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Graph Signal Processing for Heterogeneous
Change Detection
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Abstract— This article provides a new strategy for the hetero-
geneous change detection (HCD) problem: solving HCD from
the perspective of graph signal processing (GSP). We construct
a graph to represent the structure of each image and treat
each image as a graph signal defined on the graph. In this
way, we convert the HCD into a GSP problem: a comparison
of the responses of signals on systems defined on the graphs,
which attempts to find structural differences and signal differ-
ences due to the changes between heterogeneous images. First,
we analyze the GSP for HCD from the vertex domain. We show
that, once a region has changed, the local structure of the
image changes, i.e., the connectivity of the vertex containing
this region changes. Therefore, we can compare the output
signals of the same input graph signal passing through filters
defined on the two graphs to detect changes. We analyze the
negative effects of changing regions on the change detection
results from the viewpoint of signal propagation, and we also
design different filters from the vertex domain to explore the
high-order neighborhood information hidden in original graphs.
Second, we analyze the GSP for HCD from the spectral domain.
We explore the spectral properties of different images on the
same graph and show that their spectra exhibit commonalities
and dissimilarities. Specifically, it is the change that leads to
the dissimilarities of their spectra. With the help of graph
spectral analysis, we propose a regression model for the HCD,
which decomposes the source signal into the regressed signal
and the changed signal, and constrains the spectral property
of the regressed signal. Experiments conducted on seven real
datasets show the effectiveness of the vertex domain filtering-
and spectral domain analysis-based HCD methods. Source code
is made available at https://github.com/yulisun/HCD-GSP.

Index Terms— Graph signal processing (GSP), graph, het-
erogeneous change detection (HCD), image regression, spectral
domain, structure, vertex domain.

NOMENCLATURE

X̂ and Ŷ Preevent and postevent images.
X and Y Feature matrices of X̂ and Ŷ.
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�X and X̆ Frequency representations of X.
Xi i th row of matrix X.
xi, j i th row and j th column element of X.
Gt1 = {Vt1, Et1, Wt1} KNN graph of the preevent image.
Gt2 = {Vt2, Et2, Wt2} KNN graph of the postevent image.
At1 and At2 Adjacent matrices.
Dt1 and Dt2 Degree matrices.
Wt1 and Wt2 Weight matrices.
Pt1 and Pt2 Random walk matrices.
Lt1 and Lt2 Laplacian matrices.
U and V Orthonormal matrices of eigenvectors.
� and � Diagonal matrices of eigenvalues.
IN N × N identity matrix.
1N N × 1 column vector of ones.

I. INTRODUCTION

AS A VERY important task in remote sensing, change
detection (CD) aims at identifying the changes on Earth’s

surface by comparing multitemporal remote sensing images
acquired over the same geographical area but at different
times [1]. It has a wide range of real-world applications,
including environmental monitoring, land management, urban
development, and damage assessment [2], [3], [4]. Tradition-
ally, most research in CD has been devoted to homogeneous
CD, which performs CD with images acquired from the
same sensor [5], [6], [7]. With the rapid development of
high-resolution imaging techniques, increasingly more image
data (such as synthetic aperture radar (SAR) images and
optical images) from different types of sensors can be collected
conveniently, creating even more research opportunities for
detecting and monitoring subtle changes of the Earth surface
at a finer scale [8], [9].

In recent years, heterogeneous CD (HCD) has emerged,
starting to gain increasing attention. It addresses the problem
of performing CD with images coming from different sources,
such as different types of sensors (such as an SAR image and
an optical image), i.e., multitemporal CD with heterogeneous
remote sensing images. There are several reasons that account
for this trend.

First, as each of these sensors captures different aspects
and characteristics of the Earth’s surface, HCD makes simul-
taneous use of multiple complementary data for detecting
changes, overcoming the limitation of classical CD methods
in relying on the availability of homogeneous data acquired by
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the same sensor, which may not be available sometimes due
to the environmental conditions, such as bad light or weather
conditions (e.g., clouds, fogs, and rain). Second, HCD can
improve the temporal resolution when monitoring long-term
change evolution by inserting heterogeneous data [10]. Finally,
HCD can shorten the response time of change analysis in case
of sudden events (e.g., floods and earthquakes) by using the
first available images to assess the damages instead of waiting
for the arrival of the next homogeneous images [11].

In classical CD, we can directly compare the given images
(denoted as x and y) to calculate the difference image (DI),
such as via image difference in the case of optical images [12]
and image ratioing (or logarithmic ratioing) in the case of
SAR images [13]. However, the multitemporal images in HCD
are acquired by different sensors and show quite different
image characteristics [14]. The common assumption that the
multitemporal images measure the same quantities and show
similar statistical behavior is generally violated in HCD. As a
result, most existing CD techniques do not directly apply to
HCD. Therefore, the essential issue in HCD is how to make
the “incomparable” images “comparable.” To achieve this,
a common solution is to transform the heterogeneous images
into a common domain Z as M1 : x → z and M2 : y → z�.

A. Related Work

With the paradigm DI = M1(x) � M2(y), HCD methods
are proposed with different types of M1 and M2, where �
denotes the difference operator. Generally, we can classify
algorithms differently around the conditions, techniques, and
domains of the transformation: according to whether labeled
samples are required in the transformation process, HCD can
be divided into supervised [15], [16], semisupervised [17],
[18], and unsupervised [19], [20], [21], [22]; according to
the methods used for M1 and M2, HCD can be classified
as traditional machine learning-based [15], [23], [24] and
deep learning-based [25], [26], [27]; and according to the
transformed common domain Z , HCD can also be divided
into classification comparison-based, image regression-based,
and feature transformation-based.

1) The classification comparison-based methods first trans-
form the images into a common category space by
taking M1 and M2 as classifiers and then compare
the classification results to detect changes, such as the
postclassification comparison method [16], the com-
pound classification method [28], [29], and the classified
adversarial network-based method [30]. The advantages
of such methods are that they are intuitive, robust to
coregistration errors due to the objectwise comparison,
and able to indicate the kind of change. However, clas-
sification comparison-based methods are supervised or
semisupervised in order to train the accurate classifiers
of M1 and M2, and they may suffer from the risk of
accumulation of classification errors.

2) The image regression methods first transform one image
(e.g., x) to the domain of the other image (e.g., y) by
setting one transformation function (M1) to the identity
matrix and the other (M2) to the image translation

function and, thereby, convert the issue into the homo-
geneous CD. For example, some traditional methods
construct the pixel-to-pixel mappings between hetero-
geneous images, such as the homogeneous pixel trans-
formation (HPT) method [15], the affinity matrix-based
regression method [23], and the image structure-based
methods [31], [32]. Some deep translation methods have
also been proposed, such as the image style transfer
(IST)-based method [25], and the cycle-consistent gen-
erative adversarial network (Cycle-GAN)-based HCD
methods [33], [34], [35].

3) The feature transformation methods transform the
images into a common constructed or latent learned
feature space by taking M1 and M2 as feature extrac-
tion operators. For example, some traditional meth-
ods manually construct the similarity measures that
are assumed to be imaging-modality-invariant to cal-
culate the changes, such as the copula theory-based
Kullback–Leibler (KL) distance [36], the manifold
learning method [24], the kernel canonical correlation
analysis (kCCA) method [37], and the nonlocal pixel
pairwise-based method [38]. Some deep learning meth-
ods compare the images in the latent feature spaces
that are learned by the deep neural networks, such
as the symmetric convolutional coupling network [39],
the spatially self-paced convolutional network [40],
the self-supervised learning with pseudo-Siamese net-
works [20], [21], the probabilistic model based on the
bipartite convolutional neural network [26], the semi-
supervised Siamese network [17], and the commonality
autoencoder-based method [27].

Although the above methods have achieved remarkable
detection results in some HCD scenes, most of them still suffer
from two main challenges.

1) First, the connections between the heterogeneous images
established by these methods are generally based on cer-
tain assumptions (e.g., some imaging-modality-invariant
assumptions in traditional methods) or trained transfor-
mations (e.g., some networks in deep learning methods).
These connections may be unstable and nonuniversal
when the HCD scene is very complex (e.g., diversity of
ground objects and difference of imaging conditions),
the noise in the image is sever (especially the speckle
noise in the SAR image), or the training samples are not
sufficient or mixed with wrong samples.

2) Second, the negative influence of the unknown changed
samples in the transformation is difficult to eliminate,
both for training the transformation functions (M1 and

M2) and completing the transformation process (x
M1−−→

z and y
M2−−→ z�). In particular, this problem is rarely

mentioned by other studies, partly for the following two
reasons.

a) This challenge is unique to HCD, i.e., it is not a
problem in the homogeneous CD that directly com-
pares images without the design of transformations.

b) The previous methods usually treat HCD as a
two-step process, transforming first and comparing
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latter, which tends to ignore the impact of the
detected changes produced by the second process
on the first transformation process. In order to
alleviate this negative impact, an iterative frame-
work that combines the two processes to perform
a coarse-to-fine detection is needed [41].

B. Motivations

The graph model can efficiently capture the structure infor-
mation of an image, and the image processing on graphs
has been proven to be effective by a large number of appli-
cations [42], [43], which has also been used in CD tasks.
In the homogeneous CD of SAR images, a pointwise graph
is constructed for the first image [44], and then, the DI is
calculated by superimposing two images on the same graph
for comparison; a pixelwise hypergraph is constructed for each
image in [45], and then, the DI is calculated by matching
each vertex and hyperedge between the two hypergraphs.
Here, the graphs (or hypergraphs) are used to incorporate the
spatial-intensity information to resist the speckle noise in SAR
images.

Recently, some graph-based HCD methods have also been
proposed [46]. An approximate local graph is constructed by
using the Nystrom extension for each image [47], and then,
the graphs are fused by minimizing the similarity between the
graphs to detect the changes. Based on the self-similarity prop-
erty, the patchwise graphs [14], [48] and the superpixelwise
graphs [31] are constructed to capture the structure of images,
and then, the graphs are compared to calculate the DI by graph
projection or used to perform image regression. In addition,
a fractal projection method has also been proposed for HCD
based on the self-similarity property [32], which projects the
preevent image to the domain of postevent image with the
fractal code of the preevent image.

From the above analysis, we can find that the graph-based
methods have two attractive features: 1) these methods are
intuitive, interpretable, and very simple, which does not require
a complex training process or any labeled samples and 2) the
graph can capture the inherent structural information of an
image, which is robust to the noise and shows the imaging-
modality-invariant property that is ideal for HCD problem.
Combining with the challenges of HCD analyzed above, two
aspects of the graph-based methods need to be considered in
focus: first, how to adequately represent the image structure
by graph; second, how to measure the structure difference
in the presence of negative influence of unknown changed
data. In addition, although the feasibility of these graph-based
methods has been experimentally verified, they have not so far
been demonstrated theoretically in depth. Furthermore, there is
no unified theoretical framework for these graph-based HCD
methods. These are exactly what this article is devoted to
exploring.

C. Contributions

In this article, we propose a new perspective for HCD, that
is, converting the HCD problem to a graph signal processing
(GSP) problem. We construct a graph for each image to

Fig. 1. Graphs and graph signals for (a) preevent image and (b) postevent
image. The structure information of the image is captured by the graph
topology that represents the similarity relationships between objects. The
image can be treated as the signal on the graph, and the graph signal values
are represented by vertical lines. Among the ten vertices in the example, the
area represented by vertex 5 has changed.

capture the structure information and then treat each image
as the signal on the graph, as shown in Fig. 1. In this way,
the changes between heterogeneous images caused by the
event will manifest themselves in two aspects: the structure
difference between graphs and the signal difference on the
graph, as illustrated in Fig. 2. Thereby, we can compare the
responses of the two signals (i.e., images) on different systems
(i.e., filters) defined on the two graphs to detect the changes
from the vertex domain and the spectral domain of GSP. The
main contributions of this article are given as follows.

