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Abstract— Change detection (CD) of remote sensing (RS)
images is one of the important problems in earth observation,
which has been extensively studied in recent years. However, with
the development of RS technology, the specific characteristics
of remotely sensed images, including sensor characteristics,
resolutions, noises, and distortions in imagery, make the CD
more complex. In this article, we propose a structure consistency-
based method for CD, which detects changes by comparing the
structures of two images, rather than comparing the pixel values
of images. Because the image structure is imaging modality-
invariant and not sensitive to noise, illumination, and other
interference factors, the proposed method can be applied to a
variety of CD scenarios and has strong robustness. Structural
comparison is realized by constructing and mapping an improved
nonlocal patch-based graph (NLPG) to avoid the data leakage
of two images. First, we demonstrate the effectiveness of the
method in homogeneous and heterogeneous CD, which shows that
the proposed method can be used as a unified CD framework.
Second, we extend the method to the heterogeneous CD with
multichannel synthetic aperture radar (SAR) image, which can
provide a reference for future research as the heterogeneous
CD with multichannel SAR is rarely studied. Third, through
the decomposition and in-depth analysis of NLPG, we modify
the graph construction process, structure difference calculation,
and the difference image fusion to make it more robust and
accurate. Experiments on six scenarios 12 data sets demonstrate
the effectiveness of the proposed method.

Index Terms— Graph, heterogeneous data, nonlocal similarity,
structure consistency, unsupervised change detection (CD).

I. INTRODUCTION

A. Background

THE change detection (CD) of remote sensing (RS) images

is a process of identifying changes of objects or phe-

nomena that have occurred in the same geographical area

at different times [1]. CD has been widely used in many

practical applications, such as urban studies [2], human activity

monitoring [3], resource and environment management [4],

and natural disaster assessment [5].
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Generally, CD algorithms can be divided into three cate-

gories according to whether the label information is used:

unsupervised [6], semisupervised [7], and supervised [8].

Although the semisupervised and supervised approaches can

theoretically provide a better performance, they require the

ground truth to provide the labeled samples. The traditional

unsupervised CD methods can be divided into three processes:

image preprocessing, difference image (DI) generation, and

analysis of DI [9]. In the preprocessing, geometric correction is

usually accomplished by image-to-image registration to ensure

that the corresponding pixels in the multitemporal images

refer to the same geographic location. In the second process,

the two registered images are compared to generate the DI,

which aims to increase the contrast between changed and

unchanged areas. In the last process, the DI can be divided

into the changed class and unchanged class to obtain the

binary change map (CM). Among these processes, the DI

generation plays an important role in the whole process of CD.

First, a high-quality DI can clearly highlight the changed

part, and then, the final CM can be obtained just by some

threshold segmentation or clustering operations on the DI,

which means that DI directly affects the performance of the

final CM. Second, for some difficult problems or problems

that must be treated with caution, the CD results are only

used as a reference for experts, which means that in such

case, the DI representing the probability of change may be

more useful to experts than the binary CM. Third, for some

unsupervised CD methods (such as the deep learning-based

methods), a high-quality DI can be used to construct the

pseudo-training set or assist the training process. Therefore,

in this article, we will focus on how to generate a high-

quality DI, and as for the CM, we just obtain it through some

conventional threshold segmentation or clustering methods.

CD using multitemporal RS images is a complicated

process, and it can be affected by many factors. The challenges

for CD are summarized as follows.

1) Inherent Noise: The noise inherent in the imaging

process makes it difficult to obtain a high-quality DI, which

may lead to many false and missed alarms in the CM [10]. This

problem is especially serious in the CD task with synthetic

aperture radar (SAR) images, where the coherent processing

of SAR data makes images susceptible to speckles and the

salt-and-pepper appearances because of the existence of many
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scatterers within the resolution cell [11]. Speckle in SAR

images complicates the CD task by reducing the quality of

DI and causing confusion between changes and unchanges.

Although the denoising operation can be implemented in the

preprocessing step, it may bring some irreparable errors. For

example, denoising may over smooth the image and cause

the loss of details or it may also bring some undesired

artifacts such as the so-called staircasing artifact. Therefore,

the CD method should be carefully designed to achieve

good performance in terms of resisting noise and preserving

details.

2) High Resolution: The high-resolution (HR) images sig-

nificantly increase the image size, which causes an increase in

processing time. More importantly, unlike the moderate- and

coarse-resolution data, the HR images show some different

characteristics, such as the increase of intensity variations

within the same land-cover class in the HR SAR images [12],

and the salt-and-pepper noise in the CM of very-high-

resolution (VHR) optical images [13], [14]. In moderate-

and coarse-resolution cases, the pixel-based methods are

usually used, which treat the individual pixel as the basic

unit of image analysis. However, in the HR images, each

pixel is closely related to its spatial neighboring pixels.

Therefore, the context information should be considered in the

CD method.

3) Heterogeneous CD: Recently, with the rapid develop-

ment of RS-related technologies, more and more image data

representing the real information of the earth’s surface can

be obtained from different sensors at the same time, and

the related heterogeneous RS image processing problem has

been studied [15]–[18]. Heterogeneous CD [19], which is

defined as a CD procedure with multitemporal images acquired

from different satellite sensors, has also attracted a growing

interest due to the great practical significance for the imme-

diate evaluation and emergency disasters. In such scenarios

(e.g., earthquake or flood), the preevent SAR image is

sometimes unavailable, whereas maybe only the postevent

SAR image can be available due to the adverse atmospheric

conditions [20]. However, since the heterogeneous images

reflect different physical quantities of the object and show

quite different statistical behaviors, it is difficult to calcu-

late the difference between the heterogeneous images as the

directly comparing is infeasible.

4) Limited Data Sets: The data sets for CD are relatively

limited. This is because constructing a ground-truth map that

reflects real change information requires a high cost of manual

operation in practice.

Different types of remotely sensed data require sensor-

specific considerations, such as the SAR (single polarization,

interferometric, and polarimetric)/spectral sensor (multispec-

tral and hyperspectral) with moderate/coarse/high resolution,

and different applications call for different approaches, such

as the land cover, flood mapping, and building changing.

Therefore, due to its complexity, there is no single method that

can deal with all types of CD problems [10]. In this article,

we try to propose a CD framework that can be applied to a

wider range, although we do not expect it to be applicable to

all the CD problems.

B. Motivations and Contributions

Aiming at the aforementioned challenges, the proposed

CD framework is expected to meet the following requirements:

robust to noise, adapt to different resolution requirements,

applicable to different data sets (homogeneous and heteroge-

neous CD), and without requiring any ground reference.

In our previous work, we have proposed a nonlocal patch-

based graph (NLPG)-based heterogeneous CD method [21],

which is based on the nonlocal self-similarity. It assumes that

the heterogeneous images share the same structure informa-

tion, and then, it uses the graph to measure the structure

consistency between heterogeneous images. This NLPG brings

three benefits: 1) since it uses the similarity/distance of patch

to measure the changes, it can reduce the impact of noise;

2) it takes advantage of context information because it uses

patches as processing units rather than individual pixels; and

3) it constructs a comparable relationship between heteroge-

neous images and calculates the structure difference within the

same image domain by mapping the graph of one domain to

the other domain, which avoids heterogeneous data leakage.

However, NLPG still has the following problems: 1) NLPG has

only been tested in the heterogeneous CD task, but its effect in

the homogeneous CD has not been reported and theoretically

proven; 2) NLPG only considers the single-polarization SAR

images but not polarimetric SAR (PolSAR) image, which

limits its application; 3) NLPG individually constructs a graph

for each patch, which is not efficient due to a lot of redundant

computation; and 4) the forward and backward DIs of NLPG

are fused based on statistical distribution, which needs to

estimate the noise level of images.

In this article, we propose a structure consistency-based

method by the improved NLPG (INLPG) to solve the above

problems. The main contributions are summarized as follows.

1) A unified CD framework by using the structure consis-

tency is proposed for both homogeneous and heteroge-

neous RS images. In particular, we show that structure

consistency can establish connections between images

for heterogeneous CD, and we also demonstrate that

structure consistency is more robust compared with

traditional patch difference/ratio operators in homoge-

neous CD. Therefore, the application scope of INLPG is

greatly extended.

2) INLPG is extended to the multichannel SAR (such as

the PolSAR) data sets with two strategies: channel-

based and covariance-matrix-based. Although there are

studies on the CD of homogeneous PolSAR images,

the heterogeneous CD with PolSAR images is rarely

studied. This work can provide a reference for future

research works.

3) The graph construction process of NLPG is simplified

and accelerated, which makes the INLPG to represent

image structure more accurately and efficiently. We also

modify the structure difference calculation to increase

the divergence between the changed and unchanged

classes. At the same time, the wavelet fusion technique

is used to avoid the noise estimation. Therefore, based

on these improvements, INLPG is more robust and has

higher detection accuracy.
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4) INLPG is tested with experiments on six different

scenarios 12 data sets, and the experimental results

demonstrate the effectiveness of the INLPG (source code

is made available at https://github.com/yulisun/INLPG).

C. Outline

The overall structure of this study takes the form of six

sections, including Section I. Section II reviews the related

work. Section III describes the details of the proposed method.

Section IV extends the application scope of the method.

Section V shows the experimental results. Finally, we provide

our conclusion in Section VI.

II. RELATED WORK

As the quality of DI directly affects the accuracy of CD,

we will review some methods of generating DI for different

types of sensors (domains) in this section.

A. DI for Multitemporal Optical Images

The mathematical operators used to compare multitempo-

ral optical images mainly include image differencing, image

regression, change vector analysis (CVA), and multivariate

alteration detection (MAD). CVA [22] is an extension of

the concept of image differencing, and it computes spectral

change vectors to produce two types of change information:

change magnitude representing the intensity of change, and

change direction which provides information about the spectral

behavior of the change vector. Bovolo et al. [23] proposed

a compressed CVA (C2VA), which compresses the informa-

tion presented in spectral change vectors by computing the

direction as the angular distance between the multispectral

difference vector and a reference vector. Different from CVA,

which is mainly applied to the original image feature space,

some methods are performed in the transformed feature space,

where the changed and unchanged areas show significantly

different values. For example, the MAD [24] and iteratively

reweighted (IR)-MAD [25] have been widely investigated,

which are based on the established technique of canonical

correlation analysis (CCA). In addition, to quantitatively mea-

sure the changes in the VHR optical images, a novel adaptive

histogram trend (AHT) similarity approach has been proposed

recently [13], [14]. However, these methods except AHT rarely

consider the effects of very different imaging conditions, such

as seasons, illuminations, and phenological phenomena, which

causes the same object to exhibit quite different spectral prop-

erties on multitemporal images. Therefore, direct comparison

of spectral values (or simple transformations) will lead to many

pseudo changes.

