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A B S T R A C T   

Change detection for multimodal remote sensing images is an important and challenging research topic with a 
wide range of applications in disaster assessment and environmental monitoring. To address the problem that 
heterogeneous images cannot be directly compared due to different imaging mechanisms, we propose an un-
supervised image regression method based on the inherent structure consistency between heterogeneous images, 
which learns a structured graph and computes the regression image by graph projection. Firstly, the proposed 
method uses the self-expression property to preserve the global structure of image and uses the adaptive neighbor 
approach to capture the local structure of image in the graph learning process. Then, with the learned graph, two 
types of structure constraints are introduced into the regression model: one corresponds to the global self- 
expression constraint and the other corresponds to the local similarity constraint, which can be further imple-
mented by using graph or hypergraph Laplacian based regularization. Finally, a Markov segmentation model is 
designed to calculate the binary change map, which combines the change information and spatial information to 
improve the detection accuracy. Experiments conducted on six real data sets show the effectiveness of the 
proposed method by comparing with five state-of-the-art algorithms, achieving 2.4%, 5.5% and 4.1% im-
provements in accuracy, Kappa coefficient, and F1 score respectively. Source code of the proposed method will 
be made available at https://github.com/yulisun/GIR-MRF.   

1. Introduction 

1.1. Background 

Multimodal or heterogeneous change detection (CD) (Mercier et al., 
2008) is an increasingly active and challenging research topic in remote 
sensing for Earth observation, which aims to identify changes that 
happened on the Earth by comparing two satellite images acquired at 
different times over the same geographical area, but under heteroge-
neous conditions. Multimodal CD (MCD) can be regarded as a general-
ization of the basic monomodal or homogeneous CD problem (Li et al., 
2020). 

MCD can exploit the huge amount of remote sensing data to extract 
reliable information about the land cover changes as it can relax the 
restriction of homogeneous conditions. The input images could be ac-
quired by different sensors (e.g., a multispectral image at t1 and a syn-
thetic aperture radar (SAR) image at t2), or recorded with different 
sensor parameters (e.g., a near-infrared (NIR) band image at t1 and a 

RGB bands image at t2, or a C-band SAR image at t1 and an X-band SAR 
image at t2), or under dramatically different environmental conditions 
(weather or light) that comparisons cannot be made except through 
meticulous preprocessing and co-calibration (Mignotte, 2020). MCD has 
advantages in two areas: first, it can increase the temporal resolution or 
extend the time frame of long-term trend monitoring by inserting het-
erogeneous data (Chen et al., 2019); second, it is particularly useful to 
shorten the response time of CD, which has a very urgent need in rescue 
and assessment of emergency disasters, such as flood and earthquake. 
MCD allows to use the first image of opportunity to detect changes 
instead of waiting for a comparable homogeneous image to be acquired, 
what’s more, due to the accompanying adverse light and weather con-
ditions, the acquired homogeneous image may not be available (Brunner 
et al., 2010; Saha et al., 2021a; Ebel et al., 2021). 

MCD is a challenging task since the multitemporal images cannot be 
directly compared to obtain the difference image (DI) as in homoge-
neous CD. Therefore, the core task of MCD is to make the heterogeneous 
images comparable. Let X and Y be two co-registered images to be 
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compared, and let x and y be two data samples drawn on the same 
spatial location from X and Y, respectively. Depending on the basic 
analysis unit of CD method, x and y can be individual pixels, square 
patches or superpixels. Let H0 and H1 indicate the “unchanged” and 
“changed” hypotheses, respectively. Then in the homogeneous CD, we 
can directly compare x and y with arithmetical operators such as dif-
ference operator (Bovolo et al., 2011) or ratio/log-ratio operator (Moser 
and Serpico, 2006; Zhang et al., 2021) (the former is usually used in 
optical images and the latter is usually used in SAR images), which is 
based on the assumption that x and y exhibit the same (or similar) dis-
tribution when conditioned to H0. However, this assumption is violated 
in MCD as heterogeneous images provide different descriptions of the 
same object and exhibit quite different characteristics. 

Generally, most MCD methods are broadly to transform the 
“incomparable” images to a new common domain, or to transform one 
image to the domain of the other image, such that they are “comparable” 
(Moser et al., 2020). For the former transformation, we can express it as 
two mappings of ϕ : x→w and φ : y→w′ , such that w and w′ have the 
same (or very similar) distribution given H0. According to the trans-
formed domain (w and w′ ), the transform-based MCD methods can be 
roughly divided into: 1) classification-based methods, which transform 
the multimodal images to a common category space, such as the post- 
classification comparison (PCC) (Jensen et al., 1987), the multi-
temporal segmentation and compound classification (MS-CC) (Wan 
et al., 2019), and classified adversarial network (CAN) (Wu et al., 2020). 
2) Feature space-based methods, which transform the multimodal im-
ages to a common constructed or learned feature space, such as methods 
based on manually constructed features: sorted histogram method (SH) 
(Wan et al., 2018), manifold learning based method (Prendes et al., 
2014; Prendes et al., 2016), pixel pairwise-based methods (Touati et al., 
2019a, 2019b; Touati and Mignotte, 2017), kernel canonical correlation 
analysis (kCCA)-based method (Volpi et al., 2015), and methods based 
on learned deep features: the symmetric convolutional coupling network 
(SCCN) (Liu et al., 2018), logarithmic transformation feature learning 
network (LT-FL) (Zhan et al., 2018), deep feature representation and 
mapping transformation based method (DFR-MT) (Zhang et al., 2016), 
and anomaly feature learning-based deep sparse residual model (AFL- 
DSR) (Touati et al., 2020). 

For the latter transformation, it can be regarded as image regression 
or image translation and expressed as ξ : x→y′ or ς : y→x′ , such that y′

and y, or x′ and x, have the same distribution when conditioned to H0. 
According to the mapping ξ or ς, the image regression based MCD 
methods can be roughly divided into: 1) traditional signal-processing 
methods. Homogeneous pixel transformation (HPT) uses kernel regres-
sion on a sample of k-nearest neighbor (KNN) pixels to construct map-
pings (ξ or ς) between the input images (Liu et al., 2017). The mappings 
are learned with the labeled unchanged training data. To avoid the 
reliance on labeled data, an unsupervised affinity matrix difference 
based image regression (AMD-IR) is proposed in Luppino et al. (2019), 
which first uses AMD to identify pixels that are likely to be unchanged as 
pseudo-training data, and then completes the image translation by four 
regression methods: Gaussian process regression, support vector 
regression, random forest regression, and the HPT. 2) Deep learning 
methods. In Niu et al. (2018), a conditional generative adversarial 
network (GAN) is used to translate the optical image to the SAR image 
and an approximate network is built to approximate the original SAR 
image to the translated one. A coupling translation networks (CPTN) is 
proposed in Gong et al. (2019), which uses two variational autoencoders 
(VAE) to extract a shared-latent space for heterogeneous images, and 
then uses a coupled GAN to translate the heterogeneous images into 
each other’s domain from their shared-latent space. Based on the AMD 
change prior, two deep image translation methods are proposed in 
Luppino et al. (2021): the X-Net composed of two fully convolutional 
networks and the adversarial cyclic encoder network (ACE-Net) 
composed of two autoencoders whose code spaces are aligned by 

adversarial training. In Jiang et al. (2020), a deep homogeneous feature 
fusion (DHFF) is proposed to transform the SAR image to the optical 
image domain, which is based on an iterative image style transfer 
strategy. 

Note that the mappings of (ξ, ς) usually need to be trained with un-
changed pairs of heterogeneous data. Therefore, these regression based 
MCD methods either require a labeled training set under the supervision 
mode (such as HPT), or need a pre-constructed pseudo-training set/ 
change prior to guide the training process (such as AMD-IR, X-net and 
ACE-Net), or involve a complex iterative coarse-to-fine filtering process 
to construct the pseudo-training set while using it to learn the mappings 
(ξ, ς) (such as conditional GAN, CPTN and DHFF). 

1.2. Motivation 

In this paper, we aim to propose an unsupervised image regression 
method for MCD, which does not need any labeled data. Specifically, the 
proposed method is based on the self-similarity property of images, that 
is, any small part of the image can always find similar parts within the 
same image, which has been widely used in the image denoising with the 
so-called “nonlocal-based” methods (Dabov et al., 2007; Guan et al., 
2018), and has also recently been explored by researchers for MCD (Lei 
et al., 2020; Mignotte, 2020; Sun et al., 2020, 2021a, 2021b). In Lei 
et al., 2020; Sun et al., 2021a, 2021b, the self-similarity is used to 
construct graphs (fixed KNN graph or adaptive probabilistic graph) to 
represent the structure of each image and can be regarded as ϕ : x→w,

φ : y→w′ with w and w′ denoting graphs, and then the graphs (w and w′ ) 
are compared to calculate the DI by graph projection. In Mignotte 
(2020) and Sun et al. (2020), the self-similarity is used to project the pre- 
event image to the domain of post-event image as ξ : x →w y’ by fractal 
projection with fractal code w and image reconstruction with a self- 
expression matrix w respectively, where w can represent the similarity 
relationships between image patches (w can also be defined as the 
structure of image). In these self-similarity based MCD methods, two 
points are especially important: first, how to construct the structure w of 
image; and second, how to measure the structure difference to detect the 
changes. Hence, we propose a structured graph based image regression 
method to improve the MCD performance from the above two points. 

First, a main challenge in the unsupervised MCD is that trans-
formations must be learnt from a dataset that includes noise and 
changes, which means that the noise and changed pixels will contami-
nate the mappings of (ϕ,φ) and (ξ, ς) and make them less effective. To 
address this challenge, the proposed method uses the inherent imaging- 
modality-invariant structure consistency between heterogeneous images 
to compute the regression image. It is more robust to noise than the 
common regression-based methods that aim to learn a luminance 
transformation function (ξ or ς) to translate the image. What’s more, to 
alleviate the negative effects of changed pixels, the proposed method 
decomposes the post-event image into the regression image of pre-event 
and the changed image in the regression process. At the same time, the 
prior sparse knowledge that only a small part of image changed in the 
event is also taken into account within the regression model. 