1) We convert the HCD into a GSP problem and propose
two frameworks to solve the HCD by employing the
principles of GSP on the vertex domain and the spectral
domain, respectively.

2) We analyze the negative influence of changes on
the HCD from the perspective of signal propagation
and propose a vertex domain filtering-based HCD
(VDF-HCD) method that uses an iterative strategy to
alleviate this influence.

3) We analyze the spectral properties of different images on
the defined graphs and illustrate the connection between
changes in heterogeneous images and differences in their
spectral properties.

4) We propose a spectral domain analysis-based HCD
(SDA-HCD) method, which decomposes the source sig-
nal into the regressed signal and the changed signal, and
constrains the spectral property of the regressed signal.

5) We give some discussions about the proposed
VDF-HCD and SDA-HCD, and show that the proposed
methods can also be extended to other applications.

D. Outline

The remainder of this article is structured as follows.
Section II describes the related basics of GSP. Section III
describes the HCD problem from the perspective of GSP.
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Section IV introduces the VDF-HCD. Section V introduces
the SDA-HCD. Section VI gives some discussions of the pro-
posed methods. Section VII presents the experimental results.
Finally, Section VIII concludes this article and mentions future
work. For convenience, the Nomenclature lists some important
notations used in the rest of this article. One notation should
be noted: Xi represents the i th row of the matrix X in this
article, not the i th column as commonly used.

II. PRELIMINARIES

A. Vertex Filtering on Graphs

Let G = {V, E, W} be a graph, and f = [ f1, . . . , fN ]T be
the signal on the graph G; then, a graph shift operator S is
defined as a local operation that replaces a signal value at
each vertex with the linear combination of the signal values
at the neighbors of that vertex [49], [50]. Common choices
for the graph shift operator are: 1) the adjacent matrix A or
weight matrix W; 2) the random walk (diffusion) matrix P =
D−1

w W, where Dw represents the diagonal matrix with the i th
diagonal element being

�N
j=1 wi, j ; and 3) the Laplacian matrix

L = Dw −W, symmetric normalized Laplacian matrix Lsym =
D−1/2

w LD−1/2
w , or random-walk normalized Laplacian matrix

Lrw = D−1
w L.

A linear, shift-invariant system (filter) can be defined as the
polynomials in the graph shift operator S of the form [51],
[52], [53]

H (S) = h0S0 + h1S + · · · + hMSM =
M�

m=0

hmSm (1)

where S0 = I, and h0, h1, . . . , hM are system coefficients. The
output signal of the system (1) with the input signal fin is

fout = H (S)fin =
M�

m=0

hmSmfin. (2)

B. Spectral Filtering on Graphs

Different from the Fourier domain analysis for classic
signal processing, the spectral representation of graph signals
employs the eigenspectra (or simply “spectra” hereafter) of the
graph shift operator S given by [52]

S = U�U−1 (3)

where U is an orthonormal matrix of the eigenvectors uk in
its columns and � is a diagonal matrix of the corresponding
eigenvalues λk . For the undirected graph, we have S = ST and
U−1 = UT . The graph Fourier transform (GFT) �f of a graph
signal f is then defined as�f = GFT(f) = U−1f . (4)

The inverse GFT (IGFT) is defined as

f = IGFT(�f) = U�f. (5)

Consider a shift-invariant system defined in (1); the output
signal of fout of (2) can be rewritten as

fout =
M∑

m=0

hmU�mU−1fin = UH (�)U−1fin (6)

where H (�) = ∑M
m=0 hm�

m is the transfer function of the
system. Based on (6), we have f̃out = U−1fout = H (�)̃fin,
which is the spectral domain filtering of the graph signal.

C. Frequency Ordering

In GSP, the frequency is defined by the eigenvalues of
the graph shift S. Specifically, we define the eigenvalue
decompositions as L = U�U−1 and W = V�V−1, with
� = diag{λ1, λ2, . . . , λN } and � = diag{γ1, γ2, . . . , γN }
representing the eigenvalues of L and W, respectively.

Definition 1 (Spectral Ordering of the Laplacian
Matrix) [54], [55]: If we sort the spectra of Laplacian
matrix L of the graph as λ1 ≥ λ2 ≥ · · · ≥ λN , then λN

represents the lowest frequency, and λ1 represents the highest
frequency.

Definition 2 (Spectral Ordering of the Weighting
Matrix) [50], [53]: If we sort the spectra of weighting
matrix W of the graph as γ1 ≥ γ2 ≥ · · · ≥ γN , then γ1

represents the lowest frequency, and γN represents the highest
frequency.

The definitions of frequency are induced by the energy
of signal change [i.e., total variation (TV)], that is, we call
the frequency components with smaller variations as low
frequencies and call the frequency components with higher
variations as high frequencies [50]. Specifically, Definition 1
is based on the 2-Dirichlet form, i.e., a quadratic function as

TVL(f) = 1

2

�
(i, j)∈E

wi, j

�
fi − f j

�2 = fT Lf . (7)

Definition 2 is based on the 1-Dirichlet form TV on a graph
with signal f as

TVW(f) = �f − Wnormf�1 (8)

where the normalized weighting matrix Wnorm = W/γmax with
γmax = max |γk|, k = 1, . . . , N .

III. GRAPH AND HCD PROBLEM

Given two coregistered remote sensing images acquired by
different sensors over the same region at different times (i.e.,
t1 and t2), denoted as X̂ ∈ R

M×N×Cx in domain X and Ŷ ∈
R

M×N×Cy in domain Y , with pixels defined as x̂(m, n, c) and
ŷ(m, n, c), respectively, the objective of HCD is to find the
changed regions represented by a binary map (C M ∈ R

M×N )
that labels changed and unchanged pixels.

A. Graph and Graph Signal for HCD

Since the heterogeneous images show quite different appear-
ances and characteristics, directly comparing their pixel values
is meaningless. The strategy is instead to find the connections
between the topological structures of heterogeneous images.
We first construct a K -nearest neighbor (KNN) graph for each
image.

Definition 3 (KNN Graph): Given a set of data points z =
{z1, z2, . . . , zn}, a KNN graph G = {V, E, W} consists of n
vertices connected by a set of edges E and their associate
weights W, where V = {1, 2, . . . , n}, and (i, j) ∈ E if and
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Fig. 2. Two strategies for the HCD from a GSP perspective: calculating the structure difference by letting the same graph signal pass through different graph
filters (i.e., VDF-HCD) and calculating the signal difference by letting different graph signals pass through the same graph filter (i.e., SDA-HCD). (a) X on
Gt1. (b) X on Gt2. (c) Y on Gt1. (d) Y on Gt2.

only if zi is the KNN of z j or z j is the KNN of zi , and
w(i, j) is the weight for the edge (i, j) ∈ E and zero for
others.

As the scale of a pixelwise graph that sets each pixel as
a vertex is very large (e.g., an image with a size of 500 ×
500 requires 2.5 × 105 vertices), we choose the patchwise or
superpixelwise KNN graph to reduce the computational cost
while incorporating the contextual information for each vertex.

For the patchwise KNN graph Gt1 of the preevent image
X̂ [48], we first divide the image X̂ into a number of nonover-
lapped square patches with the size p × p × Cx , and then
vectorize and stack these patches into a patch group matrix
X ∈ R

N×Mx , where Mx = p2Cx and N is the total number of
patches. Then, Gt1 can be constructed by setting each patch
as a vertex with Vt1 = I, Et1 = {(i, j)|i ∈ I; j ∈ N x

i }, where
I = {1, 2, . . . , N} and N x

i = N xi
in ∪ N xi

out with

N xi
in = �

j | j ∈ I; Xi is the KNN of X j

�
N xi

out = �
j | j ∈ I; X j is the KNN of Xi

�
. (9)

For the superpixelwise KNN graph Gt1 [41], we first seg-
ment the images X̂ and Ŷ independently with the simple linear
iterative clustering (SLIC) method [56] and then combine the
segmentation maps from X̂ and Ŷ though the intersection
operator to obtain the cosegmentation map � = {�i |i ∈ I},
which consists of N cosegmented superpixels of X̂ and Ŷ,
defined as X̂i = {x̂(m, n, c)|(m, n) ∈ �i , c = 1, . . . , Cx} and
Ŷi = {ŷ(m, n, c)|(m, n) ∈ �i , c = 1, . . . , Cy}, respectively.
Then, we extract Mx features (denoted as Xi ∈ R

Mx ) for
superpixel X̂i and stack these feature vectors to obtain the
feature matrix X ∈ R

N×Mx . Following that, Gt1 can be
constructed by setting each superpixel as a vertex with Vt1 = I
and Et1 = {(i, j)|i ∈ I; j ∈ N x

i }.
For the postevent image Ŷ, we can construct the patchwise

or superpixelwise graph Gt2 in a similar way as Gt1. Thus,
the i th vertex in Gt1 and the i th vertex in Gt2 correspond to
the same geographical location.

Once the graphs (Gt1 and Gt2) are constructed to cap-
ture the structure information of the heterogeneous images,
we can obtain the corresponding graph signals of X =
{X1, X2, . . . , XN } and Y = {Y1, Y2, . . . , YN }.

B. HCD Problem From the Perspective of GSP

Once the graphs and graph signals are constructed, the
changes between heterogeneous images can be characterized
in two ways: the structure difference between the graphs of
Gt1 and Gt2, and the signal difference between X and Y on the
graphs, as illustrated in Fig. 2. However, directly comparing
Gt1, Gt2 or X, Y to detect the changes is difficult, which
will cause the leakage of heterogeneous data because they are
constructed on different domains. Alternatively, we measure
the difference by comparing the responses of the signals (i.e.,
X and Y) on systems defined on the graphs (i.e., Gt1 and Gt2).

In the GSP, each vertex diffuses its information to its
neighbors and also receives the information diffused from
other vertices. Therefore, the GSP is a very effective tool
not only for analyzing the signal but also for understanding
the structure of the graph. With X and Y representing the
graph signals, H (St1) and H (St2) denoting the graph filters
defined on the graphs of Gt1 and Gt2, respectively, we have
two strategies to measure the changes between heterogeneous
images: 1) calculating the structure difference between Gt1

and Gt2 by comparing the output signals of the same input
signal on different graph filters in the vertex domain, i.e., the
differences between H (St1)X and H (St2)X or H (St1)Y and
H (St2)Y and 2) calculating the signal difference between X
and Y by comparing the spectral properties of different signals
on the same graph filter, i.e., the difference between H (St1)X
and H (St1)Y or H (St2)X and H (St2)Y in the spectral domain,
as illustrated in Fig. 2.

IV. VERTEX DOMAIN FILTERING-BASED HCD

A. Responses of Signals on Different Systems

We first consider the output of each signal on the filter
defined on its own graph. Define the average weight matrix
as Wavg �= D−1A with D representing the degree matrix.
By taking X and H (St1) as an example, with the simplest
case of H (St1) = Wavg

t1 , we have�
Wavg

t1 X
�

i
= 1		N x

i

		 �
j∈N x

i

X j . (10)

This filter of (Wavg
t1 X)i characterizes the concentration of

information from the neighboring vertices of the understudied
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vertex Xi . Since X j is the KNN of Xi or Xi is the KNN of
X j when j ∈ N x

i , we have that X j and Xi are very similar,
and then, we have (Wavg

t1 X)i ≈ Xi . This filter of (Wavg
t1 X)i

can be regarded as an average smooth operator, as illustrated
in Fig. 3(a) and (b).