B. DI for Multitemporal SAR Images

In this case, the image difference operator becomes poorly

effective due to the multiplicative noise model of the SAR

image. Therefore, the ratio operator [26], log-ratio (LR) oper-

ator [27], and mean-ratio (MR) detector [28] are often used for

its robustness with respect to the speckle noise. Furthermore,

there are some other works proposed recently to generate a

better DI based on the fusion of different methods, such as

the wavelet fusion technique on different operators (on LR and

MR [29] and on Gauss log ratio and LR [30]), the saliency

extraction guided LR images [31], and the shearlet fusion tech-

nique on saliency extraction and Gauss-log-ratio images [32].

In [33], different despeckling methods are performed on the

input multitemporal images to test how can despeckling benefit

CD performance. Instead of separately applying the despeck-

ling method to the multitemporal images or the ratio/LR

DI directly, a nonlocal low-rank (NLR) model that jointly

uses the statistical characteristics of the logarithm transformed

multitemporal images is proposed [34], which can avoid the

information loss in the subtraction process and lead to a

better DI. Note that complete removal of speckle without

destroying the fine structural details in the SAR images is

not feasible. In addition, strong intensity variations associated

with HR images are exacerbated by SAR speckle, which could

also negatively affect the detection accuracy. Therefore, these

methods usually face such difficulties: how to generate a high-

quality DI to keep tradeoff between robustness to speckle noise

and strong intensity variation, and effectiveness of preserving

the HR geometrical information.

C. DI for Heterogeneous RS Images

In order to obtain the DI for heterogeneous CD, some

researchers use the similarity measures to detect the changes

between heterogeneous images. The copula theory is used to

model the dependence between unchanged areas [19], and

then, the Kullback–Leibler (KL) distance is employed to

measure the changes. Prendes et al. modeled the objects with

a sliding window by local joint distributions and then used the

manifold to measure the change indices [35], [36]. Five simi-

larity measures are tested for CD of SAR and optical images

in [37], including measures using probability: distance to inde-

pendence, mutual information, cluster reward algorithm [38],

and measures combining probability and radiometric value:

Woods criterion [39] and correlation ratio [40]. By assuming

that the heterogeneous images with absence of change have

some similar features, some special detection operators are

designed, such as the sorted histogram distance (SHD) [41],

the pixels pair (PP) method [42], [43], and the affinity matrices

distance (AMD) [44], [45]. In addition, some regression-based

methods are also employed to map the first image to the

domain of the other image, such as the homogeneous pixel

transformation (HPT) method [46] based on kernel regression

and K -nearest neighbors (K -NN) technique. In [44], the AMD

is first used to pick out the identified unchanged pixels

as pseudo-training data, and then, four different regression

methods are used to measure the changes. In [47], the image

regression is implemented by using a learned patch similarity

graph matrix (PSGM) with the self-similarity property. For

these similarity- and regression-based methods, two points are

very important: first, how to find the connections between

heterogeneous images accurately, and second, how to design

the CD operator to fully utilize these connections. Therefore,

this approaches usually face the difficulty that when the

scene is complex or the noise in the image is very severe
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(especially the speckle noise of SAR images), these connec-

tions are no longer applicable or the designed operators are no

longer fully represent the connections between heterogeneous

images, resulting in a sharp decrease in CD performance.

D. Deep Learning-Based Methods

Meanwhile, benefit from the achievement of deep neural

network in the field of computer vision, the deep learning-

based CD methods have also been proposed to extract the

high-level feature representation and explore the inner rela-

tionships of multitemporal images, for example, the deep

learning-based CD for multitemporal spectral images: general

end-to-end 2-D convolutional neural network (GETNET) [48],

deep CVA (DCVA) [49], and semisupervised CD using

graph convolutional network (GCNCD) [50]; for the multi-

temporal SAR images: deep nonsmooth nonnegative matrix

factorization network (nsNMF) [51], PCANet [52], and

convolutional-wavelet neural network (CWNN) [53]; for the

multitemporal heterogeneous images: the symmetric convolu-

tional coupling network (SCCN) [54], conditional generative

adversarial network (cGAN) [55], anomaly feature learning-

based deep sparse residual model (AFL-DSR) [56], the X-Net

with two fully convolutional networks [45], and the adver-

sarial cyclic encoders network (ACE-Net) [45]. Although the

CD method based on deep learning performs well in detection

accuracy, it still has two flaws: one is the time-consuming

training process, and the other is the construction of large-

size training set under the supervision mode or the complicated

screening process for selecting the pseudo-training set under

the unsupervision mode.

Since constructing a ground-truth map requires a high cost

of manual operation in practice, we focus on the unsupervised

CD method to reflect the change information. As reviewed

above, although many algorithms have been proposed for CD,

a few methods can be well applied to both homogeneous

and heterogeneous CD problems. In this article, we will

propose a structure-consistency-based CD method by using

the similarity relationship of image patches. Although image

patch-based CD methods have been proposed by researchers,

such as the MR detector [28] and robust CVA [57], most

of these methods directly compare the difference between

the patch in one image and the corresponding patch in the

other image, so they cannot be used in heterogeneous CD

due to the distinct image characteristics. Different from these

methods, the proposed method characterizes each patch by

its similarity relationship with other patches within the image

and then calculates the difference between patches of different

images by using these relationships to measure the changes.

It is not a comparison of pixel values of two image patches,

but a comparison between structures (characterized by patch

similarity relationships), which are represented by NLPGs.

Therefore, it can establish the connection between images

for heterogeneous CD. At the same time, because it com-

pares the structures that are not sensitive to the interference

factors such as illumination, season, and noise, it can also

be used in the homogeneous CD of both SAR and optical

images.

Fig. 1. Illustration of the structure consistency in heterogeneous images.
The similarity structure of target patch 1 in SAR image and optical image is
consistent, whereas the similarity structure of target patch 2 is not.

III. METHODOLOGY

We consider two coregistered images acquired by sensors

(homogeneous or heterogeneous) before and after an event,

which are denoted as X = {x(m, n, c); 1 f m f M,

1 f n f N, 1 f c f CX} in X domain and

Y = {y(m, n, c); 1 f m f M, 1 f n f N, 1 f c f CY} in Y

domain, respectively. Here, M and N represent the length and

width of the image, respectively, and CX and CY represent

the number of channels/bands of two images, respectively.

Because we expect that the CD method can be applied to

different data sets, especially heterogeneous multitemporal

images, we can only abandon those traditional mathematical

operators in the homogeneous CD task, such as difference

operator and ratio/LR operator. Since the heterogeneous sen-

sors take different imaging mechanisms, which makes it

meaningless to directly compare pixel values of heterogeneous

images, we need to find a relationship between the heteroge-

neous data and make them comparable and then extract the

changes.

The proposed method is based on the image self-similarity,

that is, each small patch in the image can always find some

similar patches within the image. The relationship between

this target patch and its similar patches can be regarded as the

structure of this target patch, which is quite well preserved

across the different types of imaging modality, and then,

it can be used to build the relationship between heterogeneous

images [21]. As shown in Fig. 1, for the unchanged targeted

patch 1, its similarity structure in the SAR image, which

is represented by the connections with its similar patches,

is conformed by the optical image, showing that the target

patch is also similar to the mapped patches in the optical

image. On the contrary, if the area represented by the target

patch has changed in the event, this similarity structure is

no longer conformed, showing that the target patch 2 is

very different from the mapped patches in the optical image.

Therefore, the change level can be measured by calculating the

difference between the similarity structures of multitemporal

images. Next, we briefly review the NLPG method [21] and

then introduce how to improve and extend it.

A. NLPG

For each target patch, X(m,n) = {x(m + Óm, n + Ón, c);
Óm, Ón * [p,2p], 1 f c f CX} centered on (m, n),

and NLPG first constructs a weighted K -nearest graph

G K
X(m,n)

= {V K
X(m,n)

, E K
X(m,n)

, wX} within a Ës × Ës search
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window W centered on this X(m,n) as

V K
X(m,n)

=
�

X(m,n), X(i, j); (i, j) * N K
X(m,n)

�

,
�

�

�
V K

X(m,n)

�

�

�
= K + 1

E K
X(m,n)

=
�

�

X(m,n), X(i, j)

�

; X(i, j) * V K
X(m,n)

, (i, j) �= (m, n)
�

w
�

X(m,n), X(i, j)

�

= exp
�

2»d
�

X(m,n), X(i, j)

��

"
�

X(m,n), X(i, j)

�

* E K
X(m,n)

(1)

where X(i, j) represents the square patch within W with search

step size �s , d(X(m,n), X(i, j)) represents a distance measure

of two patches X(m,n) and X(i, j), N
K

X(m,n)
represents the center

position set of the K -NN of X(m,n) within the search win-

dow W by sorting the distances d(X(m,n), X(i, j)), and » > 0 is

a bandwidth controlling parameter. Therefore, the graph G K
X(m,n)

can characterize the structure information of patch X(m,n).