Second, local and global structure information are adaptively com-
bined to construct a graph to represent the structure of image. On the 
one hand, it learns a probabilistic graph by automatically selecting the 
most informative neighbors for each node and adaptively assigning 
weights instead of constructing KNN graph manually as in Sun et al., 
2021a, 2021b or ε-nearest-neighbor (ε NN) graph, which relies heavily 
on the choice of k and ε. Therefore, the learned graph in the proposed 
method is more robust and not sensitive to noise and outliers. On the 
other hand, it can preserve both local and global structure information 
by combining local similarity regularization and global self-expression 
in the graph learning framework. As demonstrated in many problems, 
such as feature selection (Zhu et al., 2016), classification (Zhou et al., 
2004), clustering (Wang et al., 2009; Kang et al., 2021), local and global 
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structure information are both important to graph performance since 
they can provide complementary information to each other. Therefore, 
the learned graph can contain more information and is more represen-
tative than graph containing only local structure information as in Sun 
et al., 2021a, 2021b and the graph containing only global information as 
in Sun et al. (2020). 

Third, to improve the regression performance, two types of con-
straints are introduced into the regression model: one corresponds to the 
global self-expression constraint and the other corresponds to the local 
similarity constraint, which are relative to the graph learning process. 
Moreover, in order to preserve the local structure information to 
improve the regression performance, two strategies are used in the 
proposed method: graph Laplacian based regularization (GLR) and 
hypergraph Laplacian based regularization (HGLR). HGLR makes the 
vertices with the similar characteristics be enclosed by a hyperedge, 
which is capable to connect more than two vertices (Zhou et al., 2006; 
Wang et al., 2020) and thus captures the high-order information. Both 
GLR and HGLR enhance the robustness of image regression. 

Fourth, since the proposed method uses a graph-based approach to 
complete the image regression and calculate the DI, naturally, we use 
the graph cut method to obtain the binary changed map (CM) based on a 
Markov random field (MRF) segmentation model, which uses Gaussian 
mixture model to construct the change energy term and combines the 
spatial context information of DI and similarity information of the 
original images to construct the spatial energy term. 

1.3. Contribution 

In particular, our contribution refers to a graph based unsupervised 
image regression method for MCD.  

• An inherent structure consistency based method is proposed for 
MCD, which translates the pre-event image to the domain of post- 
event image by using a graph-based regression model.  

• A robust graph is adaptively constructed to capture both local and 
global structural information of the image.  

• The global self-expression constraint and local similarity based GLR 
or HGLR are used to improve the regression performance. 

• A MRF segmentation model is designed to combine the change in-
formation and spatial information, which is solved by the graph cut. 

1.4. Outline and notation 

The rest of this paper is structured as follows: Section 2 describes the 
related graph learning techniques and basic concepts of hypergraph. 
Section III describes the details of the proposed MCD method. Section 4 
presents the experimental results by comparing with some existing state- 
of-the-art (SOTA) methods and gives some discussions. Finally, we 
conclude this paper in Section 5. For convenience, Table 1 lists some 
important notations used in the rest of this paper. 

2. Preliminaries 

Since the proposed method in this paper is to use the structured 
graph for MCD, we briefly review local and global structure learning, 
and then introduce some basic concepts of hypergraph in this section. 

2.1. Local structure learning 

It is intuitive that the similarity wi,j between the i-th sample Xi and 
the j-th sample Xj is larger if the distance between Xi and Xj is smaller. 
Two types of local structure based graph have been used in MCD (Lei 
et al., 2020; Sun et al., 2021a, 2021b). The first one is the widely used 
KNN graph, which computes the similarity matrix W as 

wi,j =

⎧
⎨

⎩

exp
(
− ηdistx

i,j

)
, Xi is one of the KNN of Xj

0, otherwise
, (1)  

where distx
i,j represents the distance between Xi and Xj, such as distx

i,j =
⃦
⃦Xi − Xj

⃦
⃦2

2, and η > 0 is a tuning parameter. Although KNN is very 
intuitive, it is heavily dependent on the choice of parameters (k and η), 
which is hard to set with a general strategy. 

The second one is the adaptive neighbor approach, which is first 
proposed for classification in Nie et al. (2014). This approach learns the 
similarity matrix W by solving the following objective function 

min
Wj

∑N

i=1
distx

i,jwi,j + αw2
i,j s.t. 0⩽wi,j⩽1,

∑N

i=1
wi,j = 1, (2)  

where α > 0 is a tuning parameter. As we will show latter, the matrix W 
can be column k-sparse when appropriate α is chosen. W also describes 
the relationship between sample and its nearest neighbors. 

2.2. Global structure learning 

Self-expression property has been applied to many applications for 
its ability in capturing the global structure of data (Huang et al., 2019; 
Zhang et al., 2018), which assumes that each sample can be represented 
as a linear combination of other samples, i.e., Xi ≈

∑N
j=1Xjwj,i. The co-

efficient matrix W can be regarded as the similarity matrix. Rather than 
focusing on the predefined local neighborhood (such as KNN), we can 
learn the matrix W by solving the following minimization problem 

min
W

‖X − XW‖
2
F + αf (W), (3)  

where f(W) is a regularizer on W and α > 0 is a tuning parameter. As (3) 
uses all the samples to reconstruct the target sample and learns W 
automatically, it is supposed to capture the global structure information 
of X. 

2.3. Basic concepts of hypergraph 

In contrast to the pair-wise graph, a hypergraph can link more than 

Table 1 
List of important notations.  

Symbol Description 

X̃, Ỹ, Z̃  pre-event, post-even, and regression images 

X,Y,Z  feature matrices of X̃, Ỹ, Z̃  
Xi  i-th column of a matrix X  
xi,j  i-th row and j-th column element of X  

X(t) the t-th iteration of X  

‖X‖F  Frobenius norm of X,‖X‖F =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i
∑

jx2
i,j

√

‖X‖1  ℓ1-norm of X,‖X‖1 =
∑

i
∑

j
⃒
⃒xi,j
⃒
⃒

‖X‖2,1  ℓ2,1-norm of X,‖X‖2,1 =
∑

j

̅̅̅̅̅̅̅̅̅̅̅̅∑
ix2

i,j

√

Tr(X) trace of X  
G = (V, E,w) graph with vertex set V, edge set E and weight w 

Gh = (Vh,Eh,wh) hypergraph with vertex set Vh, hyperedge Eh  

and hyperedge weight wh  

Dv  vertex degree matrix of hypergraph Gh  

De  hyperedge degree matrix of hypergraph Gh  

Wh  hyperedge weight matrix of hypergraph Gh  

Lg,Lh  graph and hypergraph Laplacian matrix 

IN  an N × N identity matrix  
1N  an N × 1 column vector of ones  
X⩾0  nonnegative matrix  
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two vertices. Denote Vh, Eh as the vertex set and hyperedge set corre-
sponding to a hypergraph of Gh =

{
Vh,Eh,wh}, respectively. Each 

hyperedge e is a subset of the vertex set Vh. Denote the weight associate 
with the hyperedge e ∈ Eh as wh(e). The degree of a vertex v ∈ Vh is 
defined as d(v) =

∑

{e∈Eh|v∈e}wh(e), and the degree of a hyperedge e is 

defined as δ(e) = |e|. Denote the incident matrix H as a 
⃒
⃒Vh
⃒
⃒×
⃒
⃒Eh
⃒
⃒ ma-

trix, whose entry satisfies h(v, e) = 1 if v ∈ e, and h(v, e) = 0 otherwise. 
With these definitions, we have 

d(v) =
∑

e∈Eh

wh(e)h(v, e), δ(e) =
∑

v∈Vh

h(v, e). (4)  

Let Dv and De be the diagonal matrices containing the degree of each 
vertex and hyperedge, respectively, and denote Wh as the diagonal 
matrix of the edge weight. Then, the unnormalized hypergraph Lap-
lacian matrix is defined as Zhou et al. (2006), Agarwal et al. (2006) 

Lh = Dv − HWhD− 1
e HT . (5) 

Fig. 1 gives an example of a hypergraph. 

3. Methodology 

We consider a pair of co-registered heterogeneous images acquired at 
time t1 (pre-event) and t2 (post-event), which are denoted as X̃ ∈

RM×N×CX in domain X and Ỹ ∈ RM×N×CY in domain Y , respectively. We 
define their pixels as x̃(m, n, c) and ỹ(m, n, c), respectively. Here, M,N 
and CX (CY) define the height, width, and the number of bands of the 
image X̃ (Ỹ), respectively. 

As illustrated in the introduction, we cannot apply the traditional 
arithmetical operators (such as difference and ratio/log-ratio operators) 
to calculate the DI in MCD, since it is meaningless to directly compare 
entities from different domains. The strategy is instead by measuring the 
structure consistency between heterogeneous images. As illustrated in 
Fig. 2, each image is divided into small parts with the same segmenta-
tion form. For the pre-event image, with the inherent self-similarity 
property, each small part of the image can always find some similar 
parts within the same image. That is, if X̃i and X̃j represents the same 
kind of object and showing that they are very similar, and neither of 
them changes during the event, then Ỹi and Ỹj also represents the same 
kind of object in the post-event image and showing that they are also 
very similar. Furthermore, if X̃i can be represented by these similar X̃j, 
then Ỹi can also be represented by these Ỹj, as long as they have not 
changed. We use the similarity relationships between X̃i and X̃j to 
represent the structure of X̃i. Then, we can find that the structure of X̃i 

can be well conformed by the unchanged Ỹi, as shown in the unchanged 

part of Fig. 2. On the contrary, if Ỹi has changed in the event, the 
structure of X̃i is no longer preserved by Ỹi, showing that the similarity 
relationships between Ỹi and Ỹj are quite different from that of X̃i and 
X̃j, as shown in the changed part of Fig. 2. Therefore, we can transform 
the pre-event image to the domain of post-event image by using the 
structure consistency, which is quite imaging modality invariant, and 
then measure the change level by comparing the regression image and 
the post-event image. 

There are three main problems to be solved: how to represent the 
image structure, how to complete the image regression to obtain the DI, 
and how to compute the final CM. Fig. 3 shows the framework of the 
proposed method, which consists of four steps: 1) preprocessing; 2) 
structure representation by constructing graph; 3) image regression by 
using structure consistency; 4) binary CM calculation with MRF 
segmentation. 