For the case of H (St1) = Pt1, we have

(Pt1X)i = 1�N
j=1 wt1

i, j

N�
j=1

wt1
i, j X j (11)

where wt1
i, j is the (i, j)th element of Wt1. Easily, we have

(Pt1X)i ≈ Xi . This filter of (Pt1X)i can be regarded as
a weighted smooth operator. By comparing (10) and (11),
we can find that Wavg

t1 X is a special case of Pt1X due to that
the adjacent matrix A can be considered as a special case of
the weight matrix W, whereby all nonzero weights are equal
to unity.

For the case of H (St1) = Lrw
t1 , we have

�
Lrw

t1 X
�

i
= 1�N

j=1 wt1
i, j

N�
j=1

wt1
i, j

�
Xi − X j

�
. (12)

Easily, we have (Lrw
t1 X)i = Xi − (Pt1X)i ≈ 0. The filter of

(Lrw
t1 X)i characterizes the differences between the signal value

on the i th vertex and the signal values on its neighboring
vertices, which can be regarded as a difference operator.

Second, we consider the output of each signal on the filter
defined on the other graph and take X and H (St2) as an
example. Similar to (10)–(12), we have�

Wavg
t2 X

�
i
= 1		N y

i

		 �
j∈N y

i

X j

(Pt2X)i = 1�N
j=1 wt2

i, j

N�
j=1

wt2
i, j X j

�
Lrw

t2 X
�

i
= 1�N

j=1 wt2
i, j

N�
j=1

wt2
i, j

�
Xi − X j

�
. (13)

Third, we compare the output signals of the same signal on
different graph filters. By taking X and H (S) = Wavg as an
example, we have

dx
i = �

Wavg
t2 X

�
i
− �Wavg

t1 X
�

i

= 1		N y
i

		 �
j �∈N y

i

X j � − 1		N x
i

		 �
j∈N x

i

X j . (14)

Intuitively, dx
i measures the difference of signal values

concentrated at the i th vertex of different systems, which is
related to the local structures of two graphs at the i th vertex.
Considering the signals of (Xi , X j ) and (Yi , Y j �) connected
by edges of Gt1 and Gt2, respectively, and assuming that the
regions represented by the j th and j �th vertices are unchanged,
then we have Xi and X j are very similar (representing the
same kind of object), Yi and Y j � are also very similar
(representing the same kind of object), and: 1) if the i th vertex
is unchanged in the event, then X j and X j � also represent
the same kind of object (showing that X j and X j � are also
very similar), which makes the elements of dx

i very small
and 2) if the i th vertex is changed in the event, then X j and

X j � represent the different kinds of object (showing that X j

and X j � are different), which makes the elements of dx
i large.

Therefore, we can find that the dx
i can be used to measure the

change probability (level) of the i th vertex, as illustrated in
Figs. 3(a) and 4(a).

For the H (S) = P, we similarly have

dx
i = (Pt2X)i − (Pt1X)i

=
N�

j=1



wt2

i, j X j�N
j=1 wt2

i, j

− wt1
i, j X j�N

j=1 wt1
i, j

�
. (15)

Since Lrw = I − P, for the H (S) = Lrw, we have

dx
i = �Lrw

t2 X
�

i
− �Lrw

t1 X
�

i
= (Pt1X)i − (Pt2X)i . (16)

It should be noted that, when W is not normalized by
rows (i.e., W1N 
= c1N with c being a nonzero constant),
H (S) = W is not recommended for calculating the changes,
i.e., dx

i = (Wt2X)i − (Wt1X)i is not appropriate with W that
is unnormalized by rows. This is because it will cause the
leakage of heterogeneous data. For example, if we assume
Y = aX+bI with a and b being nonzero constants (indicating
no change between images) and set wt1

i, j = (1/(�Xi − X j�2))

and wt2
i, j = (1/(�Yi − Y j�2)), then we have Wt2X − Wt1X =

((1 − a)/a)Wt1X, which cannot indicate changes. To avoid
the leakage and confusion of heterogeneous data, we use
the graph shift operator of the normalized average weighting
matrix Wavg or the normalized P and Lrw for calculating the
dx

i in (14)–(16).

B. Higher Order Operators

Furthermore, we only consider the simplest cases of H (S) =
Wavg, P, Lrw in (14)–(16). We can also choose H (S) as the
polynomials of these operators, i.e., H (S) = �M

m=1 hmSm .
Then, we can rewrite (14)–(16) as

dx
i = (H (St2)X)i − (H (St1)X)i

=
N�

j=1

M�
m=1

�
hmSm

t2 − hmSm
t1

�
X j . (17)

Equation (17) can be interpreted in the following two ways.

1) (H (St1)X)i = �M
m=1 hm(Sm

t1X)i is a weighted sum
of the attributes of vertices that are within M-hop
away from the i th vertex. The coefficient hm quan-
tifies the contribution from the mth-hop neighbors.
In this way, we can treat the H (St1) as a new oper-
ator of a weighted higher order graph that explores
the high-order neighborhood information of Gt1. Then,
dx = (

�M
m=1 hmSm

t2 −�M
m=1 hmSm

t1)X is the difference
between responses of X on different higher order graphs.

2) Sm
t1X = St1(Sm−1

t1 X) can be regarded as a high-order
filtering process that repeats operator St1 by m times.
Then, dx =�M

m=1 hm(Sm
t2X − Sm

t1X) is the weighted sum
of differences between responses of X on the filters of
different orders.

Note that our aim is to discover changes in the struc-
tures between graphs (Gt1 and Gt2) by comparing the
responses of the same signal X on different filters H (S),
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Fig. 3. Change measurements with different forms with the graphs and graph signals from Fig. 2 and the filters in Fig. 4. (a) Measure the changes using (14),
where Wavg

t1 X = X and Wavg
t2 Y = Y, (Wavg

t2 X)5 differs from X5, and (Wavg
t1 Y)5 differs from Y5 due to the structure changes. (b) Measure the changes

using the second-order information, where the structure changes between Gt1 and Gt2 can also be reflected. (c) Measure the changes using (17), where
the filter H (S) uses the form of Fig. 4(c) to make its transfer function approximate a low-pass filter. The structure difference between Gt1 and Gt2 shows
up more clearly in Fig. 3(c) than in Fig. 3(a) and (b). (d) Measure the changes by reducing the influence of the changed vertex, where the information
propagation from the changed vertex to its neighboring vertices is cut off, as illustrated by Wavg

t1−n and Wavg
t2−n in Fig. 4(d). (a1) Wavg

t2 X. (a2) Wavg
t1 X.

(a3) Wavg
t2 X − Wavg

t1 X. (a4) Wavg
t1 Y. (a5) Wavg

t2 Y. (a6) Wavg
t1 Y − Wavg

t2 Y. (b1) (Wavg
t2 )2X. (b2) (Wavg

t1 )2X. (b3) (Wavg
t2 )2X − (Wavg

t1 )2X. (b4) (Wavg
t1 )2Y. (b5)

(Wavg
t2 )2Y. (b6) (Wavg

t1 )2Y − (Wavg
t2 )2Y. (c1) H (Wavg

t2 )X. (c2) H (Wavg
t1 )X. (c3) H (Wavg

t2 )X − H (Wavg
t1 )X. (c4) H (Wavg

t1 )Y. (c5) H (Wavg
t2 )Y. (c6) H (Wavg

t1 )Y −
H (Wavg

t2 )Y. (d1) Wavg
t2−nX. (d2) Wavg

t1 X. (d3) Wavg
t2−nX − Wavg

t1 X. (d4) Wavg
t1−nY. (d5) Wavg

t2 Y. (d6) Wavg
t1−nY − Wavg

t2 Y.

and then, the DI using this type of filters H (S) =�M
m=1 hmSm is able to fully exploit information about changes

in graph structures, both in terms of weighted higher order
graph and weighted higher order filtering, as illustrated in
Figs. 3(b) and (c) and 4(b) and (c).

C. Influence of Changes

In the analysis of (14), we have assumed that the neigh-
boring vertex of the given i th vertex is unchanged. This
assumption is reasonable due to the typical sparse prior of CD,
that is, only a small part of the area changes and most areas
remains unchanged during the event in practice. However,
these changed vertices have a negative impact on the CD
results. Next, we will show this influence from the view of
signal propagation.

As shown in Fig. 3(a), for the i th vertex, if one of its
KNNs in Gt2 is changed during the event, e.g., the j �th vertex

( j � ∈ N y
i ) is changed, we have that this changed signal will

propagate to the i th vertex by the graph shift operator, such
as Wavg

t2 X.

1) If the i th vertex is unchanged, this propagated signal X j �

differs significantly from Xi , which increases the differ-
ence between (Wavg

t2 X)i and (Wavg
t1 X)i for the unchanged

i th vertex. For example, the unchanged vertices 1, 2,
and 4 connected with the changed vertex 5 in Gt2

are affected by the changed vertex, as illustrated in
Fig. 3(a3).

2) If the i th vertex is changed and the j �th vertex changed
to the same category as the i th vertex, then this propa-
gated signal X j � is quite similar as the Xi , which reduces
the difference between (Wavg

t2 X)i and (Wavg
t1 X)i for the

changed i th vertex. From the above analysis, we can
find that the changed vertex will affect the judgment of
the state of other vertices whose connected neighbors
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Fig. 4. Different filters used in change measurements of Fig. 3 with graphs from Fig. 2. (a) Wavg
t1 and Wavg

t2 . (b) (Wavg
t1 )2 and (Wavg

t2 )2. (c) H (Wavg
t1 )

and H (Wavg
t2 ), and the transfer functions of the filters in (a)–(c). H (Wavg

t1 ) and H (Wavg
t2 ) are approximate low-pass filters with the transfer function H (�) =

((sign(� − 0.8) + 1)/2). (d) Wavg
t1−n and Wavg

t2−n , where the information propagation from the changed vertex to its neighboring vertices is cut off.

contain this change vertex, i.e., making the dx less
discriminative.

D. Framework of VDF-HCD

In this section, we propose a framework for the HCD by
using vertex domain filtering. We choose H (S) =�M

m=1 hmPm

and rewrite (17) as

dx
i = (H (Pt2)X)i − (H (Pt1)X)i

=
M�

m=1

N�
j=1

hm

��
Pm

t2

�
i, j

X j − �Pm
t1

�
i, j

X j




=
M�

m=1

N�
j=1

hm

��
Pm

t2

�
i, j

X j − �Pm
t2

�
i, j

Xi

+�Pm
t1

�
i, j

Xi − �Pm
t1

�
i, j

X j



=

M�
m=1

N�
j=1

hm

��
Pm

t2

�
i, j

− �Pm
t1

�
i, j


�
Xi − X j

�
(18)

where the second equality comes from P1N = 1N . If we
choose S = Wavg or S = Lrw, we also have

dx
i =

M�
m=1

�
j=1

hm

��
Sm

t2

�
i, j

− �Sm
t1

�
i, j


�
Xi − X j

�
(19)

with the equations of Wavg1N = 1N and Lrw1N = 0.
Equation (19) provides the change features for each vertex,

which can be regarded as the difference after the concentration
of the signal difference (�x

i, j = Xi − X j ) at each vertex on
graphs Gt1 and Gt2. In order to obtain the change level of
each vertex, we change the signal difference �x

i, j as the signal
distance distxi, j = �Xi − X j�2

2 and calculate the change level
as

f x
i =

M�
m=1

N�
j=1

hm

��
Sm

t2

�
i, j

− �Sm
t1

�
i, j



distxi, j

=
N�

j=1

M�
m=1

hm

��
Sm

t2 − Sm
t1

�� distx
�

i, j
(20)

where distx represents the distance matrix of preevent image
and � denotes the Hadamard product.

