theoretical proof and demonstrated its effectiveness by the

numerical experiments, respectively. Moreover, the proposed al-

gorithm is flexible and can be extended to more general recovery

regularizers, such as wavelets basis, total variation and sparse

dictionary, and can be expended to practical image reconstruction,

such as CT and MRI. We believe that the proposed reconstruction

algorithm is expected to have potential practical merits. 
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ppendix A. Proof of Proposition 2 

roof. The right-side inequality of (15) is obvious. By using (14) ,

e have 

 B ,p ( Ax − y ) = min 

u ∈ R M 

{ 
h ( u ) + 

1 

2 

‖ 

B ( u − Ax + y ) ‖ 

p 
2 

} 
≤
[ 

h ( u ) + 

1 

2 

‖ 

B ( u − Ax + y ) ‖ 

p 
2 

] 
u = Ax −y 

(A.1)

= h ( Ax − y ) 

or the opposite inequality, we can use the subgradient inequality

or h to obtain that for every z ∈ R 

M , 

 B ,p ( z ) − h ( z ) = min 

u ∈ R M 

{ 
h ( u ) − h ( z ) + 

1 

2 

‖ 

B ( u − z ) ‖ 

p 
2 

} 
≥ min 

u ∈ R M 

{ 〈
h 

′ ( z ) , u − z 
〉
+ 

1 

2 

‖ 

B ( u − z ) ‖ 

p 
2 

} 
≥ min 

u ∈ R M 

{
β p 

2 

‖ 

u − z ‖ 

p 
2 

+ 

〈
h 

′ ( z ) , u − z 
〉}

≥ min 

u ∈ R M 

{
β p 

2 

‖ 

u − z ‖ 

p 
2 

− L h ‖ 

u − z ‖ 2 

}

≥ 1 − p 

2 

(
2 

pβ

) p 
p−1 

( L h ) 
p 

p−1 

(A.2)

ubstitute z = Ax − y in (A.2) , we can obtain the left-side inequal-

ty of (15) . This completes the proof. �

ppendix B. Proof of Proposition 3 

roof. By using (29) , the gradient of h B ,p ( Ax − y ) is 

 h B ,p ( Ax − y ) i = 

∑ 

m 

a mi v m 

(B.1)

hen we have the Hessian Matrix of h B ,p ( Ax − y ) is given by 

 

2 h B ,p ( Ax − y ) i j 

= 

∂ 2 h B ,p ( Ax − y ) 

∂ x i ∂ x j 
= 

∑ 

m 

a mi 

∂ v m 

∂ x j 

= 

p 

2 

d 
p 
2 −1 

(∑ 

m 

a mi b 
2 
m 

w m 

a m j + ( p − 2 ) 

×
∑ 

m 

a mi b 
2 
m 

w m 

[ Ax − y − ˜ u ] m 

∑ 

k a k j b 
2 
k 
w k [ Ax − y − ˜ u ] k 

‖ 

B ( ̃  u − Ax + y ) ‖ 

2 
2 

)
(B.2)

here w m 

= 0 if ˜ u m 

� = 0 and w m 

= 1 if ˜ u m 

= 0 . The last equation

omes from that 
∂ ̃ u k 
∂ x j 

= a k j if ˜ u k � = 0 . Then, we have 

 

2 h B ,p ( Ax − y ) 	

⎧ ⎨ 

⎩ 

p 

2 

d 
p 
2 −1 A 

T B 

T BA , 1 < p < 2 

p ( p − 1 ) 

2 

d 
p 
2 −1 A 

T B 

T BA , p ≥ 2 

(B.3)

ubstitute (26) into d = ‖ B ( ̃  u − Ax + y ) ‖ 2 2 , then we can obtain 

 ≤
∑ 

m 

b 2 m 

(
2 

pb 2 m 

d 1 −
p 
2 

)2 

≤
∑ 

m 

4 d 2 −p 

p 2 b 2 m 

(B.4)
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e have an upper bound for d 

 ≤
(∑ 

m 

4 

p 2 b 2 m 

) 1 
p−1 

≤
(

4 M 

p 2 b 2 
min 

) 1 
p−1 

(B.5) 

f we choose p ≥ 2 and substitute (B.5) into (B.3), we have 

 

2 h B ,p ( Ax − y ) 	 ( p − 1 ) 

(
p 

2 

) 1 
p−1 

(√ 

M 

b min 

) p−2 
p−1 

A 

T B 

T BA (B.6) 

his means that the gradient ∇ h B ,p ( Ax − y ) is ρ‖ BA ‖ 2 2 -Lipschitz

ontinuous with ρ = ( p − 1 ) 
(

p 
2 

) 1 
p−1 

( √ 

M 

b min 

) p−2 
p−1 

. This completes the

roof. �

ppendix C. Proof of Remark 2 

roof. Let α = ‖ BA ‖ 2 2 , we first prove that ( α/ 2 ) ‖ x ‖ 2 2 −
 B , 2 ( Ax − y ) is convex. Rewrite ( α/ 2 ) ‖ x ‖ 2 2 − h B ( Ax − y ) as 

α

2 

‖ 

x ‖ 

2 
2 − h B , 2 ( Ax − y ) 

= 

α

2 

‖ 

x ‖ 

2 
2 − min 

u ∈ R M 

{ 
h ( u ) + 

1 

2 

‖ 

B ( u − Ax + y ) ‖ 

2 
2 

} 
= max 

u ∈ R M 

{ 
α

2 

‖ 

x ‖ 

2 
2 − h ( u ) − 1 

2 

‖ 

B ( u − Ax + y ) ‖ 

2 
2 

} 
= 

1 

2 

x 

T 
(
αI − A 

T B 

T BA 

)
x 

+ max 
u ∈ R M 

{ 
( y + u ) 

T B 

T BAx − 1 

2 

‖ 

B ( u + y ) ‖ 

2 
2 − h ( u ) 

} 
(C.1) 

he last term is affine in x , and it is convex as it is the pointwise

aximum of a set of convex functions. The first term is also con-

ex when α = ‖ BA ‖ 2 2 . Hence, ( α/ 2 ) ‖ x ‖ 2 2 − h B ( Ax − y ) is convex. 

Then, we use the Theorem 18.15 in [35] , that is if f ∈ �0 

(
R 

M 

)
,

 is Frchet differential and ∇f is β-Lipschitz continuous if and

nly if ( β/ 2 ) ‖ ·‖ 2 2 − f is convex. Here, let h ∈ �0 

(
R 

M 

)
and be

oercive, then h B , 2 ( Ax − y ) ∈ �0 

(
R 

M 

)
by using Proposition 1 . Then,

t follows that ∇ h B , 2 ( Ax − y ) is ‖ BA ‖ 2 2 -Lipschitz continuous. �
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