3.1. Preprocessing 

Preprocessing consists of two main tasks: superpixel segmentation 
and feature extraction. In the proposed method, it chooses the image 
block (superpixel) that represents the same kind of object as the basic 
analysis unit rather than the individual pixel or square image patch. This 
brings two advantages: first, it can maintain the shape and edge of ob-
ject, and contain the context information because each superpixel 
internally belongs to the same kind of object; second, it can reduce the 
size of graph, thus reducing the computational complexity, which is very 
useful for MCD of very-high-resolution images. 

We use the simple linear iterative clustering (SLIC) method (Achanta 
et al., 2012) to generate the superpixels for its superior in both efficiency 
(linear complexity of the number of image pixels) and boundary pres-
ervation. SLIC is easy to use, offers flexibility in the compactness and 
number of the superpixels it generates, and is straightforward to extend 
to higher dimensions. We first apply SLIC on each image to generate the 
superpixels. For different types of image (e.g. X̃), we use different ad-
justments on the SLIC. For the optical image X̃ with RGB bands, the 
original SLIC is directly employed to generate the superpixels; for the 
multispectral image X̃ with CX > 3, the principle component analysis 
(PCA) method is used to obtain the first three principle components, and 
then SLIC is used to segment the image; for the SAR image X̃, since it is 
usually assumed to be contaminated by the multiplicative speckle noise 
with Gamma distribution, the Euclidean distance in original SLIC is not 
proper to generate superpixels. Inspired by several similarity criteria 
proposed in Deledalle et al. (2012), we use the following pixel intensity 
distances to replace the Euclidean distance in SLIC 

d = log

(
x̃i + x̃j

2
̅̅̅̅̅̅̅
x̃ix̃j

√

)

or d =
(
log(x̃i) − log

(
x̃j
) )2

, (6)  

where x̃i and x̃j are intensity values of two pixels of SAR image. 
Once the SLIC (or adjusted SLIC) is performed on each image inde-

pendently, we can obtain the segmentation map of each image, denoted 
as Λx and Λy. By taking the intersection of segmentation maps Λx and Λy, 
eliminating the empty sets and merging the very small regions into the 
nearest regions, we can obtain the co-segmentation map Λ = {Λi|i = 1,
⋯,NS} and the segmented superpixels of X̃ and Ỹ (Touati et al., 2019b), 
denoted as X̃i = {x̃(m, n, c)|(m, n) ∈ Λi, c = 1,⋯,CX } and Ỹi =

{ỹ(m, n, c)|(m, n) ∈ Λi, c = 1,⋯,CY } respectively with i = 1,⋯,NS. Since 
the co-segmentation map Λ is an intersection of Λx and Λy, the set of 
pixels inside each superpixel in Λ have the property to be internally 
homogeneous simultaneously in X̃ and Ỹ. There are other superpixel 
segmentation methods that can also be used in the preprocessing, such 
as the multitemporal segmentation strategies in Bovolo (2009), Saha 
et al. (2021b). 

With the segmentation map Λ, different kinds of feature information 

Fig. 1. An example of a hypergraph: (a) A hypergraph represents the complex 
relationships of seven points; (b) Incidence matrix H of the hypergraph, whose 
entry h

(
vi, ej

)
= 1 if a hyperedge ej contains the i-th vertex vi and h

(
vi, ej

)
=

0 otherwise. 
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can be extracted to represent the superpixel, such as the spatial, spectral 
(intensity), and textural information. In this paper, the mean, median, 
and variance values of each band are chosen as the spectral features for 
simplicity (other discriminatory features could also be used). Thus, we 
can obtain the feature matrix of each image as X ∈ R3CX×NS and 
Y ∈ R3CY×NS , and the columns of Xi and Yi represent the feature vectors 
of superpixels X̃i and Ỹi, respectively. 

3.2. Structure representation by constructing graph 

In order to complete the structure consistency-based image regres-
sion, we first construct a weighted directed graph G = (V,E,w) to cap-
ture the structure information of image X̃, where the vertex set V =
{

X̃1,⋯, X̃NS

}
. If there is an edge 

(
X̃i, X̃j

)
∈ E from X̃i to X̃j, the entry wi,j 

represents the weight of this edge; otherwise, wi,j = 0. 

3.2.1. Model formulation 
The local structure learning model (2) can capture the similarity 

relationships between each superpixel and its k-nearest neighbors, and 

the global structure learning model (3) can obtain the self-expression 
relationship between each superpixel and other superpixels that 
satisfy the constraint of Xi ≈

∑N
j=1Xjwj,i. To make use of complementary 

information provided by the local structure and global structure, we 
combine (2) and (3) into a unified objective function as 

minW
∑NS

i=1

∑NS

j=1

⃦
⃦Xi − Xj

⃦
⃦2

2wi,j
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

local structure

+
∑NS

i=1
αi‖Wi‖

2
2

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
regularizer

+ βg(ε)
⏟̅̅⏞⏞̅̅⏟

global structure

s.t. 0⩽wi,j⩽1,
∑N

i=1
wi,j = 1, X = XW + ε,

(7)  

where αi, β > 0 are the balancing parameters, ε represents the unknown 
corruption (self-expression error). g(ε) represents the penalty term, 
which can be the squared Frobenius norm, ℓ1-nrom, or ℓ2,1-nrom. 
Specifically, ‖ε‖2

F is more appropriate when the corruption obeys a 
Gaussian distribution; ‖ε‖1 is usually adopted for random impulse noise; 
and ‖ε‖2,1 is more suitable to characterize sample-specific corruption 
and outliers. 

From (7), we can find that W can be regarded as a probability matrix, 

Fig. 2. Illustration of the structure consistency in heterogeneous images: (a) optical image; (b) SAR image. The similarity between image parts is reflected by the 
thickness of connecting lines. The structure of the unchanged part X̃i in optical image can be well conformed by the Ỹi in SAR image, while the structure of the 
changed part X̃i can not be conformed by the Ỹi. 

Fig. 3. Framework of the proposed heterogeneous change detection method.  
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that is, for the j-th superpixel X̃j, all the superpixels can be connected to 
it as neighbors with probabilities wi,j, i = 1,⋯,NS with 0⩽wi,j⩽1,
∑NS

i=1wi,j = 1. For the local structure penalty term, it prompts to assign a 
larger probability wi,j to X̃i when distance between Xi and Xj is smaller. 
For the global self-expression penalty term, it prompts to reconstruct Xj 

from the whole X with Wj as Xj ≈ XWj. For the regularizer of αi‖Wi‖
2
2, it 

is a smooth term to avoid trivial solution and make W sparse together 
with the condition 0⩽wi,j⩽1,

∑NS
i=1wi,j = 1. Specially, if we set αi = 0, 

problem (7) have a trivial solution for Wi with wi,i = 1 and wj,i = 0,
j ∕= i, that is, X̃i is only connected to itself with probability 1. On the 
other hand, if we choose αi→∞, the optimal solution of Wi is that Wi =

1NS/NS, that is, all the superpixels connect X̃i with the same probability 
1/NS. By combining the local structure and global structure penalty 
terms, the W in (7) can contain more information and the learned graph 
G is more representative than the local structure induced graph in Sun 
et al., 2021a, 2021b and the global structure induced graph in Sun et al. 
(2020). 

3.2.2. Optimization 
Define the distance matrix Dx ∈ RNS×NS with the element being dx

i,j =
⃦
⃦Xi − Xj

⃦
⃦2

2, then we have 

Dx = diag
(
XT X

)
1NS 1T

NS
+ 1NS 1T

NS
diag

(
XT X

)
− 2XT X, (8)  

where diag
(
XTX

)
is a diagonal matrix with the diagonal elements of 

XTX. Define the α1
2 ∈ RNS×NS as a diagonal matrix with diagonal elements 

being ̅̅̅̅αi
√ . Then, problem (7) can be rewritten as 

min
W

Tr
(
WT Dx)+

⃦
⃦
⃦Wα1

2

⃦
⃦
⃦

2

F
+βg(ε)

s.t. W⩾0, WT 1NS = 1NS , X = XW + ε.
(9) 

Problem (9) can be efficiently solved by using the alternating di-
rection method of multipliers (ADMM) in the Appendix A, and the 
detailed derivation is provided in the supplementary document. The 
procedure of solving the problem (9) is summarized in Algorithm 1 of 
Table 2. The algorithm terminates when the maximal number of itera-
tions Niter is reached or the relative difference between two iteration 

results ξ(t+1) < ξ0, where ξ(t+1) =
‖W(t+1) − W(t) ‖F

‖W(t+1) ‖F
. 

3.2.3. k selection 
From the process of solving W in Appendix A, we can find that the 

constructed graph G = (V,E,w) is a KNN type graph with the probabi-
listic weight W of (32c) and the regularization parameter αi can be 
replaced by number of neighbors ki as proven in the supplementary 
material, which plays an important role in the graph G. Obviously, a 
very small ki is not robust enough for the graph, whereas a very large ki 
tends to over connected the graph and leads to confusion. Therefore, we 
need to choose a suitable ki for each vertex instead of a common k for all 

vertexes. For each superpixel, we want “it to be connected and recon-
structed by as many truly similar superpixels as possible”. Here, we propose 
a strategy to adaptively select ki for each vertex by using the in-degree of 
the vertex. 

Step 1. Set kmax =
̅̅̅̅̅̅
NS

√
and kmin =

̅̅̅̅̅̅
NS

√
/10, and find the kmax 

nearest-neighbors of each vertex. 

Step 2. Calculate the in-degree di
(

X̃i

)
for each vertex X̃i, that is, 

compute the number of times X̃i occurs among the kmax nearest- 
neighbors of all vertexes. 

Step 3. Choose ki = min
{

kmax,max
{

di
(

X̃i

)
, kmin

}}
for each vertex. 

With this strategy of k selection, we can select a smaller ki for 
superpixel that belongs to low density (has few truly similar super-
pixels), and select a larger ki for superpixel that belongs to high density 
(has many truly similar superpixels). 