In (20), we only calculate the forward change level fx that
comparing the outputs of X on the graph filters of H (St1) and
H (St2). Similarly, we can obtain the backward change level fy

by comparing the outputs of Y on the graph filters of H (St1)
and H (St2), that is,

fy =



M�
m=1

hm

�
Sm

t1 − Sm
t2

�� disty
�

1N (21)

where disty represents the distance matrix of postevent image
with element being distyi, j = �Yi − Y j�2

2.
In Section IV-C, we have analyzed the negative effects of

the changed vertex on the change measurement from the
view of signal propagation. In order to reduce this negative
influence, we need to avoid propagating the signal on the
changed vertex (e.g., the j th vertex) to their neighboring ver-
tices ({i |i ∈ N y

j }) by setting (At2)i, j = 0. However, we cannot
identify, in advance, which vertices are changed, so we employ
an iterative framework to complete the elimination of changed
vertices in the graph construction. That is, we first calculate
the change levels fx and fy and then segment them to obtain
the unchanged index subset S and changed index subset T
of vertices, which can be implemented by using some thresh-
olding methods (such as Otsu [57]), clustering methods (such
as K-means [58] and fuzzy c-means (FCMs) clustering [59]),
or Markov random field (MRF)-based method [41] (adopted by
VDF-HCD). After that, we propagate the unchanged vertices
S computed by the segmentation method of the previous
round back to the graph construction process of the next
round to obtain the new graphs of Gt1−n and Gt2−n , which
connects each vertex with its neighbors only in the unchanged
index subset S. Then, we can recalculate the change levels
[see (20) and (21)] as

fx =



M�
m=1

hm
�
Sm

t2−n − Sm
t1

�� distx
�

1N

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 01,2023 at 09:02:32 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: GRAPH SIGNAL PROCESSING FOR HETEROGENEOUS CHANGE DETECTION 4415823

Algorithm 1 VDF-HCD

Input: Images of X̂ and Ŷ, parameters of N , I ter .
Choose the operator S and coefficients hm to obtain filter
H (S).
Preprocessing: Construct the graph and graph signals

Divide the images into patches or superpixels.
Construct the graph signals of X and Y.
Construct the KNN graphs of Gt1 and Gt2.

Main iteration loop of VDF-HCD:
Set initial index subset as S0 = I.
for i = 1, 2, . . . , I ter do

Construct the new graphs of Gt1−n and Gt2−n with S i−1.
Calculate the change levels fx and fy by using (22).
Segment fx and fy to obtain the S i and T i .

end for
Output: Compute the final change map with S and T .

fy =



M�
m=1

hm

�
Sm

t1−n − Sm
t2

�� disty
�

1N (22)

which can enhance the distinction between changed and
unchanged classes in the change level measurement. As illus-
trated in Fig. 3(d), the structure difference between Gt1 and
Gt2 shows up most clearly by using the filters in Fig. 4(d). The
overall framework of the proposed VDF-HCD is summarized
in Algorithm 1.

V. SPECTRAL DOMAIN ANALYSIS-BASED HCD

To avoid the leakage of heterogeneous data, in the measur-
ing of structure difference of VDF-HCD, we weaken the effect
of the difference in the original pixel values on image structure
and focus more on the changes in the connectivity between
vertices. Therefore, we choose the graph shift operator S as
the normalized average weighting matrix Wavg (14) or the
normalized random walk matrix P (15) and the Laplacian
matrix Lrw (16) to measure the change level, for example,
dx

i = (Wavg
t2 X)i − (Wavg

t1 X)i . Directly comparing H (St1)X
and H (St1)Y will cause the leakage of heterogeneous data.
However, setting S = Wavg at this time does not solve
the problem. Alternatively, we analyze the graph signal on
the spectral domain, which can eliminate the influence of
heterogeneous data from different domains.

Nevertheless, spectral domain analysis also presents another
challenge: how to get the change of signal from the difference
of spectral domain. Since the goal of HCD is to find the
region where the change occurred during the event, it is
directly corresponding to the region represented by the vertex
in the graph. Therefore, the change measurement of dx

i =
(Wavg

t2 X)i − (Wavg
t1 X)i in VDF-HCD that finds the changes in

the vertex domain can directly output the HCD results: the
changed vertex. As we know, in classical signal processing,
the Fourier coefficients are the integration or summation form
of the signal in the time domain. Similarly, the graph frequency
coefficients are also the summation form of the graph signal in
the vertex domain. Therefore, directly comparing the spectra

of two graph signals in the spectral domain is not possible to
find the changed vertex (i.e., changed region).

A. Signal Decomposition

To address the challenge introduced by the spectral analysis,
we use a signal decomposition method: we decompose the
source signal Y into the regressed signal Z and the changed
signal � as Y = Z + �, and require the regressed signal
Z to have the same spectral property as the target signal X
on the graph Gt1. With this decomposition model, we can
obtain the changed signal �, which can be directly used to
detect the areas of change. At the same time, since the signal
decomposition model directly outputs both the regressed signal
and changed signal, which means that the changed samples
are removed from the original Y, the negative influence of the
changed samples on the regression process is reduced. On the
other hand, if we treat Ẑ as the regression image, because Z
and X have the same spectral property, the structures of Ẑ and
X̂ are consistent. Because the regressed signal Z is separated
from Y, then Ẑ and Ŷ belong to the same domain. Therefore,
this signal decomposition model can also be regarded as an
image regression method.

We mainly consider the case of forward regression that
transforms the preevent image to the domain of the postevent
image with Y = Z + � and do not consider the back-
ward regression of transforming the postevent image to the
domain of preevent image, which is a similar process to
the former. Therefore, for the sake of simplicity in defining
notation, we use the eigenvalue decompositions of Lt1 and
Wt1 in the latter part of this article as Lt1 = U�U−1 and
Wt1 = V�V−1 in descending order of eigenvalues, with
� = diag{λ1, λ2, . . . , λN }, λ1 ≥ λ2 ≥ · · · ≥ λN , and � =
diag{γ1, γ2, . . . , γN }, γ1 ≥ γ2 ≥ · · · ≥ γN , respectively. Next,
we first analyze the spectral properties of the heterogeneous
images on different graphs and then propose an HCD method
based on the spectral domain analysis.

B. Low-Pass Property

As the frequency can be indicated by the rate of change
between the vertices on the edges as illustrated by TVL (7) and
TVW (8), we can intuitively conclude that X is the low-pass
signal on Gt1, that is, the TVs of TVLt1(X) and TVWt1(X) are
very small. This can be observed in the construction process
of the KNN graph, where the i th vertex and the j th vertex are
connected if and only if i ∈ N x

j (i.e., Xi belongs to the KNN
of X j or X j belongs to the KNN the Xi ), which means that
Xi and X j are very similar.

Remark 1: The graph signal X is an approximate low-pass
signal on the KNN graph Gt1, and the graph signal Y is an
approximate low-pass signal on the KNN graph Gt2.

Specifically, Remark 1 can also be demonstrated by using
the Definitions 1 and 2, that is, the high-frequency component
of �X is almost zero. Substituting Lt1 and X into (7), we have

TVLt1(X) = Tr
(
XT Lt1X

) = Tr
(
XT U�U−1X

)
= Tr

(
X̃T�X̃

) =
N∑

k=1

λk

∥∥X̃k

∥∥2

2 (23)
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Fig. 5. Spectral properties of graph signals X and Y on the KNN graph
Gt1, where X, Y, and Gt1 are constructed from the preevent and postevent

images in Fig. 6. (a) ��Xk�2 with �X = U−1X. (b) ��Yk�2 with �Y = U−1Y.
(c) �X̆k�2 with X̆ = V−1X. (d) �Y̆k�2 with Y̆ = V−1Y.

where �X = U−1X. Because TVLt1(X) =
(1/2)

�
(i, j)∈Et1

wt1
i, j distxi, j is very small, then it requires

that ��Xk�2
2 corresponding to the large λk should also be very

small. According to Definition 1 that large λk represents the
high frequency, we have that the high-frequency component
in �X is very small.

We define the normalized symmetrized weighting matrix as

Wsym = �−1/2W�−1/2 (24)

where the diagonal matrix � is defined such that Wsym1 = 1
and (Wsym)T 1 = 1. Wsym is a symmetric doubly sto-
chastic matrix, and it can be obtained by applying the
Sinkhorn–Knopp balancing algorithm [60], [61], [62] to
iteratively normalizes the rows and columns of W until
convergence. For the weighting matrix Wsym, we have 1 =
γ1 ≥ γ2 ≥ · · · γN ≥ 0, which follows from the property of
symmetric doubly stochastic matrix. We have��Wsym

t1 X
��2

F
= ∥∥V�V−1X

∥∥2

F
= Tr

(
XT V�2V−1X

)
=

N�
k=1

γ 2
k

��X̆k

��2

2 (25)

where X̆ = V−1X. Due to the conservation of energy, we also
have �X�2

F = ||X̆||2F = �N
k=1 ||X̆k ||22. As Wsym

t1 X ≈ X and it
requires

�N
k=1 (1 − γ 2

k )||X̆k ||22 ≈ 0, then we have ||X̆k ||22 cor-
responding to the small γk is also very small. According to the
Definitions 1 and 2 that small γk represents the high frequency,
we have that the high-frequency component is almost zero in
X̆. Fig. 5(a) and (c) shows the illustration of this Remark 1.

C. High-Pass Property

Next, we consider the spectral property of Y on the graph
Gt1. As shown in Fig. 5, we find that, different from the �X (or
X̆) on Gt1, the high-frequency component of �Y (or Y̆) on Gt1

is not equal to zero, which seems like the noisy component
in the classic signal processing. We decompose Y into the
regressed signal Z and the changed signal � as Y = Z +�,
where Z is the assumed unchanged signal that represents the
translated X in the domain of Y.

Remark 2: The regressed signal Z is an approximate
low-pass signal on the KNN graph Gt1. The high-frequency
component of �Y (or Y̆) on Gt1 is introduced by the changes
caused by the event.

First, we have that the structure of Z is as same as X, that
is, if Xi and X j represent the same kind (or different kinds)
of the object, then Zi and Z j also represent the same kind (or
different kinds) of the object. Then, the similarity relationships
of Zi and Z j are the same as Xi and X j . Therefore, based
on the definition of frequency or by using the TVLt1(Z) or
TVWt1(Z), we have that the regressed Z has the same spectral
property as X on the graph Gt1: both Z and X are the
approximate low-pass signals on Gt1.

Second, taking the GFT of Y on Gt1 with the Laplacian
matrix Lt1, we have

Ỹ = GFT(Y) = U−1(Z +�) = Z̃ + �̃. (26)

Because the high-frequency component of �Z is approximately
equal to zero, we have Ỹk ≈ �̃k for high frequency λk ,
that is, the high-frequency component of �Y in graph Gt1 is
introduced by the changes � caused by the event, as illustrated
in Fig. 5(b) and (d). Meanwhile, it should be noted that the
low-frequency component of �̃k is not always equal to zero.
For example, there will also be cases where adjacent vertices
change at the same time, as shown in Fig. 6(c).

