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Iterative Robust Graph for Unsupervised Change
Detection of Heterogeneous Remote Sensing Images

Yuli Sun , Lin Lei , Dongdong Guan , and Gangyao Kuang, Senior Member, IEEE

Abstract— This work presents a robust graph mapping
approach for the unsupervised heterogeneous change detection
problem in remote sensing imagery. To address the challenge
that heterogeneous images cannot be directly compared due to
different imaging mechanisms, we take advantage of the fact
that the heterogeneous images share the same structure infor-
mation for the same ground object, which is imaging modality-
invariant. The proposed method first constructs a robust
K -nearest neighbor graph to represent the structure of each
image, and then compares the graphs within the same image
domain by means of graph mapping to calculate the forward
and backward difference images, which can avoid the confusion
of heterogeneous data. Finally, it detects the changes through
a Markovian co-segmentation model that can fuse the forward
and backward difference images in the segmentation process,
which can be solved by the co-graph cut. Once the changed
areas are detected by the Markovian co-segmentation, they
will be propagated back into the graph construction process
to reduce the influence of changed neighbors. This iterative
framework makes the graph more robust and thus improves the
final detection performance. Experimental results on different
data sets confirm the effectiveness of the proposed method.
Source code of the proposed method is made available at
https://github.com/yulisun/IRG-McS.

Index Terms— Unsupervised change detection, heterogeneous
data, self-similarity, K -nearest neighbor graph, co-segmentation.

I. INTRODUCTION

A. Background

THE change detection (CD) of remote sensing (RS) images
is a technique to identify the changes of an object or

phenomenon on the earth’s surface by analyzing the difference
between images acquired at different times [1]. It is one of the
important topics in earth observation, which has been found a
wide range of applications in urban studies [2], environmental
monitoring [3], and nature disaster assessment [4].

Currently, most of the CD techniques are based on homo-
geneous RS images, i.e., images are from the same sensor,
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such as CD of SAR images [5], optical images [6], [7],
and hyperspectral images [8]. In recent years, with the rapid
development of RS-related technologies, more and more image
data representing the real information of the earth’s surface can
be obtained from different sensors at the same time, which
puts forward new requirements on CD methods, i.e., they
should not only be applied to the homogeneous data, but
should also consider the broader issue of CD on heterogeneous
data obtained from different sensors [9]. More importantly,
heterogeneous CD has a very urgent need in rescue and
assessment of emergency disasters. In such sudden scenarios
(earthquakes, floods, etc.), it is important to exploit the first
available acquisition after the event, independently of its
modality. This post-event image is often likely to be acquired
by a SAR sensor, due to weather, cloud, smoke, and daylight
constraints. On the other hand, the pre-event image should be
selected from the archived data of remote sensing platforms as
up to date as possible in order to reduce the time delay between
the two acquisitions and to better focus on the ground changes
caused by the event.

Despite its undeniable importance, relatively little research
has been devoted to heterogenous CD compared to homoge-
nous CD. Due to the different imaging mechanisms of different
sensors, heterogenous images provide different descriptions
of the same object and exhibit quite different characteristics.
Unlike in the homogeneous CD, the heterogeneous images
cannot be directly compared with each other. Therefore, it is
not feasible to directly use arithmetical operators such as the
image differencing (usually in homogeneous optical CD) or
image ratio/log-ratio (usually in homogeneous SAR CD) to
calculate the difference image (DI) of multi-temporal hetero-
geneous images.

Generally, the existing heterogeneous CD methods can be
classified into supervised and unsupervised based on whether
or not a labeled training sample is required. In the supervised
method, the labeled samples are used to establish the local
joint statistical model between heterogeneous data [10], [11],
or to train the image regression model [12], or to train the
classifier [13]. However, labeling samples is labor-intensive
and accurate labeling of heterogenous data requires extensive
expert knowledge as a guide and sometimes even a field trip,
so unsupervised methods are more popular in practice.