3.2.4. Hypergraph construction 
With the learned probability matrix W, we can construct the 

hypergraph Gh =
{
Vh,Eh,wh}. With Vh =

{
X̃1,⋯, X̃NS

}
, each super-

pixel X̃i corresponds to a hyperedge ei, i.e., we treat X̃i as a center, and 
connect X̃i and its neighbors in Wi to generate a hyperedge ei =
{

X̃i

}
∪
{

X̃j

⃒
⃒
⃒wj,i ∕= 0, j = 1,⋯,NS

}
. As proved in the supplementary 

material, each vertex in graph G has a loop (each vertex is connected to 
itself), i.e., wi,i > 0 for i = 1,⋯,NS. Then, we have the hyperedge set Eh =

{ei|i = 1,⋯,NS} with ei defined as 

ei =
{

X̃j

⃒
⃒
⃒wj,i ∕= 0; j = 1,⋯,NS

}
. (10)  

For the traditional hypergraph graph construction method, the incident 
matrix H ∈ RNS×NS on the hypergraph can be represented as h

(
vi, ej

)
=

{
1, if wi,j ∕= 0
0, otherwise . 

Assume that X̃j and X̃l are both contained in ei, where the center 
point X̃i of ei have different distances with X̃j and X̃l, respectively. Thus 
X̃j and X̃l should assign different weights in ei, respectively. However, 
the traditional incident matrix H can not meet this demand since it is 
binary. Actually, in the probability matrix W, each element wj,i > 0 gives 
a weight to the superpixel X̃j in ei. Furthermore, we set the incident 
matrix of Gh as H̃ = W, and choose the mean of the heat kernel weights 
of the intra-class superpixels as the hyperedge weight wh(e)

wh(ei) =
1

ki(ki − 1)
∑

X̃j ,̃Xl∈ei

exp

(

−

⃦
⃦Xj − Xl

⃦
⃦2

2

σ

)

, (11)  

where σ = 1
ki(ki − 1)

∑

X̃j ,X̃l∈ei

⃦
⃦Xj − Xl

⃦
⃦2

2 denotes the mean distance among 

all the neighbor superpixels in the hyperedge. Using this weight wh(e), 
the compact hyperedge with small average intra-class distance is 
assigned a higher hyperedge weight. Then we can obtain the diagonal 
hyperedge weight matrix Wh with the diagonal element wh

i,i = wh(ei). 
Subsequently, we rewrite the hypergraph Laplacian matrix as 

Lh = Dv − H̃WhD− 1
e H̃

T
. (12)  

3.3. Structure consistency based image regression 

Once the matrix W that represents the structure information of pre- 
event image is obtained, the image regression can be completed by using 
structure consistency. For example, we can project W into the domain of 
post-event Y to obtain the regressed feature matrix Z = YW, which can 
be regarded as using the structure of X̃i to translate X̃i in the Y domain 
as Zi =

∑NS
j=1Yjwj,i. Then, the regression image Z̃ can be calculated by 

Table 2 
Implementation steps of Algorithm 1.  

Algorithm 1. Structured graph learning 

Input: The feature matrix X, parameter β > 0.  
Initialize: Set S, R1, and R2 = 0, and adaptively select ki.  
Repeat: 

1: Update ε(t+1) through Eq. (32a) according to different g(⋅).  

2: Update S(t+1) through Eq. (32b).  

3: Update W(t+1) through Eq. (32c).  
4: Update the Lagrangian multipliers through Eq. (32d) and (32e). 

Until stopping criterion is met. 
Output: The learned probability matrix W.   
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extracting the mean features in Z as 

z̃(m, n, c) = zc,i, (m, n) ∈ Λi, (13)  

where ̃z(m, n, c) is the pixel value of Z̃ and zc,i is the mean feature of each 
band in Z. 

However, directly translating the i-th superpixel without considering 
the stability of neighbors (changed or unchanged) is not appropriate. 
That is, the changed neighbors will affect the regression performance. 
For example, for the unchanged target i-th superpixel X̃i, although it can 
be represented by Xi =

∑NS
j=1Xjwj,i, directly using Zi =

∑NS
j=1Yjwj,i to 

translate Xi will cause errors when some neighbors X̃j with wj,i > 0 are 
changed in the event. 

Therefore, to alleviate the negative effects of changed superpixels, 
we decompose the post-event image Ỹ into the regression image Z̃ of the 
pre-event image and the changed image Δ̃ as Ỹ = Z̃ − Δ̃. Then we have 
Y = Z − Δ, where Δ ∈ R3CY×NS is the changed feature matrix (Δ is not the 
feature matrix of Δ̃ since the feature extraction is not a linear operator). 

3.3.1. Structure consistency based regularization 
As illustrated in Fig. 2, the structure consistency between X̃ and its 

regression image Z̃ requires that they should share the same similarity 
relationships, which contains two types of constraints that correspond to 
the graph learning process: one is the global self-expression constraint as 
Z = ZW and the other is the local similarity constraint, that is if 
superpixels in the pre-event images (X̃i and X̃j) are very similar, then the 
superpixels in the regression image (Z̃i and Z̃j) corresponding to this 
superpixel pair should also be similar. Since the structure information 
(similarity relationships) of X̃ is represented by the graph G and Gh, we 
have two following constraints based on two local constraint strategies. 

GLR: we desire the regressed superpixels corresponding to the in-
stances connected in the edge of G be similar to each other. Specifically, 
the GLR is given by 

min
Z

∑NS

i=1

∑NS

j=1

⃦
⃦Zi − Zj

⃦
⃦2

2wi,j. (14)  

Denote the degree matrix Dg ∈ RNS×NS of graph G as a diagonal matrix 
with the i-th entry Dg

i,i corresponds to the summation of all the similar-

ities related to X̃i, i.e., Dg
i,i =

∑Ns
j=1
(
wi,j + wj,i

)/
2, and the graph Laplacian 

matrix is defined as 

Lg = Dg −
W + WT

2
. (15)  

Then, we have 

∑NS

i=1

∑NS

j=1

⃦
⃦Zi − Zj

⃦
⃦2

2wi,j = 2Tr
(
ZLgZT). (16) 

HGLR: we desire the regressed superpixels corresponding to the in-
stances within the same hyperedge of Gh be similar to each other. Spe-
cifically, the HGLR is given by 

∑

e∈Eh

∑

{X̃i ,̃Xj}∈e

wh(e)h̃
(

X̃i, e
)

h̃
(

X̃j, e
)

δ(e)
⃦
⃦Zi − Zj

⃦
⃦2

2= 2Tr
(
ZLhZT). (17)  

The detailed derivation of (17) is in the supplementary document. From 
the HGLR constraint of (17), we can find that the similarity among the 
superpixels within the same hyperedge of Gh is kept by the regressed Z̃. 

Combining the global self-expression constraint and the local simi-
larity constraint, we can obtain the structure consistency based regula-
rization as 

min
Z

2Tr
(
ZLZT)+ βg(Z − ZW), (18)  

where β > 0 is a balancing parameter, and the Laplacian matrix L can be 
the graph Laplacian matrix Lg in (15) or the hypergraph Laplacian 
matrix Lh in (12) according to different local constraint strategies. The 
penalty function g(⋅) is similar to the function in (7), which can be the 
squared Frobenius norm, ℓ1-nrom, or ℓ2,1-nrom according to the sta-
tistical properties of the self-expression errors. 

3.3.2. Objective function 
Based on the fact that most of the objects are unchanged and only a 

small part of objects are changed in the event, we can use the prior 
sparsity together with the structure consistency based regularization to 
model the regression process as 

min
Z,Δ

2Tr
(
ZLZT)+ βg(Z − ZW) + λ‖Δ‖2,1s.t. Y = Z − Δ, (19)  

where λ > 0 is a penalty parameter. The ℓ2,1-norm regularization term 
‖Δ‖2,1 is a convex relaxation of the ℓ2,0-norm of ‖Δ‖2,0, which is used to 
promote column sparseness. 

3.3.3. Optimization 
By using the ADMM and introducing an auxiliary variable 

ε ∈ R3CY×NS , the model (19) can be rewritten as 

min
Z,Δ

2Tr
(
ZLZT)+ βg(ε) + λ‖Δ‖2,1

s.t. Y = Z − Δ, Z = ZW + ε.
(20) 

Problem (20) can be efficiently solved by using the ADMM in the 
Appendix B. The framework of solving minimization problem (20) is 
summarized in Table 3 (Algorithm 2). The stopping criterion of Algo-
rithm 2 is that the maximum number of iterations Niter is reached or 
relative difference between two iteration results ξ(t+1) < ξ0, where 

ξ(t+1) =
‖Δ(t+1) − Δ(t) ‖F

‖Δ(t+1) ‖F
. 

Once the regression feature matrix Z is computed from Algorithm 2, 
the regression image Z̃ can be obtained by extracting the mean features 
in Z as in (13). With the changed feature matrix Δ output by Algorithm 
2, we can compute the DI as 

DI(m, n) = ‖Δi‖
2
2, (m, n) ∈ Λi. (21)  

3.4. Binary CM calculation with MRF segmentation 

Once the sparse DI is obtained, the MCD problem can be regarded as 
an image binary segmentation problem, which can be solved by 
thresholding method or clustering method. Here, we treat the binary CM 
calculation as a superpixel-labeling problem, which assigns a label χi for 
the i-th superpixel with χi = 0 representing that the region of Λi is un-
changed and χi = 1 representing that Λi is changed in the event. Define 
χ = {χi|i = 1,⋯,NS} as the label set of superpixels, the superpixel- 

Table 3 
Implementation steps of Algorithm 2.  

Algorithm 2. Structure consistency based image regression. 

Input: The matrices of Y, W and L, parameters β,λ > 0.  
Initialize: Set Z, R1, and R2 = 0.  
Repeat: 

1: Update ε(t+1) through Eq. (35a) according to different g(⋅).  

2: Update Δ(t+1) through Eq. (35b).  

3: Update Z(t+1) through Eq. (35c).  
4: Update the Lagrangian multipliers through Eqs. (35d) and (35e). 

Until stopping criterion is met. 
Output: The regressed feature matrix Z and changed feature matrix Δ.   
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labeling is equivalent to minimizing an energy function J (χ), which is 
the log likelihood of the posterior distribution of MRF (Geman and 
Geman, 1984; Szeliski et al., 2008) 

min
χ

J (χ)=defηJ c(χ)+ (1 − η)J s(χ), (22)  

where J c(χ) denotes the change energy term, J s(χ) denotes the spatial 
energy term, and η ∈ (0,1) is a balancing parameter. 