D. Regression With the Low-Frequency Components

If we divide �Y into the low- and high-frequency parts as�Y = �YL + �YH by using an ideal low-pass filter with cutoff
eigenvalue λkc , i.e.,��YL



k

=
��Yk; if k ≥ kc

0; else��YH



k

=
��Yk; if k < kc

0; else.
(27)

With this low-pass filter, we can also divide �Z and �� as �Z =�ZL + �ZH and �̃ = �̃L + �̃H , respectively. Based on the
ỸH ≈ �̃H , we have

Z = IGFT(Z̃) ≈ UỸL − U�̃L

� = IGFT(�̃) ≈ UỸH + U�̃L . (28)

If we ignore the low-frequency component of �̃L , we can
obtain an approximate Z� and �� as Z� = U�YL and �� =
UỸH . Fig. 6 shows the approximate regression image and the
changed image.

E. Regression Model of SDA-HCD

From the decomposition model Y = Z + �, we have
that it requires the regressed Z to have the same spectral
property (i.e., low-pass) as X in the KNN graph Gt1, which
can be used as a constraint for the Z. On the other hand, for
the changed signal �, we have a change prior-based sparse
constraint for the CD problem, which is based on the fact that
only a small part of the area changed and most areas remain
unchanged during the event in practice. Therefore, we can
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Fig. 6. Regression and changed images generated by the low- and high-pass filters defined on the KNN graph Gt1, respectively. By comparing (a2) and (a3)

with (a1), we can find that the original X̂ is very similar to the reconstructed X̂� and X̂�� with the low-frequency components of �XL and X̆L , respectively. For
the regressed Ŷ� (b2) and Ŷ�� (b3) with �YL and Y̆L , it can be found that their structures are consistent with the preevent image; however, the appearances are
similar to that of the postevent image. For the generated DIs of (c2) and (c3), we can see that the high-frequency components of �YH and Y̆H can be used
to detect the changes. (a1) Pre-event image X̂. (a2) X̂� with X� = UX̃L . (a3) X̂�� with X�� = VX̆L . (b1) Pre-event image Ŷ. (b2) Ŷ� with Y� = UỸL . (b3) Ŷ��

with Y�� = VY̆L . (c1) Change map. (c2) D̂ I
�

with Z� = UỸH . (c3) D̂ I
��

with Z�� = VY̆H .

obtain a decomposition-based regression model for the HCD
problem

min
Z,�

g(Z) + α f (�) s.t. Y = Z +� (29)

where g(Z) represents the spectral constraint for Z, f (�)
represents the prior regularization for �, and α > 0 is a
balancing parameter.

First, for the spectral constraint g(Z), we have different
choices. For example, we can constrain �ZH ≈ 0 by using
the penalties: 1) g(Z) = �U−1

H Z�2
F , where U−1

H = (U−1)1:kc ,:
represents the high-frequency transformation matrix for Lt1

and 2) g(Z) = �V−1
H Z�2

F , where V−1
H = (V−1)N−kc :N,:

represents the high-frequency transformation matrix for Wt1.
Here, U−1

H and V−1
H are the ideal high-pass filters with the

cutoff eigenvalues λkc and γkc , respectively.
Although the penalty with an ideal high-pass filter is intu-

itive, it has two drawbacks: first, it requires the eigenvalue
decomposition for the graph shift operator (e.g., Lt1 or Wt1),
which requires a high computational complexity for large-scale
graph; second, it requires the selection of cutoff eigenvalue λkc

or γkc , i.e., the cutoff frequency of the high-pass filter.
Based on the fact that the high-frequency component

of �Z is almost equal to zero, we have that the value of�N
k=1

�M
m=1 hmλm

k ��Zk�2
2 is very small: first, for the small k,

although λk 
= 0, however, �Zk → 0; second, for the large k,
although �Zk 
= 0, however, λk → 0 with λN = 0. Therefore,

we can set g(z) as

g(Z) =
N∑

k=1

M∑
m=1

hmλm
k

∥∥Z̃k

∥∥2

2 =
M∑

m=1

hmTr
(

Z̃T�mZ̃
)

= Tr



M�

m=1

hmZT Lm
t1Z

�
= Tr

�
ZT H (Lt1)Z

�
(30)

where H (Lt1) = �M
m=1 hmLm

t1. When M = 1, g(Z) degener-
ates to the h1TVLt1(Z).

Second, for the sparsity regularization of f (�), it means
that � only exits on a small part of vertices and remains zero
on other vertices. Therefore, it requires that the number of
nonzero rows in �, i.e., ���2,0, is very small. To meet this
requirement, f (�) can be chosen in different forms, such as
the �2,0-norm [63], the �2,1-norm [64], the �2,p-norm with p ∈
(0, 1) [65], and the �∞,1-norm [66], [67].

Combining the spectral constraint g(Z) and the spar-
sity regularization f (�), we have the decomposition-based
SDA-HCD model as follows:

min
Z,�

Tr
(
ZT H (Lt1)Z

) + α f (�) s.t. Y = Z +�. (31)

From (31), it can be found that the regressed Z and the
original Y are in the same domain for two reasons: first, Z
is separate from Y with Z = Y −�, and only a few of them
are different (� is row sparse), i.e., Zi = Yi ideally holds for
most i = 1, . . . , N ; second, for the changed Zi , the model

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 01,2023 at 09:02:32 UTC from IEEE Xplore.  Restrictions apply. 



4415823 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

constrains it to be similar to its neighbors by g(Z), which
prevents anomalous Zi .

F. Optimization of SDA-HCD

By using the alternating direction method of multipliers
(ADMM), the augmented Lagrangian function of (31) can be
written as

L(Z,�, R) = Tr
(
ZT H (Lt1)Z

) + Tr
(
RT (Y − Z −�)

)
+ μ

2
�Y − Z −��2

F + α f (�) (32)

where R ∈ R
N×My is a Lagrange multiplier and μ > 0 is a

penalty parameter. The minimization problem of (32) can be
solved by the alternating direction method, which iteratively
updates one variable at a time and fixes the others.

Z-Subproblem: Given the current points (Zt ,�t , Rt ) at the
tth iteration, the minimization of (32) with respect to Z can
be formulated as

Zt+1 = arg min
Z

{
Tr

(
ZT H (Lt1)Z

) − Tr
((

Rt
)T

Z
)

+ μ

2

∥∥Z − Y +�t
∥∥2

F

}
. (33)

It can be solved by taking the first-order derivative of the
objective function to zero, and then, Z can be updated by

Zt+1 = (2H (Lt1) + μIN )−1(μY − μ�t + Rt
)

(34)

where IN ∈ R
N×N represents an identity matrix.

�-Subproblem: Give the fixed points (Zt+1,�t , Rt ), the
minimization of (32) with respect to � can be formulated
as

�t+1 = arg min
�

{
α f (�) − Tr

((
Rt

)T
�

)
+ μ

2

∥∥�+ Zt+1 − Y
∥∥2

F

}
(35)

which can be solved by the proximal operator as

�t+1 = prox α
μ f

(
Qt+1

)
(36)

with Qt+1 = Y − Zt+1 + (Rt/μ), and the proximal operator
is defined as

proxβ f (b) = arg min
x

f (x) + 1

2β
�x − b�2

F . (37)

Depending on different regularization forms of f (�), we have
different closed-form solutions for updating �t+1.

If we choose f (�) = ���2,0, we have

�t+1
i =

⎧⎨⎩0, if
��Qt+1

i

��2

2 ≤ 2α

μ
Qt+1

i , otherwise.
(38)

If we choose the �2,1-norm of f (�) = ���2,1, which is a
convex relaxation of ���2,0, the closed-form solution of (37)
can obtained by using [68, Lemma 3.3]

�t+1
i = max

{∥∥Qt+1
i

∥∥
2 − α

μ

}
Qt+1

i∥∥Qt+1
i

∥∥
2

(39)

where we follow the convention 0 · (0/0) = 0.

Algorithm 2 SDA-HCD

Input: Signal Y, graph Gt1, parameters of α, μ, ξ0.
Initialize: Set �0, R0 = 0, and calculate H (Lt1).
Repeat:

1: Update Z according to (34).
2: Update � according to (38), (39), or (40).
3: Update R according to (41).

Until stopping criterion is met.
Output: The regressed signal Z and changed signal �.

If we have known, in prior, the size of changed regions,
i.e., the row sparsity level of �, we can construct a forced

constraint as f (�) =
{

0, if ���2,0 ≤ τ
∞, otherwise,

and then, �t+1

can be updated by the hard thresholding operator as

�t+1
i =

{
Qt+1

i , if i ∈ pτ

0, otherwise
(40)

where pτ is the top τ values’ indices vector of
{�Qt+1

i �2|i = 1, . . . , NS} with descending order.
Multiplier Updating: Finally, with the fixed points

(Zt+1,�t+1, Rt ), the Lagrangian multiplier can be updated as

Rt+1 = Rt + μ
(
Y − Zt+1 −�t+1

)
. (41)

The procedure of solving problem (31) is summarized in
Algorithm 2. The algorithm terminates when the maximal
number of iterations is reached or the relative difference
between two iteration results ξ t+1 < ξ0, where ξ t+1 =
((��t+1 −�t�F )/(��t�F )).

G. DI and CM Calculation

Once the regressed signal is computed from Algorithm 2,
the regression image Ẑ can be obtained by extracting the
pixel value in Z when Gt2 is a patchwise graph or extracting
the mean features in Z when Gt2 is a superpixelwise graph.
With the changed signal � output by Algorithm 2, we can
obtain the DI as DIm,n = (

�Cy

c=1 (ŷ(m, n, c) − ẑ(m, n, c))2)1/2

for patchwise graph and DIm,n = ��i�2, (m, n) ∈ �i for
superpixelwise graph. The binary CM solution can be regarded
as an image segmentation problem by using the thresholding
method or the clustering method, such as the Otsu threshold
method [57], K-means clustering [58], FCM clustering [59],
or the MRF-based segmentation method [31].

VI. DISCUSSION

A. Connection Between VDF-HCD and Some Graph-Based
Methods

In INLPG [48] and IRG-McS [41], the patchwise graphs
and superpixelwise graphs are constructed for heterogeneous
images, respectively, and then, the graph projection is used to
compute the DIs as follows:

dx
i = 1

K

⎛⎝�
j �∈N y

i

distxi, j � −
�
j∈N x

i

di stx
i, j

⎞⎠
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dy
i = 1

K

⎛⎝�
j �∈N x

i

distyi, j � −
�
j∈N y

i

distyi, j

⎞⎠ (42)

which measures the structure difference by how different the
two KNN position sets of N x

i and N y
i are in the images. With

the definition of the adjacent matrix A of the KNN graph,
(42) can be rewritten as

dx
i = 1

K

N�
j=1

�
(At2 − At1) � distx

�
i, j

dy
i = 1

K

N�
j=1

�
(At1 − At2) � disty

�
i, j

. (43)

Then, we can find that (43) is a special case of (20) and (21)
with S = Wavg and m = 1, that is, INLPG and IRG-McS only
consider the first-order information of the graph and ignore
the exploitation of higher order information. At the same time,
INLPG and IRG-McS do not take a GSP perspective on HCD
issues as this article does, which leads to a limited application
of these methods.