Then, NLPG maps G K
X(m,n)

to the other image domain Y to

construct the mapped graph G
map
Y(m,n)

= {V
map
Y(m,n)

, E
map
Y(m,n)

, wY} as

V
map

Y(m,n)

=
�

Y(m,n), Y(i, j); (i, j) * N K
X(m,n)

�

,
�

�

�V
map

Y(m,n)

�

�

� = K + 1

E
map

Y(m,n)

=
�

�

Y(m,n), Y(i, j)

�

; Y(i, j) * V
map
Y(m,n)

, (i, j) �= (m, n)
�

w
�

Y(m,n), Y(i, j)

�

= exp
�

2»d
�

Y(m,n), Y(i, j)

��

"
�

Y(m,n), Y(i, j)

�

* E
map

Y(m,n)
. (2)

NLPG calculates the forward structure difference f Y
(m,n) by

comparing this mapped G
map

Y(m,n)
with its own K -nearest graph

G K
Y(m,n)

[similar to the construction process of G K
X(m,n)

in (1)] as

f Y
(m,n) = 1

K

K
	

k=1

�

�d
�

Y(m,n), Y(i, j)k

�

2 d
�

Y(m,n), Y(i �, j �)k

��

� (3)

where (i, j)k * N K
Y(m,n)

represents the center position of the

kth nearest patch to Y(m,n) in V K
Y(m,n)

, and
�

i �, j ��k * N K
X(m,n)

represents the center position of the kth nearest patch to X(m,n)

in V K
X(m,n)

.

Then, f Y
(m,n) is assigned to all the pixels in the patch

Y(m,n). After the structure difference is calculated on all the

overlapping patches, the forward DI can be obtained as

DI f w(i, j) = 1
�

�FY
(i, j)

�

�

	

f Y
(m,n)*FY

(i, j)

f Y
(m,n) (4)

where FY
(i, j) is the set of structure differences that cover the

pixel (i, j). The backward DIbw can be obtained by using

similar operation of mapping G K
Y(m,n)

to the image domain X .

Then, the final DI can be fused as

DIfinal =
�

DI f w + DIbw
�

/2. (5)

The framework work of NLPG-based DI generation is sum-

marized in Table I, where the patch step size �p and search

TABLE I

GENERATION STEPS OF NLPG-BASED DI

step size �s are used to accelerate the algorithm and improve

the performance. From this framework, we can find that

the calculation process of the structure difference is time-

consuming. It operates with each target patch as a unit and

individually creates a K -nearest graph for each patch, and

therefore, there are a lot of repeated distance calculations in

this process.

B. Improved NLPG

We still choose to exploit the structure information of

the image in terms of patches, mainly for three reasons:

1) the patch contains the context, texture information; 2) the

patchwise distance/similarity is more robust than the pixelwise

distance/similarity under the noisy condition; and 3) it can

reduce the number of vertices when constructing the graph

so that the algorithm can be applied to large-scale data

sets.

1) Construct the K -NN Graph: In the INLPG, we first

divide the images X into a number of overlapped square

patches X(m,n) with the step size �p * [1, 2 p + 1], and

then, we stack these patches into patch group matrix (PGM)

X̃ with the size (2 p + 1) × (2 p + 1) × CX × N�p
, where

N�p
= �M/�p� · �N/�p� with �·� denoting the up round-

ing operation. Here, we denote the i th patch as X̃i =
X̃(:, :, :, i) * R

(2p+1)×(2p+1)×CX , i = 1, 2, . . . , N�p
. For the

image Y, we follow the same operation to obtain the PGM Ỹ

with the size (2 p + 1) × (2 p + 1) × CY × N�p
. In this

way, each patch pair in the original images X and Y still

have the same position relationship in the new PGM X̃

and Ỹ.

As the graph model can efficiently capture crucial infor-

mation and structure of an image [58], [59], we propose

to construct a weighted graph G to represent the geometric

structure for the multitemporal images (in order to avoid

the symbol confusion with the previous K -nearest graph G

of NLPG, we use G to represent the K -NN graph constructed

in INLPG).

Definition 1 (K -NN Graph): Given a set of data points z =
{z1, z2, . . . , zn} with zi * R

d , G = {V , E, w} is a weighted

directed graph, where V = Z , and
�

zi , z j

�

* E if and
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only if dist
�

zi , z j

�

is among the K smallest elements of the

set {dist(zi , zl)|l = 1, . . . , i 2 1, i + 1, . . . , n}, and w(i, j) =
exp

�

2»dist
�

zi , z j

��

for
�

zi , z j

�

* E , where dist(·, ·) is

a defined distance metric such as Euclidean distance and

Minkowski distance.

Given the PGM X̃, we set each patch as a vertex and

construct the K -NN graph GX̃ =
�

VX̃, EX̃, wX̃

�

as

V
X̃

=
�

X̃i ; i = 1, 2, . . . , N�p

�

,
�

�V
X̃

�

� = N�p

E
X̃

=
�

�

X̃i , X̃ j

�

; i = 1, 2, . . . , N�p
, j * N K

X̃i

�

wX̃(i, j) = exp
�

2»dist
�

X̃i , X̃ j

��

"
�

X̃i , X̃ j

�

* E
X̃

(6)

where N K

X̃i
represents the position set for the K -NN of X̃i

by sorting the distance dist
�

X̃i , X̃ j

�

, j = 1, . . . , i 2 1, i +
1, . . . , N�p

and taking our the K smallest elements.

By comparing the graph construction process of NLPG and

INLPG, we can find that their differences are as follows. First,

INLPG removes the limitation of local search window W

in NLPG and searches for similar patches in the whole image,

which can establish a wider connection for each patch. Thus,

it is able to find more similar nearest neighbors (NNs) for

each vertex and also to avoid overconcentration of NNs.

Therefore, the graph G of INLPG is more robust. Second,

NLPG individually creates a graph G for each target patch

as illustrated in (1), which contains K + 1 vertices and

K edges. Then, NLPG constructs a total of N�p
graphs

for each image. However, INLPG is not to construct the

graph one by one for each target patch but to construct

the graph GX̃ for the whole image X as illustrated in (6),

which contains N�p
vertices and K × N�p

directed edges.

In this way, INLPG can avoid the repeated distance calcu-

lation in NLPG and use some efficient graph construction

methods.

For each individual graph of NLPG in (1), the time

complexity of calculating distance vector requires

O(CX(2 p + 1)2 N�s
), where N�s

is the number of candidate

NNs in the search window, and that of sorting the distance

vector requires O(N�s
log N�s

) by using some accelerated

sorting algorithms, such as the Block sort or Tree sort.

Therefore, the time complexity of constructing graphs in

NLPG is O((CX(2 p + 1)2 + log N�s
)N�s

N�p
). For the time

complexity of INLPG, calculating the complete distance

matrix in (6) requires O(CX(2 p + 1)2 N2
�p

/2) and sorting

the distance matrix by column requires O(N2
�p

log N�p
).

Therefore, the time complexity of constructing K -NN graph in

INLPG is O((CX(2 p + 1)2/2 + log N�p
)N2

�p
), which is larger

than NLPG as N�s
is usually a fraction of N�p

. However, due

to the large amount of redundancy in the distance matrix, this

K -NN graph construction process can be accelerated by using

some efficient graph construction methods. For example,

the K -NN graph with NN-Descent uses the principle: “a

neighbor of a neighbor is also likely to be a neighbor”

[60], [61]; locality-sensitive hashing (LSH) uses families of

functions that hash signatures of similar objects to the same

bucket with high probability [62]; and L2Knng solves the exact

K -NN graph construction problem by pruning much of the

similarity search space [63]. Specifically, for the kgraph [61],

its empirical cost is around O(n1.14) for constructing the

K -NN graph with a set of n objects [60]. By using these

fast graph construction methods, INLPG can be greatly

accelerated.

2) Measure the Change Level: In the directed graph GX̃ =
�

VX̃, EX̃, wX̃

�

, each patch in X̃ becomes a vertex, and each

vertex is connected with K NNs by a set of directed edges,

and the associate weights w involving the similarities between

each vertex and its NNs. In this way, the structure infor-

mation of the image can be characterized by this K -NN

graph. Directly comparing the graph GX̃ =
�

VX̃, EX̃, wX̃

�

and GỸ =
�

VỸ, EỸ, wỸ

�

[similar to the construction process

of GX̃ in (6)] is difficult, which is mainly because they come

from different domains. To avoid the leakage of heterogeneous

data, we first map GX̃ to the other image domain Y , and

then, we have the mapped graph G
map

Ỹ
=

�

V
map

Ỹ
, E

map

Ỹ
, w

Ỹ

�

as

V
map

Ỹ
=

�

Ỹi; i = 1, 2, . . . , N�p

�

,
�

�V
map

Ỹ

�

� = N�p

E
map

Ỹ
=

�

�

Ỹi , Ỹ j

�

; i = 1, 2, . . . , N�p
, j * N K

X̃i

�

wỸ(i, j) = exp
�

2»dist
�

Ỹi , Ỹ j

��

"
�

Ỹi , Ỹ j

�

* E
map

Ỹ
. (7)

We can see that the mapped graph G
map

Ỹ
is constructed by

using the edges EX̃ of GX̃ and calculating the weights in the

Y domain. As G
map

Ỹ
and GỸ are in the same domain, then we

can calculate the structure difference by using the distance

criterion or similarity criterion as

f Ỹ
i = 1

K

»

¿

¿

	

j �*N K

X̃i

dist
�

Ỹi , Ỹ j �
�

2
	

j*N K

Ỹi

dist
�

Ỹi , Ỹ j

�

¿

¿

£
(8)

f Ỹ
i = 1

K

»

¿

¿

	

j*N K

Ỹi

exp
�

2»dist
�

Ỹi , Ỹ j

��

2
	

j �*N K

X̃i

exp
�

2»dist
�

Ỹi , Ỹ j �
��

¿

¿

£
. (9)

Intuitively, the structure difference is measured by how

much is the difference between the K -NN position sets of

N K

X̃i
and N K

Ỹi
. If the region represented by the patch Ỹi does

not change, the patch Ỹ j � , j � * N K

X̃i
will be similar to Ỹi with

a high probability, so the difference value f Ỹ
i will be very

small; on the contrary, if this region changes, the patch Ỹ j � ,

j � * N K

X̃i
will be different from Ỹi with a high probability,

then resulting in large f Ỹ
i .

Meanwhile, by comparing the distance criteria (8) of INLPG

and (3) of NLPG, we can find that the INLPG calculates the

difference between the mean values, whereas NLPG calculates

each cumulative difference. As a result, f Ỹ
i f f Y

(m,n), with Ỹi

and Y(m,n) representing the same patch. The mean difference

of (8) is more robust than the cumulative difference of (3) in

the noisy conditions. For the changed patch Ỹi , dist
�

Ỹi , Ỹ�
j

�

,

j � * N K

X̃i
may be very large. Therefore, we basically have

dist
�

Ỹi , Ỹ j

�

f dist
�

Ỹi , Ỹ j �
�

for all j * N K

Ỹi
, j � * N K

X̃i
,
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and then, we have f Ỹ
i = f Y

(m,n). On the contrary, for the

unchanged patch Ỹi , although dist
�

Ỹi , Ỹ j �
�

, j � * N K

X̃i
may

be very small, f Ỹ
i always be smaller than or equal to f Y

(m,n).