3.4.1. Change energy term 
J c(χ) is often model as two Gaussian mixture models (GMMs) 

(Rother et al., 2004), one for the unchanged class and one for the 
changed class, are taken to be a full-covariance Gaussian mixture with 
K components (we set K = min

{
3CY,10− 3NS

}
in this paper for 

simplicity). In order to handle GMM concisely, we introduce an addi-
tional vector κ = {κi|i = 1,⋯,NS} with κi ∈ {1,⋯,K }, which assigns a 
unique GMM component to each superpixel. The component is either 
from the unchanged or the changed class according to χi = 0 or 1. With 
the GMM, the change energy term J c(χ) is defined as 

J c(χ) = min
κ

∑NS

i=1
φc(χi, κi, θ,Δi), (23)  

where φc(χi, κi, θ,Δi) = − logp(Δi|χi, κi, θ) − logπ(χi ,κi) and p(⋅) is a Gaussian 
probability distribution, and π(⋅) is the mixture weighting coefficient, 
then we have 

φc(χi, κi, θ,Δi) = − logπ(χi ,κi) +
1
2

logdetΣ(χi ,κi)

+
1
2

(
Δi − μ(χi ,κi)

)T
Σ− 1
(χi ,κi)

(
Δi − μ(χi ,κi)

)
, (24)  

and the parameter θ of the model is 

θ =
{

π(χ,κ), μ(χ,κ),Σ(χ,κ)

⃒
⃒
⃒χ = 0, 1; κ = 1,⋯,K

}
. (25)  

That is the weights π, means μ and covariances Σ of the 2K Gaussian 
components for the distributions of unchanged and changed classes. For 
a given GMM component κ, for example, in the unchanged class, the 
subset of superpixels S (0, κ) = {Δi|χi = 0, κi = κ} is defined. Then the 
parameter in θ can be estimates as: π(0,κ) = |S (0, κ) |/

∑K
κ=1|S (0, κ) |, 

and the mean μ(0,κ) and covariance Σ(0,κ) are estimated in standard 
fashion as the sample mean and covariance of superpixels in S (0, κ). 

3.4.2. Spatial energy term 
An R-adjacency neighbor system is constructed for J s(χ), that is, if 

two superpixels (located in Λi and Λj) intersect or the distance between 
their center points is less than R, these two superpixels are marked to be 
the R-adjacency neighbors of each other denoted as i ∈ N R

j (or j ∈ N R
i ). 

As the size of each superpixel generated by SLIC is around MN/NS, we 
set R = 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
MN/NS

√
for simplicity. 

Instead of using the commonly used spatial smoothness term built on 
the DI, we construct a novel spatial energy term J s(χ), which not only 
takes into account the spatial information of DI but also the similarity 
information of the original pre- and post-event images. It is defined as 

J s(χ) =
∑NS

i=1

∑

j∈N R
i

φs
(
χi, χj

)
δ
(
χi − χj

)

d
(
Λi,Λj

) , (26)  

where δ(⋅) is the function defined as δ(x) = 1 if x ∕= 0 and δ(x) = 0 if 
x = 0, and d

(
Λi,Λj

)
is the Euclidean spatial distance between two 

superpixels. The function φs

(
χi, χj

)
is defined as 

φs
(
χi, χj

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(

−
dx

i,j

2σ2
1

)

exp
(

−
dy

i,j

2σ2
2

)

, if dx
i,j⩽σ2

1, d
y
i,j⩽σ2

2

exp
(dx

i,j

2σ2
1
− 1
)

exp
(

−
dy

i,j

2σ2
2

)

, if dx
i,j⩽σ2

1, d
y
i,j > σ2

2

exp
(

−
dx

i,j

2σ2
1

)

exp
(dy

i,j

2σ2
2
− 1
)

, if dx
i,j > σ2

1, d
y
i,j⩽σ2

2

exp( − 1), if dx
i,j > σ2

1, d
y
i,j > σ2

2

, (27)  

where dx
i,j =

⃦
⃦Xi − Xj

⃦
⃦2

2, d
y
i,j =

⃦
⃦Yi − Yj

⃦
⃦2

2 represent the feature distances 
between superpixels in the pre- and post-event images, respectively. 

σ2
1 =

∑NS
i=1

∑
j∈N R

i
dx

i,j
∑NS

i=1|N
R
i |

, σ2
2 =

∑NS
i=1

∑
j∈N R

i
dy

i,j
∑NS

i=1|N
R
i |

are the normalization parameters 

that represent the average feature distances. 
From this spatial energy term in (26) and (27), we can find that it 

contains four cases: 1) when Xi and Xj,Yi and Yj are similar (i.e., dx
i,j and 

dy
i,j are very small), then the probability that labels of the i-th superpixel 

χi and j-th superpixel χj are the same should be high. And as dx
i,j and dx

i,j 

decrease, the probability of χi = χj increases. Then φs

(
χi, χj

)
gives a 

greater penalty for the discontinuity of χi ∕= χj under this case. 2) when 
Xi and Xj are similar and Yi and Yj are not similar (that is dx

i,j is small and 
dy

i,j is large), then the probability that labels of χi and χj are the same 
should be low. And as dx

i,j decreases and dy
i,j increases, the probability of 

χi = χj decreases. Then φs

(
χi, χj

)
gives a smaller penalty for the 

discontinuity of χi ∕= χj under this case. 3) when Xi and Xj are not 
similar and Yi and Yj are similar (that is dx

i,j is large and dy
i,j is small), 

similar to the second case, φs

(
χi, χj

)
gives a small penalty for the 

discontinuity of χi ∕= χj under this case. 4) when Xi and Xj,Yi and Yj are 
not similar (that is dx

i,j and dy
i,j are large), it means that the i-th superpixel 

and j-th superpixel are not closely related to each other, that is, the 

relationship between their labels is also ambiguous. Then φs

(
χi, χj

)

gives a median discontinuity penalty for this case. 

3.4.3. Graph cut 
With defined change energy term J c(χ) in (23) and spatial energy 

term J c(χ) in (27), the energy minimization problem of (22) can be 
solved by using the min-cut/max-flow algorithm (Boykov and Kolmo-
gorov, 2004). 

The iterative framework for the GMM based MRF segmentation 
problem is summarized in Table 4 (Algorithm 3). The initial χ is ob-
tained by using the Otsu thresholding method (Otsu, 1979) on the DI 
calculated by (21). Step 1 is completed directly by a simple enumeration 
of the κi values (from 1 to K ) for each superpixel. Step 2 is a process of 
estimating a set of Gaussian parameters θ, as previously described. Step 
3 is completed by using the graph cut method proposed in Boykov and 
Kolmogorov (2004). 

Once the final χ is assigned, we can obtain the binary CM as 

CM(m, n) = χi, (m, n) ∈ Λi. (28) 

The overall framework of the proposed graph based image regression 
and MRF segmentation method for MCD problem is summarized in 
Table 5 (called (H) GIR-MRF for short, with H standing for the hyper-
graph based local constraint), which mainly contains four processes: 
preprocessing, structured graph learning (Algorithm 1), image regres-
sion (Algorithm 2), and MRF segmentation (Algorithm 3). 
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4. Experiments and discussions 

In this section, experiments are conducted to evaluate the perfor-
mance of the proposed (H) GIR-MRF. The illustration of data sets is 
firstly presented. Then the regression performance and CD performance 
are demonstrated. Following that, some detailed discussions about the 
parameters and computational complexity are made. 

4.1. Data sets, evaluation metrics and parameters setting 

Six heterogeneous data sets are presented to evaluate the propose 
method as listed in Table 6. These data sets contain different types of 
multimodalities: multisensor optical images (same sensor type but with 
different sensors, e.g., #1 to #4) and multisource images (different 
sensor types, e.g., #5 and #6), provide different resolutions (varying 
from 0.52 to 30 m), cover different image sizes (varying from 300 to 
2000 pixels in width or length), and reflecting different types of events 
(such as flooding, fire, and construction), which can evaluate the 
robustness of the proposed method in different CD conditions. 

To evaluate the performance of DI generated by the proposed 
method, the empirical receiver operating characteristics (ROC) curve is 
plotted, and the corresponding area under the curve (AUC) is used as the 
quantitative criterion. To assess the final CM generated by (H) GIR-MRF, 
three quantitative evaluation indices, overall accuracy (OA), Kappa 
coefficient (Kc) and F1 score (F1) are adopted as metrics. 

For all the experiments of (H) GIR-MRF, we choose the penalty 
function g(ε) = ‖ε‖2

F for Algorithm 1 and Algorithm 2; set NS = 104 for 
the superpixel segmentation; fix β = 1, μ1 = μ2 = 0.4,Niter = 10, ξ0 =

0.01 for Algorithm 1 and Algorithm 2; set λ = 0.01 for Algorithm 2; and 
set η = 0.025 (except η = 0.05 for Dataset #1), Niter = 5 for Algorithm 3. 
At the same time, since the initialization of GMM in the Algorithm 3 
involves the use of kmeans clustering, which is randomized, we repeated 
Algorithm 3 fifty times to obtain the average segmentation performance. 

4.2. Image regression performance of GIR-MRF 

In the first experiment, we test GIR-MRF on the Datasets #1 and #2 
to demonstrate the effectiveness of structured graph based image 
regression. Both Datasets #1 and #2 contain one pre-event image and 
two post-event images, as shown in Fig. 4(a)-(c). In Dataset #1, we 
denote the two NIR band images acquired in September 1995 and July 

1996 as X̃
t1
NIR and X̃

t2
NIR, respectively, and the optical image acquired in 

July 1996 as Ỹ
t2
opt. Similarly, in Dataset #2, we denote the two multi-

spectral images acquired by Landsat-5 in August 2011 and September 

2011 as X̃
t1
L5 and X̃

t2
L5, respectively, and the multispectral image acquired 

by the Advanced Land Image (ALI) from the Earth Observing (EO-1) 

mission in September 2011 as Ỹ
t2
ALI. 