According to the basic analysis unit used in image com-
parison, the heterogeneous CD method can also be divided
into pixel-based and object-based. In the former, the individual
pixel is treated as the basic unit to calculate the pixel-wise
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difference between heterogeneous images and is then divided
into changed or unchanged classes. The pixel-based meth-
ods are more suitable for low- and medium-resolution
images [12]–[15], and may bring the salt-and-pepper noise on
CD results of very-high-resolution (VHR) images due to the
neglect of spatial dependence between pixels [16]. To address
this challenge, the object-based methods are proposed to
fuse spectral, texture, and geometry information to obtain
meaningful change information and improve the detection
performance [17], [18].

Since the heterogeneous images reflect different physical
quantities of the object and show quite different statistical
behaviors [5], [9], [19], the goal of the heterogeneous CD
method is to transform the “incomparable” heterogeneous
images to a space where they are “comparable”. According to
the transformed space, the existing heterogeneous CD method
can also be roughly divided into three categories [20]: firstly,
the classification-based methods transform the multitemporal
images to a common category space (such as water, buildings,
roads, etc.) by classifying the images separately, and then com-
pare the image classification results in the category space to
detect the changes, such as the post-classification comparison
method (PCC) [21], the multitemporal segmentation and com-
pound classification method (MS-CC) [18], [22]. Although
classification-based method is intuitive, feasible and easy to
implement, it has the following drawbacks: the CD accuracy
is affected by the image classification performance, especially
the accurate classification is difficult for SAR image due to
the inherent speckle; the CD granularity is determined by the
fineness of image classification, i.e., it can only detect changes
between classes, for example, when the category is small (e.g.,
only water, farmland, building, tree), it is difficult to detect
changes within the same category and outside the all categories
(e.g., vehicles, roads); in addition, such post-classification
comparisons often suffers from the error accumulation or error
propagation [23].

Secondly, the traditional similarity-based methods transform
the multitemporal images to a constructed feature space,
in which the constructed imaging-modality-invariant-features
are used to distinguish the changed and unchanged regions,
such as sorted histogram distance (SHD) [24], pixel
pair method (PP) [25], homogeneous pixel transformation
method (HPT) [12], affinity matrix-based image regression
(AM-IR) [26]. For this kind of methods, it is very important
to mine the modal invariant features between heterogeneous
images and make full use of these features to design the CD
operator. As a result, such methods often face the challenge
that when the detection scene is complex (e.g., diversity of
ground objects, the difference of imaging conditions) or when
the noise level is very high (especially the speckle noise in
SAR images), these manually constructed connections may
not exist or may no longer fully characterize the relationship
between heterogenous images, which may result in a dramatic
degradation of CD performance.

Thirdly, the deep learning-based methods transform the
multitemporal images to a common latent feature space, which
is learned from the unchanged samples of heterogeneous
images by using the deep neural networks (DNN), such as the

symmetrical convolutional coupling net- work (SCCN) [14],
approximately symmetrical DNN [27], logarithmic transfor-
mation feature learning network (LT-FL) [28]. Although these
methods perform relatively well in terms of detection accuracy,
they usually either require the construction of large training
set under the supervision mode, or need a pre-constructed
pseudo-training set/change prior to guide the training process,
or involve a complex and time-consuming iterative coarse-
to-fine filtering process to construct the pseudo-training set
to learn the latent feature space.

B. Motivation

In this paper, we propose a structure consistency
based heterogeneous CD method, which belongs to the
above-mentioned unsupervised, object-based and traditional
similarity-based method. The proposed method takes advan-
tage of the self-similarity (or self-redundancy) property of
images, which has been widely used in the image denoising
with the so-called “nonlocal-based” methods [29], [30]. At the
same time, it has recently been exploited in the heterogeneous
CD [20], [31], [32].

In the fractal projection and Markovian segmentation-based
method (FPMS) [32], the self-similarity property is used to
map the pre-event image to the domain of the post-event
image by fractal projection, and then pixel-wise DI is
obtained by comparing the projected image and the post-event
image. In [20], the self-similarity is further used as
image self-expression, which learns a patch similarity graph
matrix (PSGM) of pre-event (post-event) image, then obtain
the regression image by multiplying the post-event (pre-event)
image with this learned PSGM, and measures the change
level by comparing the regression image and the post-event
(pre-event) image. In this paper, the self-similarity is used to
construct graphs representing the structures for each image
and establish the relationships between heterogeneous images,
which is similar to the nonlocal patch similarity graph-based
method (NPSG) in [31]. However, the proposed method is
different from the previous self-similarity based methods in
the following aspects.