Specifically, we have f Ỹ
i = 0 if N K

Ỹi
= N K

X̃i
and f Y

(m,n) = 0

if and only if N K

Ỹi
= N K

X̃i
and the order of the elements

in them should be the same [that is (i, j)k =
�

i �, j ��k
for

k = 1, 2, . . . , K in (3)]. However, due to the presence of noise,

this condition of f Ỹ
i = f Y

(m,n) is too strict when Ỹi has not

changed. From this, we can find that the mean difference is

more able to increase the divergence between the changed and

the unchanged classes.

After the structure difference f Ỹ
i is calculated for all

the patches i = 1, 2, . . . , N�p
, then for each pixel (s, t),

1 f s f M , 1 f t f N in the image, we denote F Ỹ
(s,t) as

the set of structure difference covering the pixel (s, t). The

forward DI can be calculated as

DI f w(s, t) = 1
�

�

�F Ỹ
(s,t)

�

�

�

	

f Ỹ
i *FỸ

(s,t)

f Ỹ
i . (10)

Similarly, the backward DIbw can be calculated by mapping GỸ

to the image domain X and then comparing the mapped G
map

X̃
with GX̃.

3) Fuse the DI: In NLPG, the forward DI and backward

DI are fused by arithmetic average as (5). Since the values of

DI f w and DIbw may not be at the same level due to different

noise levels and different distance criteria of the heteroge-

neous data, it needs to balance the distance measurements

dist
�

Ỹi , Ỹ j �
�

and dist
�

X̃i , X̃ j �
�

to keep DI f w and DIbw at the

same level. NLPG adds normalized parameters on the distance

criteria to make their expectations equal in the unchanged area.

Although this method is feasible and proved to be effective,

it has two disadvantages. First, it is derived based on a

specific distribution model, such as additive white Gaussian

noise (AWGN) model and multiplicative speckle noise model

of Gamma distribution. When the noise in the image does

not belong to these two types, it may cause performance

degradation. Second, it needs to estimate the noise level of the

image, such as the variance of the AWGN and the equivalent

number of looks (ENL) of speckle noise model, which is not

easy and introduces extra computation. In order to fuse the

image and avoid the above problems, we use a simple wavelet

fusion method in INLPG.

Due to its low computational complexity and the ability to

preserve image details, discrete wavelet transform (DWT) has

been widely used in pixel-level image fusion [64], [65], and

it has also been extended to the CD task [29], [30]. The main

step of the DWT fusion method in INLPG can be described

as follows.

Step 1: Compute the DWT of forward and backward DIs and

obtain the multiresolution decomposition of each DI as: D
f w
L L

and Dbw
L L representing the low-frequency wavelet coefficients

of DI f w and DIbw , respectively, and D f w
· and Dbw

· (· *
{L H, H L, H H}) standing for three high-frequency wavelet

coefficients of DI f w and DIbw , respectively.

TABLE II

GENERATION STEPS OF INLPG-BASED DI

Step 2: Fuse corresponding coefficients as follows:

Dfuse
L L =

�

D
f w
L L + Dbw

L L

�

/2

Dfuse
· (i, j) =

�

D f w
· (i, j), E f w

· (i, j) f Ebw
· (i, j)

Dbw
· (i, j), E f w

· (i, j) > Ebw
· (i, j)

(11)

where E·(i, j) is the Gaussian weighted local area energy

coefficient defined as

E·(i, j) =
p

	

h=2p

p
	

t=2p

gh,t [D·(i + h, j + t)]2 (12)

where gh,t is the element of the rotationally symmetric

Gaussian low-pass filter g of size (2 p + 1) × (2 p + 1) with

standard deviation Ã = 1.

Step 3: The fused image DIfinal can be obtained by

inverse DWT of low-frequency Dfuse
L L and three high-frequency

Dfuse
· (· * {L H, H L, H H}).
In this DWT fusion process, the low- and high-frequency

wavelet coefficients are fused separately, which can make full

use of the forward and backward DIs.

4) Summarize the Algorithm: The framework of the

INLPG-based DI generation is summarized in Table II, which

reduces the parameters needed in the NLPG, such as the search

windows size, the search step size, and the estimated noise

level parameters (the variance and ENL). As mentioned above,

although the basic ideas of the NLPG (Table I) and INLPG

(Table II) are similar, their implementation process is different.

First, their graph construction processes are different.

INLPG searches the NNs in the whole image instead of a

local search window, which can establish a broader and more

accurate connection for each patch to obtain a more robust

graph; INLPG constructs the K -NN graph for the image as a

whole, rather than a separate graph for each patch individually,

which can avoid the repeated distance calculation and can be

accelerated by some efficient graph construction methods, such

as the kgraph [60], [61]. Second, their calculations of structure

difference are different. INLPG uses the mean difference

instead of the cumulative difference, which is more robust

and can increase the divergence between the changed and
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Fig. 2. Data set #1 and data set #2 of Scenario 1. (a)–(c) Preevent image,
postevent image, and the ground-truth image of data set #1, respectively.
(d)–(f) Preevent image, postevent image, and the ground-truth image of data
set #2, respectively.

the unchanged classes. Third, their methods of DIs fusion

are different. INLPG uses the DWT fusion method instead of

the noise estimation-based arithmetic average, which avoids

the complex noise estimation process, simplifies the fusion

process, and improves the fusion effect.

IV. EXTENSION OF INLPG

From the framework of the INLPG-based DI genera-

tion, we can find that the proposed method exploits the

inherent structure property of images and appeals quite

imaging modality-invariant. Therefore, it can be used for

heterogeneous CD. At the same time, as INLPG compares

the structures that are not sensitive to the illumination, season,

and noise, it can also be used for homogeneous CD. Moreover,

it can be used for images acquired by optical, single-channel

SAR, multichannel SAR, and other sensors, as long as we can

construct the corresponding NLPGs representing the structure

of these images. In this section, we first propose some patch

distance calculations for INLPG and show how to extend

it to the CD problem with multichannel SAR images, and

then, we demonstrate that structure difference is more robust

compared with traditional patch difference/ratio operators in

homogeneous CD.

A. Patch Distance Calculation

It can be found from (6) that the construction of K -NN

graph largely depends on the selection of patch distance. For

two patches, e.g., X̃1, X̃2 * R
(2p+1)×(2p+1)×CX , we vector-

ize them and denote each element as x1(i) and x2(i) with

i = 1, . . . , (2 p + 1)2CX. In the NLPG, we have given three

distance criteria as

dist(1)
spe

�

X̃1, X̃2

�

=
�(2p+1)2CX

i=1 (x1(i) 2 x2(i))
2

(2 p + 1)2CX

(13)

dist
(1)
SAR

�

X̃1, X̃2

�

=
�(2p+1)2CX

i=1 log
�

(x1(i)+x2(i))2

4x1(i)x2(i)

�

(2 p + 1)2CX

(14)

dist
(2)
SAR

�

X̃1, X̃2

�

=
�(2p+1)2CX

i=1 (log x1(i) 2 log x2(i))
2

(2 p + 1)2CX

. (15)

dist(1)
spe can be applied to the optical image with the AWGN,

and dist
(1)
SAR and dist

(2)
SAR are suitable for the SAR image with

the multiplicative Gamma distribution model. These distance

formulas are derived based on different criteria [66], such

as Bayesian joint likelihood, generalized likelihood ratio, and

variance stabilization criterion. In [21], these patch distances

have been studied in depth. Here, we expand the patch distance

in two aspects.

1) Robust Distance Criterion for Spectral Images: For the

real-world spectral images, there usually exists a combination

of several different types of noise, e.g., Gaussian noise and

impulse noise. In some circumstances, the impulse noise is

dominant or there are many bad points in the image (such

as missing data and stripe corruption in the hyperspectral

images [67]), so a robust distance criterion is needed. In this

case, the following criterion is more suitable than the squared

Euclidean distance dist(1)
spe:

dist(2)
spe

�

X̃1, X̃2

�

=
�(2p+1)2CX

i=1 |x1(i) 2 x2(i)|
(2 p + 1)2CX

. (16)

2) Extending to the Multichannel SAR: For the D-channel

SAR image X (e.g., D = 2 for dual PolSAR or interferometric

SAR (InSAR) and D = 3 for fully PolSAR), we have two

strategies for calculating the patch distance: channel-based

and covariance matrix-based. The channel-based strategy is to

treat the D-channel SAR image as the ordinary multichannel

images with CX = D. Therefore, dist
(1)
SAR and dist

(2)
SAR can be

directly used for the multichannel SAR.

For the covariance-matrix-based strategy, these channels can

be gathered together at each pixel by forming a complex

covariance matrix. Denote the L vectors of D complex values

recorded for a pixel i as 	k(1)
i . . . , 	k(L)

i , and then, the D × D

empirical covariance matrix Ci is given by

Ci = 1

L

L
	

t=1

	k(t)
i

	k(t)†
i (17)

where † indicates the Hermitian transpose. With Goodman’s

model [68], the covariance matrix Ci is circular complex

Wishart distributed, for L g D

pCi
(Ci |�i) = L L D det (Ci )

L2D

	D(L) det (�i )
L

exp
�

2Ltr
�

�21
i Ci

��

(18)

where �i = E

�

	ki
	k†

i

�

is the underlying D × D complex

covariance matrix that codes for reflexivity and complex

correlation, det(·) denotes the determinant of a matrix,

tr(·) denotes the trace of a matrix, and 	(·) denotes the

multivariate Gamma function. When L < D, Ci is singular

(det(Ci ) = 0). To ensure that covariance matrix is full rank,

a rescaling operation [69] is performed on the off-diagonal

elements of Ci to obtain matrix C�
i as

"d, C �
i (d, d)

= Ci (d, d)

"d �= e, C �
i (d, e) = ³ Ci (d, e), d, e = 1, . . . , D

(19)
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Fig. 3. DIs generated by different methods of data sets #1 and #2. (Top row) DIs of data set #1. (a) Diff. (b) LR. (c) MR. (d) NR. (e) SDCD. (f) NLR-ADMM.
(g) INLPG. (Bottom row) DIs of data set #2. (h) Diff. (i) LR. (j) MR. (k) NR. (l) SDCD. (m) NLR-ADMM. (n) INLPG.