We translate the X̃
t1
NIR, X̃

t2
NIR and X̃

t1
L5, X̃

t2
L5 to the domains of Ỹ

t2
opt and 

Ỹ
t2
ALI to obtain the regression images of Z̃

t1
NIR, Z̃

t2
NIR and Z̃

t1
L5, Z̃

t2
L5, respec-

tively, as shown in Figs. 4(d)-(e). By comparing Figs. 4(c) and 4(e), we 

can find that the structures of Z̃
t2
NIR and Ỹ

t2
opt, Z̃

t2
L5 and Ỹ

t2
ALI are consistent, 

i.e., the learned graphs G can well represent the structures of X̃
t2
NIR and 

X̃
t2
L5, and be well conformed by the Ỹ

t2
opt and Ỹ

t2
ALI, showing that the 

regression images of Z̃
t2
NIR and Z̃

t2
L5 are very similar to the target domain 

images of Ỹ
t2
opt and Ỹ

t2
ALI, respectively. On the other hand, by comparing 

Figs. 4(c) and 4(d), we can see that the structure consistency between 

images (X̃
t1
NIR and Ỹ

t2
opt, X̃

t1
L5 and Ỹ

t2
ALI) is no longer maintained in the 

changed areas, showing that the regression images of Z̃
t1
NIR and Z̃

t1
L5 are 

very different from the target domain images of Ỹ
t2
opt and Ỹ

t2
ALI in the 

region of changes, respectively. Fig. 4(f) shows the DIs generated by 

GIR-MRF with the pre-event X̃
t1
NIR, X̃

t1
L5 and post-event Ỹ

t2
opt, Ỹ

t2
ALI , 

respectively. It can be found that the DI can well measure the change 
level, showing the ability to detect changed areas. 

4.3. CM performance of (H) GIR-MRF 

To verify the effectiveness of the proposed method, we first compare 

Table 4 
Implementation steps of Algorithm 3.  

Algorithm 3. GMM based MRF segmentation. 

Input: The matrices of Δ, X and Y, parameter η > 0.  
Initialize: Calculate χ by Otsu thresholding method.  

Initialize κ by using kmeans clustering on χ .  
Estimate the Gaussian parameters θ.  

Repeat: 
1: Assign GMM component to each superpixel: 

κ(t+1)
i = argmin

κi
φc

(
χ(t)i , κi, θ(t) ,Δi

)
.  

2: Estimate the Gaussian parameters θ(t+1) with κ(t+1) and χ (t) .  

3: Use graph cut to solve problem of Eq. (22) with κ(t+1) and θ(t+1):  

χ (t+1) = argmin
χ

J(χ).  
Until stopping criterion is met. 
Output: The label set χ .   

Table 5 
Framework of (H) GIR-MRF.  

(H) GIR-MRF. 

Input: Images of X̃ and Ỹ, parameters of NS, β, λ, and η.  
Preprocessing: 

Implement the (modified) SLIC on X̃ to obtain Λ.  
Extract the features to obtain X and Y.  

Structured graph leaning: 
Compute the probability matrix W by using Algorithm 1.  

Construct the hypergraph Gh if necessary.  
Image regression: 

Construct the graph/hypergraph Laplacian matrix L.  
Compute the changed feature matrix Δ by using Algorithm 2.  

MRF segmentation: 
Compute the label set χ by using Algorithm 3.  
Compute the binary change map with Eq. (28).  

Table 6 
Description of the six heterogeneous data sets.  

Dataset Sensor (or modality) Size (pixels) Date Location Event (& Spatial resolution) 

#1 Landsat-5/Google Earth 300× 412× 1(3) Sept. 1995 - July 1996 Sardinia, Italy Lake expansion (30 m.) 
#2 Landsat-5/EO-1 ALI 1534× 808× 7(10) Aug. 2011 - Sept. 2011 Texas, USA Forest fire (30 m.) 
#3 Pleiades/WorldView2 2000× 2000× 3(3) May 2012 - July 2013 Toulouse, France Construction (0.52 m.) 
#4 Spot/NDVI 990× 554× 3(1) 1999–2000 Gloucester, England Flooding (≈ 25m.)  
#5 Radarsat-2/Google Earth 593× 921× 1(3) June 2008 - Sept. 2012 Shuguang Village, China Building construction (8 m.) 
#6 Landsat-8/Sentinel-1A 875× 500× 11(3) Jan. 2017 - Feb. 2017 Sutter County, USA Flooding (≈ 15m.)   
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(H) GIR-MRF with the following recently proposed methods.  

1) M3CD (Touati et al., 2019a): The Markov model for multimodal 
change detection (M3CD) is relying on an observation field built up 
from a pixel pairwise modeling on heterogeneous image pair, which 
estimates the likelihood model parameters by the standard iterative 
conditional estimation framework.  

2) NPSG (Sun et al., 2021a): The nonlocal patch similarity graph based 
method (NPSG) constructs KNN graph for each image, and then 
compares the graphs in the same domain to measure the change level 
by graph mapping.  

3) ALSC (Lei et al., 2020): The adaptive local structure consistency 
based method (ALSC) learns an adaptive KNN graph representing the 
local structure for each patch, and then projects this graph to the 
domain of the other image to detect the changes. 

4) FPMS (Mignotte, 2020): The fractal projection and Markovian seg-
mentation based method (FPMS) project the pre-event image to the 
domain of post-event image by fractal projection, which contains a 
fractal encoding step and a fractal decoding step. Then, the CM is 
obtained by a MRF segmentation model.  

5) PSGM (Sun et al., 2020): The patch self-expression graph based 
method (PSGM) learns an sparse graph representing the global 

Fig. 4. Regression images of GIR-MRF on Datasets #1 and #2. In the top row, from left to right are: (a1) pre-event image X̃
t1
NIR; (b1) post-event image X̃

t2
NIR; (c1) post- 

event image Ỹ
t2
opt; (d1) regression image Z̃

t1
NIR; (e1) regression image X̃

t2
NIR; (f1) DI generated by GIR-MRF with X̃

t1
NIR and Ỹ

t2
opt; (g1) the ground truth of Dataset #1. In 

the bottom row, from left to right are: (a2) pre-event image X̃
t1
L5; (b2) post-event image X̃

t2
L5; (c2) post-event image Ỹ

t2
ALI; (d2) regression image Z̃

t1
L5; (e2) regression 

image Z̃
t2
L5; (f2) DI generated by GIR-MRF with X̃

t1
L5 and Ỹ

t2
ALI; (g2) the ground truth of Dataset #2. 

Fig. 5. DI of HGIR-MRF and binary CMs of different methods on heterogeneous data sets. From top to bottom, they correspond to Datasets #3 to #6, respectively. 
From left to right are: (a) pre-event image; (b) post-event image; (c) regression image of HGIR-MRF; (d) DI of HGIR-MRF; (e) binary CM of M3CD; (f) binary CM of 
NPSG; (g) binary CM of ALSC; (h) binary CM of FPMS; (i) binary CM of PSGM; (j) binary CM of HGIR-MRF; (k) the ground truth. In the binary CM, White: true 
positives (TP); Red: false positives (FP); Black: true negatives (TN); Green: false negatives (FN). 
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structure for each image, and then complete the image regression 
and calculate the DI by graph projection. 

Fig. 5(c) shows the regression image of HGIR-MRF by transforming 
the pre-event image to the domain of post-event image. Obviously, we 
can see that the regression image retains the structural properties of the 
pre-event image, while having similar statistical properties to the post- 
event image, i.e., they can be directly compared. Fig. 5(d) shows the 
DIs of HGIR-MRF computed by (21), and Fig. 6 plots the corresponding 
ROC curves. As can be seen in Figs. 5(d) and 6, the DIs are able to 
highlight the changes very well, which demonstrates the effectiveness of 
Algorithm 1 and Algorithm 2 in learning the structured graph and 
transforming image with the structure consistency, respectively. It can 
also be seen from Fig. 5(d) that the generated DIs are sparse, so it is 
possible to obtain a satisfactory CD result by directly segmenting the DI 
with a simple thresholding method (such as the Otsu), which is also 
confirmed by the ROC curves in Fig. 6. The AUC of ROC curves on 
Datasets #1 to #6 are 0.892, 0.968, 0.787, 0.944, 0.970, and 0.902, 
respectively. 

Figs. 5(e)-(j) show the binary CMs obtained by different methods. 
Intuitively, the CMs generated by HGIR-MRF are more consistent with 
the ground truth with relatively small false negatives (FN) and false 
positives (FP). To be specific, there are many small discontinuous error 
detections in NPSG, ALSC and PSGM, caused by their limited robustness 
to the noise and changed pixels. On the other hand, there are some 
continuous error detections in M3CD, especially on Dataset #6, where 
the method fails to detect real changes. The quantitative evaluation 
results of these CMs are listed in Table 7, in which the highest scores are 
highlighted in bold. It can be seen that the (H) GIR-MRF achieves good 
results on all data sets (optimal or suboptimal). At the same time, by 
comparing GIR-MRF and HGIR-MRF, we can find that the HGIR-MRF 
can yield an improvement on CD performance in general, which 
proves the superiority of hypergraph Gh by preserving the high-order 
neighborhood relations instead of pairwise ones of graph G. On the 
whole, the (H) GIR-MRF can suppress the false alarms and reduce the 
missed detections, simultaneously. This is mainly due to the following 
advantages of (H) GIR-MRF: 1) it incorporates both local and global 
information in the graph learning and image regression, which makes 
the structure contrast between the pre-event and post-event images 
more obvious and thus improves the quality of DI; 2) it uses a decom-
position model in the image regression to reduce the negative impact of 

changed pixels, which further improves the robustness of the algorithm; 
3) the change information (23) and spatial information (26) are com-
bined in the MRF segmentation model, thus, the CM is smoother and 
more accurate. 

Finally, to further compare the performance of the proposed method, 
the results obtained by some representative and SOTA methods (Liu 
et al., 2013, 2017, 2018, Luppino et al., 2019, 2021, Touati et al., 2019b, 
2020; Touati and Mignotte, 2017; Zhan et al., 2018; Touati et al., 2018) 
are summarized in Table 8, except for M3CD (Touati et al., 2019a), 
NPSG (Sun et al., 2021a), ALSC (Lei et al., 2020), FPMS (Mignotte, 
2020) and PSGM (Sun et al., 2020), which have been compared in Fig. 5 
and Table 7. Among these comparison methods, SCCN (Liu et al., 2018), 
LT-FL (Zhan et al., 2018), AFL-DSR (Touati et al., 2020), ACE-Net 
(Luppino et al., 2021) and X-Net (Luppino et al., 2021) are deep learning 
based methods. For the sake of fairness, we directly quote the results of 
the corresponding datasets in their original published papers in Table 8 
(because the datasets used in each paper are not identical, Table 8 is not 
aligned). From Table 8, we can find that the proposed (H) GIR-MRF can 
obtain quite competitive accuracy rate by comparing with these SOTA 
methods, and gain consistently good results across different data sets 
with an average accuracy rate of 94.5%. In addition, we believe that the 
application of the proposed method can be further expanded by 
combining it with deep learning based methods. For example, first, the 
proposed method can be associated with some deep learning based 
homogeneous CD methods after acquiring the regression image (Saha 
et al., 2019b, 2021b); second, the proposed method can provide assis-
tance to some deep image translation based heterogeneous CD methods 
(Luppino et al., 2021; Saha et al., 2019a), such as constructing high 
confidence pseudo-training sets or supporting the training process. 