In [44], a pointwise approach based on graph theory is pro-
posed for homogeneous CD of SAR images, which constructs
a pointwise graph on a set of characteristic points and then
calculates the change level of each vertex as

fi = 1�
j∈N x

i
wt1

i, j

�
j∈N x

i

wt1
i, j

		log x̄ j − log ȳ j

		 (44)

where x̄ j and ȳ j represent the mean value of a small patch
around the j th vertex in images X̂ and Ŷ, respectively.
Equation (44) measures the difference of different signals on
the same graph, which is similar to f = Pt1(log X − log Y).
However, we can find that (44) cannot be applied to HCD
because of the direct comparison between pixels of images,
which will cause the leakage of heterogeneous data. At the
same time, the high-order information and the influence of the
changed vertices are not taken into account in this method.

As mentioned above, the proposed VDF-HCD compares
the structures of images, so it is not sensitive to the inter-
ference factors in some complicated homogeneous CD prob-
lems, such as illumination, season, and noise. In addition,
it has been demonstrated in INLPG [48] that the structure
difference-based operator is more robust to noise than the
traditional difference operator (and log-ratio operator) in the
homogeneous CD of optical images (and SAR images). There-
fore, the method proposed in this article can be directly
extended to the homogeneous CD. At the same time, fus-
ing the proposed method with other methods (such as the
graph-based method in [44]) may further improve the detection
performance.

B. Observing VDF-HCD in the Spectral Domain

In the VDF-HCD, we measure the change level similarly
as dy = H (St1)Y − H (St2)Y. If we choose H (S) = L,
we have Lt1Y = U�U−1Y. The transfer function of Lt1 is
H (�) = � with h(λk) = λk , which is a linear amplification
function, as shown in the Fig. 4(c). H (�) = � gives

a large value for high frequency (i.e., large eigenvalue as
Definition 1), and then, it acts as a high-pass filter for the
graph signal. Substituting the signal decomposition model of
Y = Z + �, we have GFT(Lt1Y) = �(Z̃ + �̃). Then, the
low-frequency components of �Y are reduced by H (�), and
the high-frequency components of �Y (i.e., �̃) are amplified by
H (�). As Y is a low-pass signal on Gt2, we have Lt2Y ≈ 0.
Therefore, dy = Lt1Y − Lt2Y mainly contains information
about �, which can be used to measure the changes.

Similarly, if we choose H (S) = Wavg, we have H (�) =
�, which gives a large value for low frequency (i.e., large
eigenvalue as Definition 2), and then, it acts as a low-pass
filter for the graph signal. As Y is the low-pass signal on Gt2,
we have Wavg

t2 Y ≈ Y. With the GFT(Wavg
t1 Y) = �(Z̆ + �̆),

the high-frequency components of Y̆ (i.e., �̆) are reduced by
H (�). Then, Wavg

t1 Y can be regarded as an approximate Z.
Therefore, dy = Wavg

t1 Y − Wavg
t2 Y ≈ Z − Y can be used to

measure the changes. In fact, when we choose L = IN −Wavg,
we have H (�) = IN − H (�).

C. How to Choose the Filter H (S)

For the choices of the H (S) for vertex and spectral domain-
based methods, we need to construct a low-pass filter for
H (W) in VDF-HCD and a high-pass filter for H (L) in
VDF-HCD and SDA-HCD based on the above analysis.

Suppose that �(�) is the desired graph transfer function
of a filter; we need to use the H (L) = �M

m=1 hmLm to
approximate the filter. Two methods can be used for the
design of this spectral domain filter [52], [55]: first, using
the least-squares approximation of h = (�T

λ�λ)
−1�T

λψ with
h = [h1, . . . , hM ]T being the vector of system coefficients
to be estimated, �λ being the Vandermonde matrix form of
the eigenvalues λk , and ψ = [�(λ1), . . . , �(λN )]T being
the diagonal vector of �(�); second, using the polynomial
approximation of M degree, e.g., the Chebyshev polynomial
series, such as the filters used in Fig. 4(c).

D. KNN Graph Construction

We can find that the requirements for the KNN graph are
that: first, Gt1 can represent the structure of the image; second,
X is the low-pass signal on the graph Gt1. These correspond
to the two challenges of the KNN graph: the choice of K and
the weighting metric.

First, a very small K is not appropriate, e.g., K = 1, each
vertex is connected with is the nearest neighbor. In this case,
although X is definitely the low-pass signal on the graph
Gt1, Gt1 is not robust. In this case, each vertex can only
get information from its nearest neighbor, which will cause
many unnecessary disconnected subgraphs in Gt1. Besides,
this type of graph cannot adequately characterize the structure
of X̂, which also means that, perhaps, other images that differ
from X̂ will also be the low-pass signal in Gt1. On the other
hand, a very large K is also not appropriate, e.g., K = N ,
the complete graph, i.e., each vertex accepts information from
all other vertices whether they are similar or not. In this case,
we can easily find that X is not a low-pass signal on the graph,
or it has a large passband at least.
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Here, we recommend the adaptive probability graph with
the model

min
Wt1

N∑
i=1

N∑
j=1

distxi, jw
t1
i, j + R(Wt1,β)

s.t. 0 ≤ wt1
i, j ≤ 1, Wt11N = 1N (45)

where distxi, j = �Xi − X j�2
2, and the regularization of

R(Wt1,β) aims to make the graph smooth and avoids the
trivial solution. For example, if we ignore this R(Wt1,β),
then each vertex only connects with its nearest vertex with
probability 1.

We present two different regularizations for W.

1) The weighted �2-norm as R(Wt1,β) =∑N
i=1

∑N
j=1 βi(w

t1
i, j )

2
used in [31], which uses the

parameters βi to determine the number of neighbors ki

of each vertex based on k-selection strategy. Therefore,
we can find that Gt1 is a data-dependent KNN graph
with adaptive neighbor selection and adaptive weight
calculation.

2) The entropy regularizer of R(Wt1,β) =∑N
i=1

∑N
j=1 βiw

t1
i, j log wt1

i, j similar as [69], which
attempts to maximize the information entropy of
Wt1 and uses the parameters βi to adjust the
distribution of weights. In particular, we can find
that Gt1 constructed by (45) is very suitable for
the SDA-HCD model (31): the regularization term�N

i=1

�N
j=1 distxi, jw

t1
i, j = 2Tr(XT Lt1X) in the objective

function of graph construction model (45) is consistent
with the penalty term Tr(ZT H (Lt1)Z) in the regression
model.

E. Extended Graphs for SDA-HCD

In this article, we construct the KNN graph for each image
to capture the structure information. An important reason
why the KNN graph was chosen is that it can distinguish
between the changed and unchanged signals in the spectral
domain: the original X and regressed Z are low-pass signals in
the KNN graph Gt1, while the high-frequency components of�Y are introduced by the changed signal �. Similarly, if we can
find such a graph G � that the changed and unchanged signals
can be discriminated in the spectral domain with G �, then
more regularization terms g(Z) can be added to the regression
model (29).

If we construct a K -farthest neighbor (KFN) graph G �
t1 =

{V �
t1, E �

t1, W�
t1} for the preevent image, where each vertex is

connected with its KFN, i.e., (i, j) ∈ E �
t1 if and only if distxi, j

is among the K -largest elements of the vector distxi or the
vector distxj , in this way, the change rate of signal X between
the vertices on the edges of G �

t1 is very rapid, that is, the TV
of TVL�

t1
(X) is very large. Therefore, the high-frequency com-

ponent of �X in the graph G �
t1 is also large, so as to the regres-

sion signal Z, as shown in Fig. 7. To exploit this property,
we can add a KFN graph-induced repulsive regularization term
g(Z) = −TVL�

t1
(Z) or g(Z) = �

(i, j)∈E �
t1

wt1�
i, j exp(−distzi, j ) in

the regression model (29), which requires neighboring nodes
of Z connected by the KFN graph G �

t1 to be further apart

Fig. 7. (b) Regression image and (c) DI generated by the band-stop and
bandpass filters defined on the KFN graph G �

t1, respectively, where X, Y, and
G �

t1 are constructed from the preevent and postevent images in Fig. 6. The

high-frequency component of �X in the graph G �
t1, i.e., �X4901:5000, is large.

The approximate regressed image can be obtained with partial low- and high-
frequency components, i.e., �YBs, and the DI can be calculated with partial
mid-frequency components, i.e., �YBp. (a) X̂� with X� = UX̃Bs . (b) Ŷ� with
Y� = UỸBs . (c) D̂ I

�
with Z� = UỸBp .

(because they do not represent the same type of object). Fig. 7
shows an example of the usage of KFN in HCD. Similarly,
other types of graph properties can be extended in the proposed
GSP-based HCD framework.

F. Frameworks of GSP-Based CD

Here, we give the general frameworks for the CD problem
(with both homogeneous and heterogeneous multitemporal
remote sensing images) based on the GSP with vertex domain
filtering and spectral domain analysis.

1) Framework of VDF-Based CD: Step 1: Construct the
KNN graph and graph signals.

Step 2: Choose the filter H (S), and calculate the DI.
Step 3: Segment the DI to obtain the changed and

unchanged indices.
Step 4: Repeat steps 1–3 to reduce the change influence

until the algorithm converges.
In step 1, it requires that the constructed graph can represent

the structure of the image and the graph signal can represent
the characteristics of the area denoted by each vertex. In step 2,
H (S) should be able to reflect the differences in signals
on different graphs, i.e., be able to reflect the structural
properties of the graphs, e.g., low-pass filter for H (Wavg)
and H (P), and a high-pass filter for H (Lrw) according to
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TABLE I

DESCRIPTION OF THE SEVEN HETEROGENEOUS DATASETS

the spectral analysis. Meanwhile, in the homogeneous CD,
dx = H (St1)X − H (St1)Y and dy = H (St2)X − H (St2)Y can
also be fused in the DI calculation. In step 3, many existing
methods can be selected for this binary segmentation problem.
Finally, the change influence is reduced by an iterative strategy
that cuts off the propagation from changed vertices to their
neighboring vertices.

2) Framework of SDA-Based CD: Step 1: Construct the
graph and graph signals.

Step 2: Choose the penalties of g(Z) and f (�) to obtain
the regression model of (29).

Step 3: Solve the minimization problem to obtain the
changed signal.

Step 4: Segment the DI to obtain the final CM.
In step 1, it requires that the graph signals are distinguish-

able in the spectral domain of the graph. In step 2, g(Z)
is corresponding to the spectral property of the signal, such
as the low-pass property of the KNN graph; f (�) can also
be other prior knowledge-based penalties in addition to the
sparsity penalty, such as the smoothness [46], low-rank, and
some known labels of the semisupervised (or supervised) CD
problem. In step 4, the binary classification problem can be
solved by many existing methods [57], [58], [59].

VII. EXPERIMENTS

In this section, we analyze the performance of the proposed
VDF-HCD and SDA-HCD. In order to assess the robustness,
we use seven pairs of heterogeneous images of varying HCD
conditions.

A. Experimental Setting

1) Heterogeneous Datasets: First, we introduce the hetero-
geneous datasets used in this article, as listed in Table I. These
datasets contain different types of heterogeneity: multisensor
image pairs (e.g., #1, #2, #3, and #4) and multisource image
pairs (e.g., #5, #6, and #7), which also show quite different
HCD conditions: different resolutions (from 0.52 to 30 m),
different sizes (from 300 to 2000 pixels in length or width),
and different change events (flooding, fire, and construction).
These heterogeneous datasets are able to evaluate the gener-
alizability and robustness of the proposed method.