Fig. 4. ROC curves on (a) data set #1 and (b) data set #2.

Fig. 5. Binary CMs generated by different methods on data set #1.
(a) PCANet. (b) INLPG-based PCANet. (c) CWNN. (d) INLPG-based
CWNN. In the binary CM, white represents true positives (TPs), red rep-
resents FPs, black represents true negatives (TNs), and green represents FNs.

where ³ = min{L/D, 1}. With the generalized likelihood ratio

criterion, a distance criterion between two patches X̃1 and X̃2

is given in [69] as follows:

dist
(1)
M2SAR

�

X̃1, X̃2

�

= 1

(2 p + 1)2

(2p+1)2

	

i=1

log

�

det
�

1
2

�

C�
1,i + C�

2,i

��2

det
�

C�
1,i

�

det
�

C�
2,i

�

�

(20)

where C�
1,i and C�

2,i denote the rescaled covariance matrix

for the i th pixel in patches X̃1 and X̃2, respectively.

Next, similar to dist
(2)
SAR, we derive another distance calcula-

tion for the covariance-matrix-based strategy with the variance

stabilization criterion. For the Wishart distributed Ci in (18),

denoted by W(�i ; L), according to [70], we have

E[Ci ] = �i

var[Ci (d, e)] = 1

L
�i (d, d)�i (e, e); d, e = 1, . . . , D. (21)

Fig. 6. Data sets #3 and #4 of Scenario 2. (a)–(c) Preevent image,
postevent image, and the ground-truth image of data set #3, respectively.
(d)–(f) Preevent image, postevent image, and the ground-truth image of data
set #4, respectively.

Since the variance for off-diagonal elements does not depend

on �i (d, e) but on �i (d, d) and �i (e, e), it is difficult to

find an invertible application S that stabilizes the variance

of Ci (makes var[S(Ci )] to be a constant). With the matrix

logarithm transform Ĉi = log Ci and �̂i = log �̂i , the covari-

ance matrices �̂i are distributed according to a Wishart–

Fisher–Tippett distribution [70]. However, the expectation and

variance of Ĉi do not seem to be known in closed form in

the literature. Nevertheless, as the determinant det(Ci) also

represents the information of Ci , we can use det(Ci ) to

measure the similarity between different patches. According

to [71], we have

L D det(Ci)

det(�i )
>

D21
�

i=0

Ç2
L2i . (22)

The distribution of (L D det(Ci))/(det(�i )) is similar to

the product of chi-square variables with different degrees
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Fig. 7. DIs generated by different methods of data sets #3 and #4. (Top row) DIs of data set #3. (a1) �̂G . (b1) �̂t1. (c1) �̂Wald. (d1) �̂MT. (e1) �̂Mat.

(f1) �̂T ex . (g1) LR (channel-based). (h1) LR (covariance-matrix-based). (i1) INLPG (dist
(2)
SAR). (j1) INLPG (dist

(2)
M2SAR). (Bottom row) DIs of data set #4.

(a2) �̂G . (b2) �̂t1 . (c2) �̂Wald. (d2) �̂MT. (e2) �̂Mat. (f2) �̂T ex . (g2) LR (channel). (h2) LR (covariance matrix). (i2) INLPG (dist
(2)
SAR). (j2) INLPG (dist

(2)
M2SAR).

of freedom. The first two moments of log-determinant

log(det(Ci)) (which coincides with the trace of Ĉi :

log(det(Ci)) = trĈi ) are known in closed form [71] as

E
�

log(det(Ci))
�

= log[det(�i )]

+
D
	

i=1

Ë(0, L 2 i + 1) 2 D log L

var
�

log(det(Ci))
�

=
D
	

i=1

Ë(1, L 2 i + 1) (23)

where Ë(m, ·) is the m-order Ploygamma function. Therefore,

variance stabilization of det(Ci) can be performed by using a

logarithm transform, and then the resulting distance criterion

is given by:

dist
(2)
M2SAR

�

X̃1, X̃2

�

= 1

(2 p + 1)2

(2p+1)2

	

i=1

�

log
�

det
�

C�
1,i

��

2 log
�

det
�

C�
2,i

���2
.

(24)

The channel-based strategy is simple and easy to calcu-

lated; however, it does not use important interchannel cross

correlations, resulting in less accuracy than the covariance-

matrix-based strategy, as shown in Section V.
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Fig. 8. ROC curves on (a) data set #3 and (b) data set #4. In the legend,
the LR (c) and LR (cm) represent channel-based LR operator and covariance-

matrix-based LR operator, respectively. dist
(2)
SAR and dist

(2)
M2SAR

represent the
INLPG using different patch distance criteria.

B. Robustness in Homogeneous CD

Next, we will show that INLPG also has advantages in

homogeneous CD. As mentioned above, because INLPG

compares the structures of images, it is not sensitive to the

interference factors, such as illumination, season, and noise in

homogeneous CD. Here, we demonstrate the effectiveness of

INLPG from another perspective by proving that the compar-

ison of patch relationships in INLPG is more robust than the

traditional patch difference/ratio operators.

We simply consider two noisy homogeneous images X, Y *
R

M×N divided into
:

Q × :
Q square patches. If X7 and Y7

are the corresponding true images, we make the following

assumptions.

Assumption 1: For the spectral images X and Y, their pixels

are independently distributed according to the AWGN model

as x > N
�

x7, Ã 2
�

and y > N
�

y7, Ã 2
�

, where Ã 2 is the

variance of the images.

Assumption 2: For the SAR images X and Y, their pixels

are independent distributed according to the usual multiplica-

tive unit-mean Gamma model as x/x7 > Gamma(L, L) and

y/y7 > Gamma(L, L), where L is the ENL of the images.

For the vectorized target patches X1 and Y1 with their

elements defined as x1(q), y1(q), q = 1, . . . , Q, and their kth

NN are defined as Xik , i k * N K
X1

and Y j k , j k * N K
Y1

with

X7
ik = X7

1 and Y7
j k = Y7

1. Next, we compare different operators

of measuring the change level between the target patches X1

and Y1.

The traditional patchwise difference operator and LR oper-

ator are, respectively, defined as

dtspe = �X1 2 Y1�2
2

dtSAR = �log X1 2 log Y1�2
2. (25)

The proposed patchwise relationship difference operators are

defined as [corresponding to (8)]

drspe = 1

K

K
	

k=1

�

�Yik 2 Y1�2
2 2

�

�Y j k 2 Y1

�

�

2

2

�

drSAR = 1

K

K
	

k=1

�

�log Yik 2 log Y1�2
2 2

�

�log Y j k 2 log Y1

�

�

2

2

�

(26)

Fig. 9. Data sets #5 and #6 of Scenario 3. (a)–(c) Preevent image,
postevent image, and the ground-truth image of data set #5, respectively.
(d)–(f) Preevent image, postevent image, and the ground-truth image of data
set #6, respectively.

where Yik , i k * N K
X1

, is the mapped patch of Xik , and Y j k ,

j k * N K
Y1

, is the kth NN of Y1. To compare these operators,

we define the change-level contrast ratio (CCR) as

ccr(d) = E
�

d|X1 changed

�

E
�

d|X1 unchanged

� = E
�

d|X7
1 �=Y7

1

�

E
�

d|X7
1=Y7

1

�

d *
�

dtspe, dtSAR, drspe, drSAR

�

(27)

which can measure the contrast of change levels on

the changed and unchanged patches obtained by different

operators.

Theorem 1: Suppose that the K NNs of the target patch

are not changed in the event. For the multitemporal spec-

tral images, if Assumption 1 is satisfied, then ccr(drspe) >

ccr(dtspe); for the multitemporal SAR images, if Assumption 2

is satisfied, then ccr(drSAR) > ccr(dtSAR).

Proof of Theorem 1 can be found in the Appendix, where we

also derive the degree of CCR improvement. From Theorem 1,

we can find that the proposed relationship difference operator

is more robust to noise, which plays an important role in

the CD of SAR images as shown in the experimental results of

Fig. 3 in Section V-B. Therefore, the performance of INLPG

in homogeneous CD is also guaranteed.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, experiments are performed to evaluate the

performance of the INLPG,1 which are conducted on real

images of different CD tasks (homogeneous and heteroge-

neous) with six scenarios. The quantitative measures, experi-

mental results, and parameter analysis are as follows.

A. Figures of Merit

The quality of DIs generated by different methods can be

evaluated by the empirical receiver operating characteristic

(ROC) curves, which takes the probability of false alarm (PFA)

1INLPG is available at https://github.com/yulisun/INLPG

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on August 25,2022 at 10:26:18 UTC from IEEE Xplore.  Restrictions apply. 



4700221 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 10. DIs generated by different methods of data sets #5 and #6. (Top row) DIs of data set #5. (a) CVA. (b) MAD. (c) IR-MAD. (d) DSFANet.
(e) DCVA. (f) INLPG. (Bottom row) DIs of data set #6. (g) CVA. (h) MAD. (i) IR-MAD. (j) DSFANet. (k) DCVA. (l) INLPG.

Fig. 11. ROC curves on (a) data set #5 and (b) data set #6.

as abscissa and probability of detection (PD) as ordinate.

Moreover, the area under the curve (AUC) is used as the

quantitative criterion for the ROC curve, which is the integral

of the ROC curve. The higher the AUC, the better the quality

of DI.

B. Experimental Results and Discussion

We construct six distinct scenarios to illustrate the

performance of the proposed CD framework, as listed

in Table III—Homogeneous CD: Scenario 1 with two single-

polarization SAR data sets; Scenario 2 with two PolSAR data

sets; and Scenario 3 with two optical image data sets, and

Heterogeneous CD: Scenario 4 with two SAR/optical (mul-

tispectral) data sets; Scenario 5 with two multispectral data

sets of different bands acquired from different sensors; and

Scenario 6 with two PolSAR/optical (multispectral) data sets.