4.4. Discussion 

4.4.1. Parameter analysis 
The main parameters in the (H) GIR-MRF are: the number of 

superpixels NS in the superpixel segmentation process, the balancing 
parameter β in Algorithm 1 and Algorithm 2, the sparse regularization 
parameter λ in Algorithm 2, and the balancing parameter η in Algorithm 
3, as listed in Table 5. 

Generally, the NS should be selected according to the image resolu-
tion and granularity requirement of CD task. A larger NS will make the 
segmented superpixel smaller, which improves the detection granu-
larity. Fig. 7 plots the regressed images and DIs generated by GIR-MRF 
on Dataset #6 with NS = 2500, 5000, 10000 and 20000. In order to 
fully compare these detection results, we mark some details with the 
white regions in the regressed images of Fig. 7. We can find that when NS 
is smaller, the size of the generated superpixels is larger, some details in 
the regressed image are easier to be ignored, and the block effect of the 
DI is more obvious as shown in Fig. 7. On the other hand, a large NS also 
increases the computational complexity as analyzed in the following 
subsection of complexity analysis. In this paper, we simply set NS =

10000, which can also be adjusted according to the task requirements 
and the computing environment. 

The parameter β is used to balance local structure and global struc-
ture in the graph learning and image regression processes. We rewrite 
the global structure based penalty function (squared Frobenius norm in 

our experiments) as ‖X − XW‖
2
F=
∑NS

i=1

⃦
⃦
⃦
∑NS

j=1
(
Xi − Xj

)
wj,i

⃦
⃦
⃦

2

2 
by using 

the condition of 
∑NS

j=1wj,i = 1. Then, we have the following inequality 

Fig. 6. ROC curves of HGIR-MRF generated DIs on different data sets.  
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∑NS

j=1

⃦
⃦Xi − Xj

⃦
⃦2

2wj,i −

⃦
⃦
⃦
⃦
⃦

∑NS

j=1

(
Xi − Xj

)
wj,i

⃦
⃦
⃦
⃦
⃦

2

2

=
∑NS

j=1

⃦
⃦Xi − Xj

⃦
⃦2

2wj,i −
∑NS

j=1

⃦
⃦Xi − Xj

⃦
⃦2

2w2
j,i − 2

∑NS

j=1

∑NS

t=j+1

(
Xi − Xj

)T
(Xi − Xt)wj,iwt,i

=
∑NS

j=1

⃦
⃦Xi − Xj

⃦
⃦2

2wj,i

∑NS

t=1,t∕=j

wt,i − 2
∑NS

j=1

∑NS

t=j+1

(
Xi − Xj

)T
(Xi − Xt)wj,iwt,i

=
∑NS

j=1

∑NS

t=j+1
wj,iwt,i

⃦
⃦Xj − Xt

⃦
⃦2

2

⩾0,
(29)  

where the second equality comes from the condition of 
∑NS

j=1wj,i = 1. 
Then, we can find that the local structure based penalty function is 
greater than the global structure based penalty function, i.e., 
∑NS

i=1
∑NS

j=1
⃦
⃦Xi − Xj

⃦
⃦2

2wj,i⩾‖X − XW‖
2
F . Therefore, when it uses the 

squared Frobenius norm g(⋅), we recommend setting parameter β⩾1. 
The parameter λ is used to control the column-sparsity level of Δ in 

Algorithm 2, which should be selected according to the proportion of the 
changed area. We demonstrate the sensitivity of our model to λ in Fig. 8, 
which is assessed by measuring the AUC of DI on different λ (from 10− 6 

to 1 with the ratio of 10). It illustrates that the proposed method works 
well over a wide range of λ. 

The parameter η is used to balance the change energy term J c(χ) and 
the spatial energy term J s(χ) in the MRF segmentation model (22). We 
now fix the other parameters and change the value of η to see how it 
affects the CD performance. In Fig. 9, we vary η/(1 − η) from 10− 2 to 102 

with the ratio of 101/2. We can find that: first, with the increase of η, the 

Table 7 
Quantitative measures of binary CMs on the heterogeneous data sets.  

Methods Dataset #3 Dataset #4 Dataset #5 Dataset #6 Average 

OA Kc F1 OA Kc F1 OA Kc F1 OA Kc F1 OA Kc F1 

M3CD 0.863 0.405 0.481 0.915 0.588 0.636 0.962 0.602 0.622 0.575 0.021 0.077 0.829 0.404 0.454 
NPSG 0.830 0.346 0.446 0.902 0.608 0.663 0.975 0.729 0.742 0.941 0.419 0.449 0.912 0.526 0.575 
ALSC 0.815 0.312 0.422 0.907 0.641 0.693 0.963 0.669 0.688 0.944 0.470 0.498 0.907 0.523 0.575 
FPMS 0.838 0.215 0.296 0.962 0.816 0.837 0.938 0.569 0.597 0.947 0.329 0.356 0.921 0.482 0.522 
PSGM 0.857 0.473 0.558 0.922 0.675 0.719 0.977 0.744 0.756 0.908 0.383 0.422 0.916 0.569 0.614 

GIR-MRF 0.896 0.484 0.535 0.932 0.719 0.758 0.979 0.772 0.783 0.956 0.482 0.504 0.941 0.614 0.645 
HGIR-MRF 0.901 0.501 0.549 0.936 0.728 0.769 0.982 0.779 0.790 0.959 0.489 0.511 0.945 0.624 0.655  

Table 8 
Accuracy rate of CMs generated by different methods on different data sets. The 
results of these comparison methods are reported by their original published 
papers. Italicized and underlined marks are used for deep learning based 
methods.  

Dataset #3 OA Dataset #4 OA 

HGIR-MRF 0.901 HPT(Liu et al., 2017) 0.957–0.964 
AFL-DSR(Touati et al., 2020) 0.880 HGIR-MRF 0.936 
RMN(Touati et al., 2019b) 0.877 AFL-DSR(Touati et al., 

2020) 
0.836 

NLPEM(Touati and Mignotte, 
2017) 

0.853 MDER(Liu et al., 2013) 0.818  

Dataset #5 OA Dataset #6 OA 

HGIR-MRF 0.982 HGIR-MRF 0.959 
AFL-DSR(Touati et al., 2020) 0.980 AMD-IR(Luppino et al., 2019) 0.933 
SCCN(Liu et al., 2018) 0.976 ACE-Net(Luppino et al., 2021) 0.915 
MDS(Touati et al., 2018) 0.967 X-Net(Luppino et al., 2021) 0.911 
LT-FL(Zhan et al., 2018) 0.964   
RMN(Touati et al., 2019b) 0.884    

Fig. 7. Regressed images and DIs of GIR-MRF on Dataset #6 with different NS. 
(a) NS = 2500; (b) NS = 5000; (c) NS = 10000; (d) NS = 20000. From (a) to 
(d), the corresponding AUC of DIs are 0.866, 0.881, 0.894, and 0.898, 
respectively. Fig. 8. Influence of parameter λ on the performance of (H) GIR-MRF.  
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change energy term J c(χ) plays a more important role in the MRF 
segmentation model. Therefore, as long as the quality of DI is high 
enough (easy to distinguish the changed part), the final segmentation 
effect can be guaranteed. Second, the spatial energy term J s(χ) of (26) 
not only contains the spatial information of DI but also the similarity 
information of the original pre- and post-event images, which can be 
used to assist segmentation. Therefore, even if we set η = 0.01 to reduce 
the effect of change energy term J c(χ), (H) GIR-MRF can still obtain 
satisfactory results with the spatial energy term J s(χ). Fig. 10 shows the 
final CMs generated by HGIR-MRF with η = 0.01 and η = 0.99 on 
Datasets #2 and #5, from which we can see that they are all basically 
able to detect the changing parts, showing robustness to the parameter η. 

4.4.2. Complexity analysis 
The main computational complexity of the proposed (H) GIR-MRF is 

concentrating on the processes of structured graph learning (Algorithm 
1), image regression (Algorithm 2) and MRF segmentation (Algorithm 
3). 

Algorithm 1: first, choosing ki for each vertex with the k selection 
strategy. Calculating the distances between all the superpixels requires 
O
(
3CXN2

S/2
)
, and sorting each distance vector to find the kmax nearest- 

neighbors of each vertex requires O (NSlogNS) by using some accelerated 
sorting algorithms, such as the Block sort or Tree sort. Therefore, 
calculating the adaptive k requires O

(
N2

S logNS
)
. Second, updating ε with 

(32a). Because the proximal operation has closed-form solutions for the 
g(ε) used in (H) GIR-MRF, updating ε requires O

(
3CXN2

S
)

for the matrix 
multiplication. Third, updating S with (32b). The matrix inversion of 
(

INS +
μ2
μ1

XTX
)− 1 

requires O
(
N3

S
)
, the matrix multiplication for calcu-

lating Φ(t+1) requires O
(
3CXN2

S
)
, and the matrix multiplication for 

(

INS +
μ2
μ1

XTX
)− 1

Φ(t+1) requires O
(
N3

S
)
. Then, updating S requires 

O
(
N3

S
)
. Fourth, updating W with (32c). Because the Wi update with 

closed-form solutions requires sorting the column vector Pi, which re-
quires O (NSlogNS), then updating W needs O

(
N2

S logNS
)
. Fifth, updating 

Lagrangian multipliers R1 and R2 requires O
(
3CXN2

S
)

for the matrix 
multiplication. 