2) Metrics: We evaluate the detection ability of the methods
quantitatively through two types of metrics. First, we assess
the DI by the receiver operating characteristic (ROC) and
precision–recall (PR) curves, along with the areas under the

ROC curve (AUR) and PR curve (AUP) scores. Second,
we assess the CM by the overall accuracy (OA), F1-measure
(Fm), and Kappa coefficient (Kc), which are calculated by OA
= (TP + TN)/(TP + TN + FP + FN), Fm = (2TP)/(2TP +
FP + FN), and Kc = (OA − PRE)/(1 − PRE) with

PRE = (TP + FN)(TP + FP) + (TN + FP)(TN + FN)

(TP + TN + FP + FN)2
(46)

where TP, FP, TN, and FN represent the true positive, false
positive, true negative, and false negative, respectively. Com-
bining the comprehensive metrics (OA, Kc, and Fm) with the
individual metrics (TP, FP, TN, and FN marked in different
colors in the qualitative results) allows us to better assess
the CM.

3) Implementation Detail: We use the superpixelwise KNN
graph for VDF-HCD and SDA-CHD with N = 5000 and K =√

N , use the mean, median, and variance values of superpixel
to construct the graph signals of X and Y for simplicity, and
choose the adaptive model (45) with weighted �2-norm to
construct the graphs. We choose the graph shift operator as
S = Wavg and set H (Wavg) to obtain an approximate low-pass
filter for VDF-HCD, whose transfer function in the spectral
domain is a fourth-order (M = 4) polynomial approximation
of the truncation function H (�) = ((sign(� − γcf) + 1)/2)
with the cutoff frequency being γcf = 0.9. We choose
�2,1-norm of f (�) = ���2,1, set the balancing parameter
α = 0.05 for the regression model (31), and choose H (Lt1) =
Lt1+h2L2

t1+h3L3
t1 with h2 = h3 = 1 for SDA-HCD. We leave

the discussion about H (Wavg) and H (Lt1) in Section VI-C.

B. Experimental Results

1) Image Regression of SDA-HCD: In the first experiment,
we verify the regression performance of the SDA-HCD by
comparing it with four image regression baseline HCD meth-
ods, including HPT [15] (40% of the unchanged pixels are
used as training samples in our experiment), AMD-IR [23],
PSGM [19], and SCASC [31]. Fig. 8 shows the regression
images generated by different methods on all the heteroge-
neous datasets, which transforms the preevent image to the
domain of the postevent image. Intuitively, these methods basi-
cally complete the image translation. That is, in the unchanged
area, the regression image and the postevent image are similar,
while they appear very different in the changed area, which
can be used to detect the changes. Visually, we can see that
SDA-HCD performs better on Datasets #1, #3, and #7; PSGM
performs better on Dataset #5 and worse on Dataset #7; and
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Fig. 8. Regression images generated by different methods on all the hetero-
geneous datasets. From (top) to (bottom), they correspond to Datasets #1–#7,
respectively. From (left) to (right) are (a) preevent image, (b) postevent image,
(c) ground truth, (d) regression image of HPT, (e) regression image of AMD-
IR, (f) regression image of PSGM, (g) regression image of SCASC, and
(h) regression image of SDA-HCD.

TABLE II

AUR AND AUP OF DIS GENERATED BY DIFFERENT METHODS ON THE

HETEROGENEOUS DATASETS. THE HIGHEST

SCORES ARE HIGHLIGHTED IN BOLD

HPT performs better on Datasets #4 and #6. Also, we can
find that the superpixel-based regression method has a block
smoothing effect, such as the regression images of SCASC
and SDA-HCD on Datasets #4 and #6.

2) Difference Images: In order to evaluate the ability of the
algorithms (VDF-HCD and SDA-HCD) to measure change,
we show the DIs generated by different methods in Fig. 9 and
plot the corresponding ROC and PR curves in Fig. 10. The
AUR of ROC curves and the AUP of PR curves are listed in
Table II.

Fig. 9. DIs of different methods on heterogeneous datasets. From (top) to
(bottom), they correspond to Datasets #1 to #7, respectively. From (left) to
(right) are (a) ground truth, (b) DI of HPT, (c) DI of AMD-IR, (d) DI of
PSGM, (e) DI of SCASC, (f) forward DI of VDF-HCD, (g) backward DI of
VDF-HCD, and (h) DI of SDA-HCD.

In the DIs of Datasets #1 and #5, the backward DI of
VDF-HCD (fy) and the DI of PSGM perform better than
others, as shown in Figs. 9(b)–(h) and 10. In Dataset #2, the
forward and backward DIs of VDF-HCD gain higher scores
of AUR and AUP. In the DIs of Datasets #3 and #7, SDA-
HCD performs best, and VDF-HCD comes second, as shown
by the ROC and PR curves in Fig. 10. In the DIs of
Datasets #4 and #6, HPT performs better than other methods.
However, these results are attributed to the fact that HPT
employs a large amount of labeled unchanged samples (40%).
Meanwhile, we can also find that the DIs generated by PSGM,
SCASC, and SDA-HCD in Fig. 9 are sparse (e.g., especially
in the DIs of Datasets #1, #2, and #7), which is due to the
prior sparsity-based regularization used in these methods.

From these results, we can see that the VDF-HCD and SDA-
HCD can obtain high-quality DIs in datasets of #1, #2, #4, #5,
and #7, which gains a larger AUR and AUP scores, as reported
in Table II. Therefore, it is able to obtain a satisfactory CM
by directly segmenting the DIs with a simple thresholding
method (e.g., Otsu thresholding [57]) or clustering method
(e.g., K-means clustering [58]) for Datasets #1, #2, #4, #5,
and #7. For the Datasets #3 and #6, they contain more types of
ground objects than other datasets (e.g., buildings, grass, roads,
pitches, farmland, rivers, forests, roads, and mountains), these
objects are very unevenly proportioned, and the resolution of
the images in Dataset #3 is very high (0.52 m), as shown in
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Fig. 8. It means that images of Datasets #3 and #6 contain
many categories of features, which poses difficulties in cap-
turing image structure and completing structure comparison.

By comparing the forward and backward DIs of VDF-HCD
on each dataset, it can be observed that they provide comple-
mentary information, which, in turn, can be fused to obtain
better detection results. This complementary advantage of DIs
can also be seen visually in Fig. 9, where a more obvious con-
trast of changed vertex and unchanged vertex can be obtained
by directly summing the fx and fy. Comparing SCASC and
SDA-HCD, we can find that they produce similar DIs because
they both belong to the structured graph-based regression
methods; however, there are differences in the performance of
their DIs in Fig. 9 and Table II, i.e., SDA-HCD outperforms
SCASC, which is due to the use of high-order information and
spectral analysis in SDA-HCD.

3) Change Maps: Third, to test the ability of detect-
ing changes, another five recently proposed SOTA methods
for HCD are adopted for additional comparison, including
M3CD [22], FPMS [32], CICM [11], NPSG [14], and IRG-
McS [41]. We use the default parameters in their codes, which
are also consistent with the related papers.

The visual results of the binary CMs generated by dif-
ferent methods on all the heterogeneous datasets are shown
in Fig. 11. Intuitively, the results generated by these com-
parison methods can generally reflect the main information
of changes. To be specific, the CMs provided by HPT and
AMD-IR are affected by the salt-and-pepper noise, as shown in
Fig. 11(a) and (b), especially on Dataset #3, which is because
their pixel-to-pixel regression process is not robust enough to
cope with complex and variable HCD conditions. As a result,
a large number of unchanged pixels are misclassified into
changed ones, e.g., the CMs of HPT on Datasets #3 and #5 and
the CMs of AMD-IR on Datasets #1, #3, and #7. The PSGM
achieves relatively good performances on some datasets, such
as Datasets #1 and #5, but also has higher FP on some datasets,
such as Dataset #7. The M3CD, FPMS, CICM, and NPSG do
not perform robustly enough, and their performance degrades
dramatically on some complex HCD scenes, such as M3CD,
FPMS, CICM, and NPSG on Dataset #2, M3CD on Dataset #6,
and CICM on Dataset #7. In the results of Datasets #6 and #7,
many false alarms appear in the CM of M3CD, while, in the
results of Datasets #2 and #3, many missed detection appear
in the CM of CICM. SCASC and IRG-McS can achieve satis-
factory CMs with less FP on Datasets #2, #4, and #7, thanks to
the exploitation of graph-based structure consistency between
heterogeneous images. Nevertheless, due to the fact that
SCASC and IRG-McS ignore the higher order neighborhood
information hidden in the graphs, making their performance
not as good as VDF-HCD and SDA-HCD. On the whole,
the proposed GSP-based methods can suppress false alarms,
reduce missed detection simultaneously, and outperform other
comparison methods. These performances can be attributed
to three main factors: 1) the graph-based method is more
robust to different HCD conditions, such as scenes, noises, and
sensors; 2) the high-order neighborhood information used in
the methods helps to capture the structure of complex regions
accurately and effectively; and 3) the negative influences of

changes are reduced in the propose methods, e.g., cutting
off the signal transmission from the changed vertices by
VDF-HCD and directly separating changed signal with the
signal decomposition model by SDA-HCD.

Table III reports the quantitative evaluation results of com-
parison methods on the datasets. It is clear that the quantitative
results are consistent with the visual analysis of Fig. 11.
We can see that the proposed methods obtain better results
than other SOTA methods on most datasets. For example, the
VDF-HCD gains the highest Kc and Fm in Datasets #1, #2, #5,
and #7, and the SDA-HCD gains the highest scores in Dataset
#3 and obtains very competitive performance on other datasets.
The average scores (OA, Kc, and Fm) of VDF-HCD and SDA-
HCD on all evaluated datasets are about (0.956, 0.687, 0.710)
and (0.956, 0.663, 0.686), respectively, which are higher
than other comparison methods. This demonstrates that the
proposed methods can efficiently improve HCD performance.

Finally, in order to further compare the performance of
the proposed GSP-based HCD methods, i.e., the VDF-HCD
and SDA-HCD, the results obtained by some representative
and SOTA methods [21], [27], [37], [38], [39], [70], [71],
[72], [73], [74], [75], [76], [77], [78], [79], [80], [81] are
summarized in Table IV, except for M3CD [22], FPMS
[32], CICM [11], NPSG [14], IRG-McS [41], HPT [15],
AMD-IR [23], PSGM [19], and SCASC [31], which have
been compared in detail in this article. Among these com-
parison approaches, DFR-MT [70], CACFL [27], AFL-DSR,
DCCAE [75], DCCA [76], DPFL [79], LT-FT [80], SSL [21],
ACE-Net [33], X-Net [33], SCCN [39], and ASDNN [81]
are deep learning-based methods. For the sake of fairness,
we directly quote the results of the corresponding datasets
in their original published papers in Table IV. Because the
datasets used in each paper are not identical, Table IV is not
aligned. As can be seen in Table IV, the proposed GSP-based
methods (VDF-HCD and SDA-HCD) consistently yield better
or very competitive accuracy across different datasets by com-
paring with these SOTA approaches, which again demonstrates
the effectiveness of the proposed GSP perspective for the HCD
problem.

4) Comparison of VDF-HCD and SDA-HCD: From the
above experiments, we can find that VDF-HCD is superior
to SDA-HCD in terms of detection accuracy in most datasets,
such as the average AUR and AUP in Table II, and the average
OA, Kc, and Fm in Table III. However, SDA-HCD has three
advantages: 1) compared to the VDF-HCD that only provides
the change results, i.e., DI or CM, the regression-based SDA-
HCD also provides a translated image of another moment,
which has a stronger visualization effect than VDF-HCD; 2)
SDA-HCD is more efficient than VDF-HCD and requires less
computational time, as reported in Table VI; and 3) the model
of SDA-HCD is very flexible and easy to extend as described
in Section VI, which has great potential for applications.