All considered images have been manually geographically

aligned to fulfill the requirements of the CD framework.

The main parameters of the INLPG are the patch size p,

the step size �p, and the number of the most similar

neighbors K . For all the experimental results, we set �p = p,

K = �0.01N�p
�, and adjust p for different data sets. The

impact of these parameters will be analyzed in detail in

Section V-C.

Fig. 12. Data sets #7 and #8 of Scenario 4. (a)–(c) Preevent image,
postevent image, and the ground-truth image of data set #7, respectively.
(d)–(f) Preevent image, postevent image, and the ground-truth image of data
set #8, respectively.

1) Homogeneous CD of Single-Polarization SAR Data Sets:

Two pairs of homogeneous SAR images are used in this

scenario. Data set #1 is acquired by Radarsat-2 SAR sensor

over Yellow River Estuary, China, as shown in Fig. 2(a)–(c).

The noise levels of multitemporal images are quite different,

and the preevent image is a four-look image, whereas the

postevent image is a single-look image. This different speckle

noise level between two images makes the CD more com-

plicated. Data set #2 is acquired by Sentinel-1A SAR sensor

with VV polarization over Shangqiu City, China, as shown

in Fig. 2(d)–(f). Both SAR images in data set #2 are four-

look images.

To compare the DIs on the homogeneous SAR images,

we choose the difference operator (Diff), LR operator,

MR method [28], neighborhood-ratio (NR) method [72],

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on August 25,2022 at 10:26:18 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: STRUCTURE CONSISTENCY-BASED GRAPH FOR UNSUPERVISED CD 4700221

Fig. 13. DIs generated by different methods of data sets #7 and #8. (Top row) DIs of data set #7. (a) SHD. (b) PP. (c) AMD. (d) FPMS. (e) NLPG.
(f) INLPG. (Bottom row) DIs of data set #8. (g) SHD. (h) PP. (i) AMD. (j) FPMS. (k) NLPG. (l) INLPG.

TABLE III

DATA SET DESCRIPTION OF SIX SCENARIOS

Fig. 14. ROC curves on (a) data set #7 and (b) data set #8.

sparsity-driven CD (SDCD) [73], and NLR model with the

alternating direction methods of multipliers (NLR-ADMM)

[34] as the comparison methods. For the MR and NR, we set

the neighborhood size as 3×3. For the SDCD, we set the reg-

ularization parameter » from 1024 to 1021 with 20 logarithmic

equally spaced and then select the best one as the detection

result. For the NLR-ADMM, we set the patch size as 5 × 5.

For the INLPG, we set p = 2 for both two data sets.

Fig. 3 shows the DIs generated by different methods of data

sets #1 and #2, where all DIs are displayed in “jet” colormap.

TABLE IV

AUC COMPARISON OF DIFFERENT METHODS ON DATA SETS #1 AND #2

Fig. 4 shows the ROC curves, and the corresponding AUC

are listed in Table IV. As can be seen from Fig. 3, the INLPG

generated DI can reduce the influence of speckle noise as it

compares the patchwise similarity, so as to obtain a cleaner

and more accurate DI. Therefore, the DI of INLPG shows the

best performance on ROC curves in Fig. 4 and get the highest

AUC in Table IV.

In addition, in order to show the advantages of DIs

generated by the proposed INLPG, we also apply it to

the unsupervised deep learning networks to construct the
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Fig. 15. Data sets #9 and #10 of Scenario 5. (a)–(c) Preevent image,
postevent image, and the ground-truth image of data set #9, respectively.
(d)–(f) Preevent image, postevent image, and the ground-truth image of data
set #10, respectively.

TABLE V

QUANTITATIVE MEASURES OF BINARY CMS GENERATED

BY DIFFERENT METHODS ON DATA SET #1

pseudo-training set, which are the patches with high proba-

bility to be changed or unchanged. We test the application of

INLPG in PCANet2 [52] and CWNN3 [53] to replace the orig-

inal filtering-based LR operator. Fig. 5 shows the binary CMs

generated by the original PCANet, CWNN, and the INLPG-

based PCANet and CWNN (denoted as INLPG-PCANet and

INLPG-CWNN for short). Table V reports three quantitative

measures of these CMs: the false-positive (FP) rate, the false-

negative (FN) rate, and the Kappa coefficient (KC). From

Fig. 5 and Table V, we can find that the INLPG induced

pseudo-training set can obtain better detection performance

with higher accuracy.

2) Homogeneous CD of PolSAR Data Sets: In Scenario 2,

two pairs of images from L-band UAVSAR acquired over

the city of Los Angeles, CA, USA, on April 23, 2009 and

May 11, 2015 with three channels of HH, HV, and VV, and

with a spatial resolution of 0.6 m in azimuth and 1.67 m in

range are used. The size of the first pair and the second pair

of images are 2360×600×3 and 2300×600×3, respectively.

The ground truth is provided by Anfinsen et al. [71], which

2PCANet is kindly available at https://github.com/summitgao
3CWNN is kindly available at https://github.com/summitgao

TABLE VI

AUC COMPARISON OF DIFFERENT METHODS ON DATA SETS #3 AND #4

represents the effects of urbanization. Fig. 6 shows these two

data sets, where the images are compressed vertically by three

times to display conveniently.

To compare the DIs on these homogeneous PolSAR

images, we choose some statistics-based CD methods as

comparison: 1) Gaussian model based [75]: the generalized

likelihood ratio test (GLRT) statistic �̂G , the t1 statistic �̂t1,

and the Wald statistic �̂Wald and 2) non-Gaussian model

based [74], the GLRT statistic4 for three different problems

denoted as �̂MT, �̂Mat, and �̂Tex, respectively (more details

in [74]). For these statistical methods, we use the 11 × 11

observation window as default. For the INLPG, we use

both the channel-based [using dist
(2)
SAR] and covariance-

matrix-based (using dist
(2)
M2SAR) strategies and set p = 6.

In addition, we also add the channel-based LR DI (DI(i, j) =
�3

d=1 |log(x(i, j, d))/(y(i, j, d))|) and covariance-matrix-

based LR DI (DI(i, j) = |log(det(C�
x(i, j )

))/(det(C�
y(i, j)

))| with

C�
x(i, j )

and C�
y(i, j)

representing the rescaled covariance matrix

of pixel x(i, j) and y(i, j), respectively).

Fig. 7 shows the DIs of data sets #3 and #4 generated

by different methods. Fig. 8 shows the ROC curves, and

Table VI reports the corresponding AUC. From these results

on Scenario 2, we can find that the statistical methods (such

as �̂G , �̂t1, and �̂Tex) generally perform better than direct

comparison methods (such as channel-based LR operator and

covariance-matrix-based LR operator). At the same time, �̂MT

based on the non-Gaussian model is the best among these

statistical methods. By comparing the INLPG-based DIs with

other DIs, we can observe that the INLPG-based method can

detect the change more easily, which is also confirmed in Fig. 8

and Table VI.

3) Homogeneous CD of Optical Image Data Sets: In this

scenario, two pairs of optical images obtained from Google

Earth over the city of Beijing on September 30, 2012 and

March 4, 2013 are used, which are R, G, and B channels,

with a spatial resolution of 1 m. The size of both pairs of

images is 500 × 500 × 3. The ground truth of data sets #5

and #6 represents the changes of buildings, as shown in Fig. 9.

We choose the CVA [22], MAD5 [24], IR-MAD6 [25],

the deep slow feature analysis network (DSFANet)7 [76], and

4code is kindly available at https://github.com/AmmarMian
5MAD is kindly available at https://people.compute.dtu.dk/alan
6IR-MAD is kindly available at https://people.compute.dtu.dk/alan
7DSFANet is kindly available at https://github.com/rulixiang/DSFANet
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Fig. 16. DIs generated by different methods of data sets #9 and #10. (Top row) DIs of data set #9: (a) SHD. (b) PP. (c) AMD. (d) FPMS. (e) NLPG.
(f) INLPG. (Bottom row) DIs of data set #10. (g) SHD. (h) PP. (i) AMD. (j) FPMS. (k) NLPG. (l) INLPG.

Fig. 17. ROC curves on (a) data set #9 and (b) data set #10.

DCVA8 [49] as the DI comparison methods. In these two

data sets, we set p = 4 for INLPG. The DIs generated by

different methods on this scenario are shown in Fig. 10, and

the corresponding ROC curves are plotted in Fig. 11. Table VII

reports the AUC comparison of different methods on Scenario

3. The analysis of these results shows that the INLPG-based

method can suppress the interference caused by light intensity,

seasonal changes in the homogeneous CD of optical images,

especially for data set #6.

It should be noted that the proposed INLPG is not sensitive

to illumination, season, and noise because it measures the

similarity structure changes of image patches, rather than

directly comparing the differences between the pixels. There-

fore, it can achieve the best performance in the above scenarios

of homogeneous CD (Scenarios 1–3). Accordingly, if there

are no such interference factors in the preevent and postevent

images and satisfactory results can be obtained just by using

8DCVA is kindly available at https://github.com/sudipansaha

TABLE VII

AUC COMPARISON OF DIFFERENT METHODS ON DATA SETS #5 AND #6

intensity ratio or spectral difference operators, the performance

advantage of the INLPG will be discounted.

4) Heterogeneous CD of SAR/Optical (Multispectral) Data

Sets: In this scenario, data sets #7 and #8 are used to test

the performance of INLPG, as shown in Fig. 12. Data set #7

consists of a pair of SAR/optical images acquired over

Toulouse, France. The SAR image is sensed by the

TerraSAR-X satellite, and the optical image is obtained by

Pleiades (High-Resolution Optical Imaging Constellation of

CNES, French National Centre for Space) satellite. The SAR

image was coregistered and resampled with a spatial resolution

of 2 m to match the optical image. The ground truth of data

set #7 shows the change of construction. data set #8 consists of

a pair of multispectral/SAR images acquired over California.