Algorithm 2: similar to Algorithm 1, updating ε with (35a) requires 
O
(
3CYN2

S
)
; updating Δ with (35b) requires O (3CYNS); updating Z with 

(35c) requires O
(
N3

S
)

for matrix inversion of Ψ− 1 and O
(
3CYN2

S
)

for 
matrix multiplication of Θ(t+1)Ψ− 1; updating Lagrangian Multipliers R1 

and R2 requires O
(
3CYN2

S
)

for the matrix multiplication. 
Algorithm 3: step 1, assigning GMM component to each superpixel 

requires O

(
(3CY)

2
K NS

)
; step 2, learning Gaussian parameters re-

quires O (6CYK NS); step 3, the graph-cut is completed by using min- 
cut/max-flow algorithm (Boykov and Kolmogorov, 2004), whose theo-
retical complexity and empirical complexity have been studied in Boy-
kov and Kolmogorov (2004), that is, the theoretical complexity of the 
worst-case is O

(
2NRN2

S
)

with NR representing the number of edges in 
the R-adjacency neighbor system. However, its empirical complexity is 
relatively low on typical problem instances in vision, as shown in the 
examples of Boykov and Kolmogorov (2004) and the following Table 9 
in this paper. 

Although the complexity of the proposed (H) GIR-MRF is very high in 
the abovementioned theoretical analysis, which requires O

(
N3

S
)

for each 
iteration in Algorithm 1 and Algorithm 2, some acceleration strategies 
are available to improve the efficiency of the algorithm. First, the 
objective function (7) of Algorithm 1 can be written in the form of a 
column-wise optimization of Wi, that is, with the columnwise inde-
pendence property of W, problem (7) can be accelerated by adopting the 
columnwisely parallel solution. Second, matrix inversion of 
(

INS +
μ2
μ1

XTX
)− 1 

in Algorithm 1 can be simplified by the Sher-

man–Morrison–Woodbury formula as 
(

INS +
μ2

μ1
XT X

)− 1

= INS − XT
(

μ1

μ2
I3CX + XXT

)− 1

X, (30)  

and calculated off-line in advance. Third, for the matrix inversion of Ψ− 1 

in the Z update of (35c), as it is fixed in the iteration framework, we can 
also calculate it off-line in advance. However, when NS is very large, it 
may still be time-consuming to compute Ψ− 1. Because the matrix Ψ of 
(36b) is a sparse, real, symmetric and positive definite matrix, the linear 
system of Z(t+1)Ψ = Θ(t+1) can be solved efficiently by using iterative 
solvers, such as the conjugate gradient (CG) method. In addition, some 
preconditioners can also be used to accelerate CG method, such as 
Jacobi, incomplete Cholesky (IC), successive overrelaxation (SOR). 

Table 9 reports the computational time of each process of (H) GIR- 
MRF with different NS on Datasets #1 and #3. The algorithm is per-
formed in MATLAB 2016a running on a Windows Laptop with Intel Core 

Fig. 9. Influence of parameter η on the performance of (H) GIR-MRF.  

Fig. 10. Final CMs generated by HGIR-MRF with different η on Datasets #2 and 
#5: (a) Dataset #2 with η = 0.01; (b) Dataset #2 with η = 0.99; (c) Dataset #5 
with η = 0.01; (d) Dataset #5 with η = 0.99. 
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i9-10980HK CPU and 64 GB of RAM. In Table 9, tA0 to tA3 represent the 
computational time spent in the preprocessing (superpixel segmentation 
and feature extraction), graph leaning (Algorithm 1), image regression 
(Algorithm 2) and MRF segmentation (Algorithm 3), respectively. From 
Table 9, we can find that: first, it is the number of superpixels rather than 
the size of the image that mainly determines the running time; second, 
Algorithms 1 and 2 are the most time-consuming processes in (H) GIR- 
MRF, which is in accordance with the theoretical analysis. 

5. Conclusion 

In this work, we proposed a structured graph learning based method 
to address the problem of change detection in multimodal remote 
sensing. In particular, it builds connections between the heterogeneous 
images through the inherent structure consistency. It first learns a robust 
graph to capture the local and global structure information of image, 
and then projects the graph to domain of the other image to complete the 
image regression, which contains a change prior based sparse constraint 
and two types of structure constraints: one corresponding to the global 
self-expression property and the other corresponding to the local simi-
larity structure. Once the graph based image regression is performed and 
that a superpixel based DI is then binarized by a MRF segmentation 
model, which combines the change information and spatial information 
to improve the detection accuracy. Extensive experiments show the 
effectiveness of the proposed method under different CD conditions. We 
also hope that the proposed method will inspire the research on 

heterogeneous CD, especially as deep learning based methods are to be 
used systematically. 

Due to the computational complexity, we only consider the forward 
transformation in this paper, i.e., translating the pre-event image to the 
domain of post-event image. We can also complete the backward 
transformation by translating the post-event image to the domain of pre- 
event image. Our future work is to improve the computation efficiency 
and design an effective fusion strategy to fuse the forward and backward 
transformations, thus improving the CD performance. 
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Appendix A. Optimization of graph learning model 

Problem (9) can be efficiently solved by using the alternating direction method of multipliers (ADMM). First, we introduce an auxiliary variable 
S ∈ RNS×NS , and rewrite the model (9) as the minimization of 

L (ε,S,W,R1,R2)=Tr
(
WT Dx)+

⃦
⃦
⃦Wα1

2

⃦
⃦
⃦

2

F
+βg(ε)+Tr

(
RT

1 (W − S)
)
+Tr

(
RT

2 (X − XS − ε)
)
+

μ1

2
‖W − S‖2

F+
μ2

2
‖X − XS − ε‖2

Fs.t. W⩾0, WT 1NS = 1NS , (31)  

where R1 ∈ RNS×NS and R2 ∈ R3CX×NS are two Lagrangian multipliers, and μ1, μ2 > 0 are two penalty parameters. Then the alternating direction 
method (ADM) can be used to solve the minimization of (31) by iteratively updating one variable at a time and fixing the others. ADM separates (31) 

into ε-subproblem, S-subproblem and W-subproblem. Given the current points 
(

ε(t), S(t),W(t),R(t)
1 ,R(t)

2

)
at the t-th iteration, the update scheme is as 

followings (the detailed derivation is in the supplementary document) 

ε(t+1) = prox β
μ2

g

(

X − XS(t) +
R(t)

2

μ2

)

, (32a)  

S(t+1) =

(

INS +
μ2

μ1
XT X

)− 1

Φ(t+1), (32b)  

w,i(t+1)
(j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P,i(t+1)
(ki+1) − P,i(t+1)

(j)

kiP
,i(t+1)
(ki+1) −

∑ki

h=1
P,i(t+1)
(h)

, j⩽ki

0, j > ki

, (32c)  

R(t+1)
1 = R(t)

1 + μ1
(
W(t+1) − S(t+1) ), (32d) 

Table 9 
Computational time (seconds) of each process of GIR-MRF.  

NS  Dataset #1 (with size 300× 412)  Dataset #3 (with size 2000× 2000)  

tA0  tA1  tA2  tA3  ttotal  tA0  tA1  tA2  tA3  ttotal  

5000 0.61 11.32 4.41 4.15 22.65 3.01 11.68 4.63 5.05 25.76 
10000 1.32 67.20 24.52 15.07 110.33 3.49 66.69 26.66 16.42 116.09 
20000 2.65 428.11 155.98 34.90 625.81 4.90 451.55 181.87 36.44 679.51  
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R(t+1)
2 = R(t)

2 + μ2
(
X − XS(t+1) − ε(t+1) ), (32e)  

where Φ(t+1) = W(t) +
μ2XT(X− ε(t+1) )

μ1
+

R(t)
1 +XTR(t)

2
μ1

,P(t+1)
i = Dx

i + R(t)
1i − μ1S(t+1)

i . We sort P(t+1)
i in ascending order as P,i(t+1)

(1) ,P,i(t+1)
(2) ,⋯,P,i(t+1)

(NS)
, and then (j) of 

P,i(t+1)
(j) represents the position of the j-th smallest value in P(t+1)

i . The proximal operator in update of ε(t+1) is defined as 

proxλg(Y) := argmin
X

g(X)+
1
2λ
‖X − Y‖

2
F . (33)  

The closed-form solutions for different g(⋅) is given in the supplementary document. 

Appendix B. Optimization of image regression model 

The corresponding augmented Lagrangian function of (20) is 

L (ε,Z,Δ,R1,R2) = 2Tr
(
ZLZT)+ βg(ε) + λ‖Δ‖2,1 + Tr

(
RT

1 (Z − Y − Δ)
)
+ Tr

(
RT

2 (Z − ZW − ε)
)
+

μ1

2
‖Z − Y − Δ‖

2
F+

μ2

2
‖Z − ZW − ε‖2

F , (34)  

where R1,R2 ∈ R3CY×NS are two Lagrangian multipliers, and μ1, μ2 > 0 are two penalty parameters. Then the ADM can be used to solve the mini-
mization of (34) by separating it into ε-subproblem, Z-subproblem and Δ-subproblem, which is similar as the procedure of solving problem (31) in 

Algorithm 1. Given the current points 
(

ε(t),Z(t),Δ(t),R(t)
1 ,R(t)

2

)
at the t-th iteration, the update scheme is 

ε(t+1) = prox β
μ2

g

(

Z(t) − Z(t)W +
R(t)

2

μ2

)

, (35a)  

Δ(t+1) = prox λ
μ1
‖⋅‖2,1

(

Z(t) − Y +
R(t)

1

μ1

)

, (35b)  

Z(t+1) = Θ(t+1)Ψ− 1, (35c)  

R(t+1)
1 = R(t)

1 + μ1
(
Z(t+1) − Y − Δ(t+1) ), (35d)  

R(t+1)
2 = R(t)

2 + μ2
(
Z(t+1) − Z(t+1)W − ε(t+1) ), (35e)  

where the proximal operator in update of ε(t+1) and Δ(t+1) is defined as (33), and their closed-form solutions for different g(⋅) is given in the sup-
plementary document. The matrices of Θ(t+1) and Ψ in Z(t+1) update is defined as 

Θ(t+1) =
(

μ2ε(t+1) − R(t)
2

)
(INS − W)

T
+ μ1

(
Y + Δ(t+1) ) − R(t)

1 , (36a)  

Ψ = μ1INS + μ2(INS − W)(INS − W)
T
+ 4L. (36b)  

Appendix C. Supplementary material 

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.isprsjprs.2022.01.004. 
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