C. Discussions

1) Choices of H (S): As analyzed in Section VI-C, we need
to construct a low-pass filter for H (Wavg) in VDF-HCD.
We use the polynomials of H (Wavg) to approximate the
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Fig. 10. ROC and PR curves of DIs generated by different methods on all the heterogeneous datasets. Top row: ROC curves. Bottom row: PR curves.
From (left) to (right) are the results on Datasets #1–#7, respectively. (a1) ROC curves on Dataset #1. (a2) ROC curves on Dataset #2. (a3) ROC curves on
Dataset #3. (a4) ROC curves on Dataset #4. (a5) ROC curves on Dataset #5. (a6) ROC curves on Dataset #6. (a7) ROC curves on Dataset #7. (b1) PR curves
on Dataset #1. (b2) PR curves on Dataset #2. (b3) PR curves on Dataset #3. (b4) PR curves on Dataset #4. (b5) PR curves on Dataset #5. (b6) PR curves
on Dataset #6. (b7) PR curves on Dataset #7.

TABLE III

QUANTITATIVE MEASURES OF BINARY CMS ON THE HETEROGENEOUS DATASETS. THE HIGHEST SCORES ARE HIGHLIGHTED IN BOLD

TABLE IV

ACCURACY RATE OF CMS GENERATED BY DIFFERENT METHODS ON DIFFERENT DATASETS. THE RESULTS OF THESE COMPARISON METHODS

ARE REPORTED BY THEIR ORIGINAL PUBLISHED PAPERS, EXCEPT THAT THE RESULTS INDICATED WITH † ARE REPORTED BY

YANG ET AL. [76] (THEY ARE CONSISTENT WITH THEIR OPEN SOURCE CODES IN [37]). ITALICIZED AND

UNDERLINED MARKS ARE USED FOR DEEP LEARNING-BASED METHODS

low-pass filter with the transfer function of H (�) =
sign(� − γcf) + 1/2. It can be proven that the eigenvalues
of Wavg satisfy γk ∈ [−1, 1], k = 1, 2, . . . , N , and the
larger eigenvalue represents the lower frequency according
to Definition 2. In Fig. 12, we plot the different polynomial
transfer functions to approximate the functions of H (�) with
different cutoff frequencies γcf . In these filters, two parameters
are important: the polynomial order M that corresponds to the
hop number of neighbors that each vertex can reach and the
cutoff frequency that determines the bandwidth of the filter.

In Fig. 13, we verify the polynomial order M (from 1 to 5)
and cutoff frequency γcf (from 0.5 to 1 with an interval of 0.1)
in the proposed VDF-HCD. Two remarks can be observed in
Fig. 13.

1) The higher order M usually brings better results than
the M = 1 (the average Fm value is only 0.658 when
M = 1), which demonstrates the effectiveness of the
high-order information. However, a larger M is also not
recommend for two reasons: first, creating redundancy;
second, computational complex.
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Fig. 11. Binary CMs of different methods on heterogeneous datasets. From
(top) to (bottom), they correspond to Datasets #1 to #7, respectively. From
(left) to (right) are CMs generated by (a) HPT, (b) AMD-IR, (c) PSGM,
(d) SCASC, (e) M3CD, (f) FPMS, (g) CICM, (h) NPSG, (i) IRG-McS,
(j) VDF-HCD, and (k) SDA-HCD. In the binary CM, white: true positives
(TP); red: FPs; black: TNs; and green: FNs.

Fig. 12. Polynomial transfer function to approximate the H (�) with different
polynomial orders M and different cutoff frequencies γcf .

2) γcf controls the bandwidth of the low-pass filter,
as shown in Fig. 12. Although it can be estimated
accurately by the GFT, this process requires eigenvalue
decomposition, which is very complex for a large-scale
graph. However, as can be seen from Fig. 13 that the
VDF-HCD is robust for parameter γcf , there is a wide
range of acceptable values for γcf . For example, in our
experiments, we fixed γcf = 0.9 for simplicity.

In the SDA-HCD, the regression model requires the spectral
constraint g(Z) (30) to penalize high-frequency components
of �ZH such that the regressed Z have the same spectral
property (low-pass) as X in the KNN graph Gt1, i.e., �ZH ≈ 0.
If we decompose H (Lt1) = H 1/2(Lt1)H 1/2(Lt1), then
we have g(Z) = �H 1/2(Lt1)Z�2

F , where H 1/2(Lt1) repre-
sents a graph filter with the transfer function: H 1/2(�) =
(
∑M

m=1 hm�
m)1/2. Therefore, it requires that H 1/2(Lt1) is an

TABLE V

QUANTITATIVE RESULTS OF SDA-HCD WITH DIFFERENT H (Lt1)’S

approximate high-pass filter. In Fig. 14, we plot different
functions of H 1/2(λ) = (

�M
m=1 hmλm)1/2. In these functions,

we can find that the higher order polynomial transfer function
H 1/2(λ) = (λ + λ2 + λ3)1/2 is closer to a high-pass function
than H 1/2(λ) = √

λ. This also intuitively explains why
SDA-HCD, which uses higher order information and spectral
analysis, and performs better than the SCASC, as illustrated
by the results of Figs. 8–11 and Tables II and III.

In Table V, we list the quantitative results (average scores on
all the evaluated datasets) of SDA-HCD with different H (Lt1),
including Lt1, Lt1 +L2

t1, Lt1 +L2
t1 +L3

t1, and Lt1 +L2
t1 +L3

t1 +
L4

t1. With respect to the first-order H (Lt1) = Lt1, high-order
H (Lt1) improves by 6.4% and 3.1% on average AUP and Fm
in Table V, respectively. By contrast, the fourth-order H (Lt1)
deteriorates the performance a little bit on the average scores,
which is perhaps caused by the excessively narrow bandwidth
of the transfer function.

2) Choices of K: In the KNN graph, the number of nearest
neighbors plays an important role. In Fig. 15, we vary K
from 30 to 130 with step 20. It can be found that the detection
performance is not very sensitive to the value of K . Of cause,
a very small K is not appropriate, which will make the graph
not robust and, thus, affect the change measurements. For
example, for the unchanged vertex i , when one of its neighbor
j � ∈ N y

i is polluted by noise or changed, X j � will be different
from Xi , and it brings errors in dx

i of (7). In this case, a larger
K will reduce the influence of X j � by average weighting.
This can also be illustrated in Figs. 1(a) and 3(a), where the
unchanged fourth and seventh vertices with three neighbors
in Gt1 and Gt2 are less affected by changed fifth vertex than
the others, e.g., the first and second vertices in Gt1, and the
sixth and ninth vertices in Gt2, with two neighbors. On the
other hand, a particularly large K is also not appropriate,
which will make the change measurements less discriminative.
For example, when K exceeds the actual number of the real
similar neighbors of the vertex, then this vertex will receive
information from the vertices that are not related to it. In the
extreme case of K = N , we have the measurement of (14)
equals to 0 for all vertices. Therefore, we empirically set
K = √

N , which comes from the work of KNN-based density
estimation [82], [83], [84] and KNN classification [85].

3) Parameter of α: The balancing parameter of α is used
to control the sparsity level of � in Algorithm 2 according
to the update of � with (38), (39), or (40), which should
be selected according to the proportion of the changed area.
Generally, the smaller the changed regions, the larger α should
be. We evaluate the sensitivity of the SDA-HCD model to α
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Fig. 13. Sensitivity analysis of H (�) with different M’s and γcf ’s in VDF-HCD on all heterogeneous datasets. (a) Dataset #1. (b) Dataset #2. (c) Dataset
#3. (d) Dataset #4. (e) Dataset #5. (f) Dataset #6. (g) Dataset #7.

Fig. 14. Different functions of H (1/2)(λ) = (
�M

m=1 hmλm )(1/2).

Fig. 15. Sensitivity analysis of parameter K in VDF-HCD.

Fig. 16. Sensitivity analysis of parameter α in SDA-HCD.

in Fig. 16, which is assessed by measuring the AUR and AUP
of DI with different α (from 2−8 to 1 with the ratio of 2).
Based on Fig. 16, we fix α = 0.05 (i.e., α ≈ 2−4.3) in our
experiments for simplicity.

TABLE VI

COMPUTATIONAL TIME (SECONDS) OF VDF-HCD AND SDA-HCD

4) Computational Analysis: The main computational com-
plexity of the proposed methods is concentrating on graph
construction and structure comparison (VDF-HCD) or image
regression (SDA-HCD). For the former, calculating the dis-
tance matrix between all the patches or superpixels requires
O((Mx + My)N2/2), sorting the distance matrix by column to
construct the graph requires O(N2 log N), and calculating the
H (S) requires O((M − 1)N3). For the structure comparison of
VDF-HCD in Algorithm 1, the MRF cosegmentation requires
O(2NR N2) for each iteration with the worst case [41], where
NR is the number of edges in the R-adjacency neighbor
system of the MRF cosegmentation model. For the image
regression model of SDA-HCD in Algorithm 2, updating Z
with (34) requires O(N3), updating � requires O(My N) by
using the closed-form proximal operator (37), and updating
R with (41) requires O(My N ). Although the complexity of
Algorithm 2 is very high, which requires O(N3) for each
iteration, two acceleration strategies are available to improve
the efficiency of Algorithm 2 as introduced in [31]: computing
the matrix inversion of (2H (Lt1) + μIN )−1 offline in advance
or solving the Z-subproblem (34) with the preconditioned
conjugate gradient (PCG) method.

Table VI reports the computational time of VDF-HCD and
SDA-HCD with different N’s on Datasets #7 and #2, which is
performed in MATLAB 2016a running on a Windows desktop
with Intel Core i7-8700K CPU. As can be seen in Table VI,
the running time is mainly determined by the graph scale N ,
and SDA-HCD is more efficient than VDF-HCD because it
does not require iterations to eliminate the effects of changes
as in VDF-HCD.

VIII. CONCLUSION

Motivated by the performance gained by the graph-based
methods, we investigate the inner workings of HCD methods
and propose a new strategy for solving the HCD problem
from the perspective of GSP. By defining the graphs and graph
signals, the changes between heterogeneous images manifest
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themselves in two aspects: the structure difference between
graphs and the signal difference on the graph. Thereby, we can
compare the responses of the two signals on different filters
to detect the changes.

Therefore, we propose two frameworks for the HCD prob-
lem with GSP, i.e., VDF-HCD from the vertex domain and
SDA-HCD from the spectral domain. First, VDF-HCD mea-
sures the structure difference between graphs by comparing
the output signals of the same input signal on filters defined
on different graphs. VDF-HCD can explore the high-order
information hidden in the graphs by using different filters and
alleviate the negative influence of changes by using an iterative
strategy that cuts off the signal propagation from changed
vertices to their neighboring vertices. Second, we analyze the
GSP for HCD from the spectral domain. We first show the
spectral properties of the heterogeneous images on the same
graph and illustrate that it is the changes between images that
cause the differences in their spectral properties. Based on the
graph spectral analysis, we propose a signal decomposition-
based SDA-HCD, which decomposes the source signal into
the regressed signal and changed signal, and constrains the
spectral property of the regressed signal.

We hope that the proposed method can inspire research
on multimodal remote sensing images from the perspective
of GSP, such as image fusion and image registration. This
is particularly important for how to combine and rejuvenate
traditional methods, especially as deep learning-based methods
are currently being used systematically. In addition, we only
consider the simple graph, linear filtering, and GFT in this
article. Our future work includes studying hypergraphs, graph
wavelet analysis, and graph neural networks on the HCD
problem.
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