The multispectral image is sensed by Landsat-8 with 11 bands,

and the SAR image is sensed by Sentinel-1A with three

channels (two channels are VV and VH polarization data, and

the third channel is the ratio between them). The ground truth

of data set #8 shows a flood in California, which is constructed

by Deledalle et al. [66]. Although the SAR image in data

set #8 is multichannel, it does not use the cross correlation
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Fig. 18. DIs generated by INLPG with different patch distance criteria of data sets #11 and #12. (a)–(c) Preevent image, postevent image, and the ground-

truth image of data set #11, respectively. (d)–(g) DIs generated by INLPG with dist
(1)
SAR, dist

(2)
SAR, dist

(1)
M2SAR, and dist

(2)
M2SAR of data set #11, respectively.

(h)–(j) Preevent image, postevent image, and the ground-truth image of data set #12, respectively. (k)–(n) DIs generated by INLPG with dist
(1)
SAR, dist

(2)
SAR,

dist
(1)
M2SAR, and dist

(2)
M2SAR of data set #12, respectively.

Fig. 19. ROC curves on (a) data set #11 and (b) data set #12.

Fig. 20. INLPG performance with different patch sizes p.

between different polarization data but treats them as color

images with three channels, as shown in Fig. 12(e).

For the heterogeneous CD, we apply five methods for com-

paring the DI: SHD [41], PP [43], AMD9 [44], NLPG10 [21],

and the recently proposed fractal projection and Markovian

segmentation-based method (FPMS)11 [77], which contains a

9AMD is kindly available at https://sites.google.com/view/luppino
10NLPG is available at https://github.com/yulisun/NPSG
11FPMS is kindly available at http://www-labs.iro.umontreal.ca/˜mignotte

TABLE VIII

AUC COMPARISON OF DIFFERENT METHODS ON DATA SETS #7–#10

TABLE IX

AUC COMPARISON OF INLPG WITH DIFFERENT PATCH

DISTANCE CRITERIA ON DATA SETS #11 AND #12

fractal encoding step and a fractal projection/decoding step.

We set p = 6 for data set #7 and p = 2 for data set #8.

Fig. 13 shows the DIs of data sets #7 and #8 generated

by different methods. Fig. 14 shows the ROC curves, and

the corresponding AUCs are listed in Table VIII. As shown

in Fig. 13, INLPG performs better than other methods, fol-

lowed by NLPG and FPMS, which can clearly distinguish the

changed part from the unchanged part in the DIs. At the same

time, we can also find that INLPG is obviously better than

NLPG in terms of visual effect in Fig. 13 and the AUC value

in Table VIII. This is mainly because INLPG improves the

graph construction process, structure difference calculation,

and DI fusion process, which makes the detection results more

robust and accurate.

5) Heterogeneous CD of Multispectral Data Sets: In Sce-

nario 5, we use two pairs of multispectral images with dif-

ferent bands, as shown in Fig. 15. Data set #9 consists of

one near-infrared (NIR) band image and one optical image

acquired over Sardinia, Italy. The NIR band image is sensed by
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TABLE X

COMPUTATIONAL TIME (SECONDS) OF NLPG, INLPG, AND INLPG USING KGRAPH UNDER DIFFERENT VALUES OF �p

Landsat-5, and the optical image is obtained from Google

Earth with R, G, and B bands. The ground truth of data set #9

shows the Lake expansion on Sardinia, Italy. Data set #10

consists of two multispectral images acquired by different

sensors. The preevent image is sensed by Landsat-5 with

7 bands, and the postevent image is sensed by the Advanced

Land Imager from the Earth Observing mission (EO-1 ALI)

with ten bands. The ground truth of data set #10 is provided

by Volpi et al. [78], which represents a forest fire in Bastrop

County, TX, USA. Both data sets #9 and #10 have a spatial

resolution of 30 m. In these two data sets, we set p = 3 for

INLPG.

Fig. 16 shows the DIs of data sets #9 and #10 generated by

SHD, PP, AMD, FPMS, NLPG, and INLPG. Fig. 17 shows

the ROC curves of these DIs, and the corresponding AUCs

are listed in Table VIII. As expected, INLPG shows better

performance than NLPG in terms of DI visual effect and

ROC curves in this scenario. The AUCs of NLPG on data

sets #9 and #10 are increased from 0.913 and 0.953 to

0.949 and 0.971 by INLPG, respectively. The experimental

results on Scenarios 5 and 6 demonstrate the improvement

effect of the INLPG.

6) Heterogeneous CD of PolSAR/Multispectral (Optical)

Data Sets: In this scenario, we test the heterogeneous

CD including PolSAR images, as shown in Fig. 18. Data

sets #11 and #2 are acquired in the same region, which

represents the same event. Unlike data set #2, the preevent

image of data set #11 is acquired by Landsat-8 without the

panchromatic and “cirrus” bands, and the postevent image

of data set #11 is acquired by Sentinel-1A with VV and

VH polarizations. Similarly, data sets #12 and #4 are also

acquired in the same region and represent the same event.

They share the same preevent PolSAR image, but the postevent

image of data set #12 is obtained from Google Earth with R,

G, and B bands.

Since heterogeneous CD with PolSAR images is rarely

studied, we only compare the DIs generated by the proposed

INLPG with different patch distance criteria, i.e., channel-

based dist
(1)
SAR and dist

(2)
SAR and covariance-matrix-based

dist
(1)
M2SAR and dist

(2)
M2SAR. Fig. 18 shows the DIs of data

sets #11 and #12 generated by INLPG. Fig. 19 shows the

ROC curves, and Table IX reports the corresponding AUC.

By comparing the INLPG-based DIs of data sets #11 and #12

with the homogeneous CD of data sets #2 and #4, it is

obvious that heterogeneous CD is much more difficult than

homogeneous CD. The distinct imaging mode of the preevent

and postevent images cause many confusions of changed

and unchanged in the DI, as shown in Fig. 18. At the

same time, we can also find that the covariance-matrix-based

strategy performs better than the channel-based strategy on the

ROC curves and AUC, which is mainly because the

covariance-matrix-based strategy uses the cross correlations

of the channels.

C. Parameter Analysis and Computational Time

The main parameters of the INLPG are the patch size p,

the step size �p, and the number of the most similar neigh-

bors K . In the NLPG [21], the influence of these parameters

is deeply analyzed. Generally, a lager step size �p can speed

up INLPG by reducing the number of target patch N�p
, but

it will also make the DI more fuzzy as illustrated by (10).

Considering the computational complexity and detection accu-

racy of the algorithm, we suggest to set �p = p as a compro-

mise choice based on our experiments. For the parameter K ,

it is obvious that both extremely large and very small values

are not appropriate. An extremely large K will increase the

computational complexity and cause confusion, which means

that some image patches that are not really similar to the target

patch are also introduced into the K -NN graph. At the same

time, a very small K will cause that the K -NN graph is not

robust enough. Therefore, we empirically set K = �0.01N�p
�.

The parameter that has the greatest impact on the performance

of INLPG is the patch size p. In order to measure the impact

of different p, we vary p from 1 to 6 and fix �p = 3 and

K = �0.01N�p
� to observe the change in AUC on different

data sets. From Fig. 20, we can see that for the low-resolution

data sets, a small patch size is more appropriate, such as the

p = 2 for data sets #1 and #8 and p = 3 for data set #9.

On the contrary, for the HR data sets, a larger patch size

is more appropriate, such as p = 6 for data sets #4, #6,

and #11. This is mainly due to the fact that in HR images,

the relationship between the adjacent pixels is closer and the

context information is richer.

To compare the computational time of NLPG and INLPG,

we report the CPU times of these two methods on data

sets #8 and #9 in Table X. The patch size of NLPG and

INLPG is set to 5 × 5, the search window size of NLPG

is set to 100 × 100, the search step size of NLPG is set

to �s = �p, K of NLPG is set to 35, and K of INLPG

is set to K = �0.01N�p
�. The algorithms are performed in

MATLAB 2016a running on a Windows desktop with Intel

Core i7-8700K CPU and 32 GB of RAM. As can be seen

from Table X, with the increase of �p, the time required for

the algorithms is greatly reduced. In general, when N�p
is

large, both INLPG and NLPG are time-consuming. However,

the INLPG can be accelerated by using some efficient graph

construction methods, such as the kgraph [61]. As shown

in Table X, with the increase of N�p
, the acceleration effect

of INLPG using kgraph is more obvious.
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VI. CONCLUSION

In this article, we mainly focus on the unsupervised CD

of both homogeneous and heterogeneous RS images. The

proposed INLPG method is an extension of NLPG, which

exploits the inherent nonlocal self-similarity of images and

assumes that the unchanged preevent and postevent images

share the imaging modality-invariant structure information.

In order to expand the application range of NLPG and

improve its detection performance, we have made the fol-

lowing improvements in INLPG. First, we demonstrate that

the structure consistency also has advantages in homogeneous

CD by comparing it with traditional detection operators.

Therefore, INLPG can be applied to both homogeneous and

heterogeneous CDs. Second, we extend it to the CD task

with multichannel SAR image by using two strategies with

different patch distance criteria. This work is very enlightening

as the heterogeneous CD with PolSAR images is rarely

studied. Third, we improve the graph construction process,

structure difference calculation, and DI fusion process of

NLPG, which makes INLPG more robust and the detection

result more accurate. Finally, we test INLPG on six scenarios

with 12 data sets, which demonstrates that INLPG can be

applied to a wide range of unsupervised CD tasks, includ-

ing homogeneous/heterogeneous, SAR (single polarization,

polarimetric)/spectral (optical, multispectral), and moderate-

/coarse-/high-resolution CD tasks. However, the square image

patch is used as the basic unit in INLPG, although it can

simplify the preprocessing and distance calculation, and it can

not maintain the shape and structure of objects. Our future

work is to use the superpixel as the basic unit, which can

ensure that each unit represents the same kind of object and

reduce the computational complexity by reducing the number

of vertices. Therefore, we need to solve the problems of

accurate superpixel segmentation and superpixel comparison

in the future.

APPENDIX A

PROOF OF THEOREM 1

In this appendix, we compute the CCR of different oper-

ators. Here, i k and j k represent the position indices of the

kth NN of X1 and Y1, respectively. Suppose that the target

patch Y1 has R (R g K ) really similar patches Y j , j * N R
Y1

in the image with Y7
j = Y7

1.

A. Case 1: The Spectral Images

First, compute ccr(dtspe). Rewrite the dtspe as follows:

dtspe = �X1 2 Y1�2
2 =

Q
	

q=1

(x1(q) 2 y1(q))2. (A.1)

If Ã(q) = (x1(q) 2 y1(q))/(
:

2Ã), by using Assumption 1,

we have Ã(q) > N((x7
1 (q) 2 y7

1 (q))/(
:

2Ã), 1). If A =
�Q

q=1 (Ã(q))2, we have A is distributed according to the

noncentral chi-square distribution with Q degree of freedom

and

E[A] = Q + 1

2Ã 2

Q
	

q=1

�

x7
1 (q) 2 y7

1(q)
�2

. (A.2)

Because dtspe = 2Ã 2 A, we have

E
�

dtspe

�

= 2QÃ 2 +
�

�X7
1 2 Y7

1

�

�

2

2
. (A.3)

Then, we can obtain

ccr(dtspe) = E[dtspe|X7
1 �=Y7

1
]

E[dtspe|X7
1=Y7

1
] = 1 + �X7

1 2 Y7
1�2

2

2QÃ 2
. (A.4)

Second, compute ccr(drspe). Rewrite the drspe as follows:

drspe = 1

K

K
	

k=1

�

�Yik 2 Y1�2
2 2

�

�Y j k 2 Y1

�

�

2

2

�

= 1

K

K
	

k=1

Q
	

q=1

�

(yik (q) 2 y1(q))2 2
�

y j k (q) 2 y1(q)
�2
�

.

(A.5)

As the K -NNs of target patch are not changed, by using

Assumption 1, we have yik (q) > N
�

x7
1 (q), Ã 2

�

and y1(q) >
N
�

y7
1 (q), Ã 2

�

. Similar to the calculation of E
�

dtspe

�

, we can

obtain

E
�

�Yik 2 Y1�2
2

�

= 2QÃ 2 +
�

�X7
1 2 Y7

1

�

�

2

2
. (A.6)

Define the distance between the target patch Y1 and its really

similar patches Y j , j * N R
Y1

, as d j =
�

�Y j 2 Y1

�

�

2

2
. Then,

the distance of d(k) =
�

�Y j k 2 Y1

�

�

2

2
, j k * N R

Y1
is the kth order

statistic of the sample
�

d j; j * N R
Y1

�

.

Let Ã j = (d j/2Ã 2). As y j(q), y1(q) > N
�

y7
1 (q), Ã 2

�

,

we have Ã j is distributed according to the chi-square distrib-

ution with Q degrees of freedom as Ã j > Ç2(Q).

If Ã(k) = (d(k))/(2Ã 2), we have

K
	

k=1

Ã(k) f K

R

R
	

k=1

Ã(k). (A.7)

By using
�R

k=1 Ã(k) = �

j*N R
Y1

Ã j , E[Ã j ] = Q, and (A.7),

we can obtain E[�K
k=1 Ã(k)] f K Q and E[�R

k=1 Ã(k)] = RQ.

The cumulative distribution function (CDF) of Ã j is

FÃ j
(Ã) = ³ (Q/2, Ã/2)

	(Q/2)
(A.8)

where ³ (s, t) is the lower incomplete gamma function.

Because Ã(1) is the minimum of R variables Ã j , we have

E
�

Ã(1)

�

=
� +>

0

�

1 2 FÃ j
(Ã)

�R
dÃ. (A.9)

By using
�K

k=1 Ã(k) g KÃ(1), we can obtain

2KÃ 2
E
�

Ã(1)

�

f E

�

K
	

k=1

�

�Y j k 2 Y1

�

�

2

2

�

f 2K QÃ 2. (A.10)

Substituting (A.6) into (A.5), we have

ccr
�

drspe

�

=
E

�

drspe|X7
1 �=Y7

1

�

E

�

drspe|X7
1=Y7

1

�

= 1 +
�

�X7
1 2 Y7

1

�

�

2

2

2QÃ 2 2 1
K

E

�

�K
k=1

�

�Y j k 2 Y1

�

�

2

2

� .

(A.11)
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Third, compare ccr(drspe) and ccr(dtspe). Substituting (A.10)

into (A.11) and using (A.4), we can obtain

ccr(drspe) 2 ccr(dtspe) g �X7
1 2 Y7

1�2
2E[Ã(1)]

2QÃ 2(Q 2 E[Ã(1)])
. (A.12)

Then, we can find that ccr(drspe) is always larger than

ccr(dtspe) from (A.12), and the difference between them

will be greater with the increase of K . In particular, if we

choose K = R, then E[�K
k=1 �Y j k 2 Y1�2

2] = 2K QÃ 2, and

the difference of ccr(drspe) 2 ccr(dtspe) is infinite.

B. Case 2: The SAR Images

First, compute ccr(dtSAR). Rewrite the dtSAR as follows:

dtSAR = �log X1 2 log Y1�2
2 =

Q
	

q=1

(log x1(q) 2 log y1(q))2.

(A.13)

By using Assumption 2, we have x1(q)/x7
1 (q), y1(q)/y7

1 (q) >
Gamma(L, L). The expected value and variance value of

logarithmically transformed speckle is given in [79] as

E

�

log
x1(q)

x7
1 (q)

 

= E

�

log
y1(q)

y7
1 (q)

 

= Ë(0, L) 2 log L

var

�

log
x1(q)

x7
1 (q)

 

= var

�

log
y1(q)

y7
1 (q)

 

= Ë(1, L) (A.14)

where Ë(m, ·) is the m-order Ploygamma function. Then,

we have

E

�

!

log
x1(q)

y1(q)

"2
�

= 2Ë(1, L) + +
!

log
x7

1 (q)

y7
1 (q)

"2

. (A.15)

Substituting (A.15) into (A.13), we can obtain

E
�

dtSAR

�

= 2QË(1, L) +
�

�log X7
1 2 log Y7

1

�

�

2

2
. (A.16)

Substituting (A.16) into (27), we have

ccr
�

dtSAR

�

= E
�

dtSAR|X7
1 �=Y7

1

�

E
�

dtSAR|X7
1=Y7

1

� = 1 +
�

�log X7
1 2 log Y7

1

�

�

2

2

2QË(1, L)
.

(A.17)

Second, compute ccr
�

drSAR

�

. Rewrite drSAR as follows:

drSAR = 1

K

K
	

k=1

�log Yik 2 log Y1�2
2 2

�

�log Y j k 2 log Y1

�

�

2

2

= 1

K

K
	

k=1

Q
	

q=1

�

!

log
yik (q)

y1(q)

"2

2
!

log
y j k (q)

y1(q)

"2
#

.

(A.18)

As the K -NNs of target patch are not changed, by using

Assumption 2, we have yik (q)/x7
1 (q), y1(q)/y7

1 (q) >
Gamma(L, L). Similar to the calculation of E

�

dtSAR

�

, we can

obtain

E
�

�log Yik 2log Y1�2
2

�

= 2QË(1, L) +
�

�log X7
1 2log Y7

1

�

�

2

2
.

(A.19)

Define the distance between the target Y1 and its really similar

patches Y j , j * N R
Y1

, as d j = �log Y j 2 log Y1�2
2. Then,

the distance of d(k) = �log Y j k 2 log Y1�2
2, j k * N R

Y1
is the

kth order statistic of the sample {d j; j * N R
Y1

}. Let Ã j,q =
(log(y j(q))/(y1(q)))2. Sort Ã j,i in ascending order to obtain

the sequence Ã(1), Ã(2), . . . , Ã(RQ). Then, we have

K
	

k=1

d(k) f K

R

R
	

k=1

d(k) = K

R

	

j*N R
Y1

d j

K
	

k=1

d(k) g
K Q
	

r=1

Ã(r) g K QÃ(1). (A.20)

As y j(q)/y7
1 (q), y1(q)/y7

1 (q) > Gamma(L, L), we have

that y j(q)/y1(q) is distributed according to the beta prime

distribution as y j(q)/y1(q) > ³ �(L, L). Using algebraic trans-

formations, we can obtain the CDF of Ã j,q as

FÃ j,i
(Ã) =

�

:
Ã

2:
Ã

�

e2 t
2 + e

t
2

�22L

B(L, L)
dt

=
� e

:
Ã

e2:
Ã

t L21(1 + t)22L

B(L, L)
dt

= (21)L21

B(L, L)

�

B

�

2e2:
Ã; L, 1 2 2L

�

2B
�

2e
:

Ã; L, 1 2 2L
��

(A.21)

where B(a, b) represents the Beta function and B(x; a, b)

represents the incomplete beta function. In particular, when

L = 1, we have

FÃ j,i
(Ã) = tanh

!:
Ã

2

"

; if L = 1. (A.22)

Because Ã(1) is the minimum of RQ variables Ã j,i , we have

E
�

Ã(1)

�

=
� +>

0

�

1 2 FÃ j,i
(Ã)

�RQ
dÃ. (A.23)

By using E
�

Ã j,q

�

= 2Ë(1, L) and (A.20), we can obtain

K QE
�

Ã(1)

�

fE

�

K
	

k=1

�

�log Y j k 2log Y1

�

�

2

2

�

f 2K QË(1, L).

(A.24)

Substituting (A.19) into (A.18), we have

ccr
�

drSAR

�

= E
�

drSAR|X7
1 �=Y7

1

�

E
�

drSAR|X7
1=Y7

1

�

= 1 +
�

�log X7
1 2 log Y7

1

�

�

2

2

2QË(1, L) 2 1
K

E

�

�K
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�

�log Y j k 2 log Y1

�

�

2

2

� .

(A.25)

Third, compare ccr
�

drSAR

�

and ccr
�

dtSAR

�

. Substituting

(A.24) into (A.25) and using (A.17), we can obtain

ccr
�

drSAR

�

2 ccr
�

dtSAR

�

g
�

�log X7
12log Y7

1

�

�

2

2
E
�
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(A.26)
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Then, we can also find that ccr
�

drSAR

�

is always larger than

ccr
�

dtSAR

�

from (A.26), and the difference between them will

be greater with the increase of K . In particular, if we choose

K = R, then E

�

�K
k=1

�

�log Y j k 2 log Y1

�

�

2

2

�

= 2K QË(1, L)

from (A.20), and the difference of ccr
�

drSAR

�

2 ccr
�

dtSAR

�

is

infinite.
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