1) The proposed method is object-based, while the others
are pixel-based. FPMS [32], PSGM [20] and NPSG [31] all
calculate the pixel-wise difference by using the square patch
centered on this pixel. Although the context information is
considered in the CD process, the square image patch may
include pixels from different object, and it cannot maintain the
shape and structure of the object. The proposed method uses
superpixel as the basic unit, which has two main advantages:
one is that it can maintain the structure and edge of the object
as the interior of each superpixel is homogeneous (representing
the same kind of object); the other is that it can reduce
the computational complexity, especially for the large-scale
high-resolution images.

2) Different from the other methods which calculate the
DI and binary change map (CM) relatively independently,
the proposed method combines the DI generation and the CM
calculation by using an iterative framework. This can bring
two benefits: first, it reduces the influence of changed regions
during the graph construction to obtain a more robust graph,
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making the DI better distinguish the changed parts; second,
it can reduce the false detection and missed detection in the
CM with the generated high-quality DI.

3) Different from FPMS and PSGM, the proposed method
neither reconstructs the image nor translates the image. It only
focuses on the structure difference between images similar as
NPSG, which is represented by the superpixel-based K -nearest
neighbor (KNN) graph. However, unlike NPSG which select
nearest neighbors (NNs) for each vertex with fixed K and
without considering the properties of neighbors (changed or
unchanged), the graph constructed by the proposed method is
more robust by adaptively selecting NNs for each superpixel
with different K and unchanged neighbors, which eliminates
the changed neighbors that cause confusion.

4) Different from the other methods which compute the
binary CM directly on the fused DI, the proposed method
compute the CM by using the Markov random field (MRF)
with a co-graph cut segmentation model, which combines
the DI fusion and segmentation in the same model. Then,
the forward and backward DIs can be fully fused to improve
the CM accuracy.

C. Contribution

In particular, our contribution refers to an unsuper-
vised, object-based, iterative robust graph and Markov-
ian co-segmentation method (IRG-McS) for heterogeneous
CD. The method exploits the inherent structure consistency
between heterogeneous images, and constructs robust graph
to represent the structure of images, and then compares the
graphs to measure the change level by graph mapping. The
main contributions of the proposed method are as follows.

• An object-based heterogeneous CD method based on
structure consistency is proposed, which measures the con-
sistency between image structures by graph mapping.

• A robust adaptive KNN graph of each image is constructed
by adaptively selecting unchanged NNs with appropriate K for
each superpixel though an iterative framework combining the
DI generation and CM calculation processes.

• A superpixel-based MRF co-segmentation model is
designed to fuse the forward and backward DIs in the segmen-
tation process to improve the CD accuracy, which is solved
by the co-graph cut.

The rest of this paper is organized as follows: Section II
describes the details of the proposed IRG-McS. Section III
presents the experimental results and comparisons with some
existing state-of-the-art methods. Finally, we conclude this
paper in Section IV.

II. ITERATIVE ROBUST GRAPH AND MARKOVIAN

CO-SEGMENTATION (IRG-MCS)

We consider two co-registered heterogeneous RS images
acquired at the same geographical area by different sensors at
different times (before and after an event), which are denoted
as X ∈ R

M×N×CX in domain X and Y ∈ R
M×N×CY in domain

Y , and their pixels are denoted as x (m, n, c) and y (m, n, c),
respectively. Here, M , N , CX (CY) represent the height, width
and channel number of two images, respectively.

Fig. 1. Illustration of the structure consistency in heterogeneous images:
(a) SAR image; (b) Optical image. The similarity between image parts (Xi
and X j , Yi and Y j ) is reflected by the thickness of connecting lines. The
structure of the unchanged target part Xi in the SAR image can be preserved
by the part Yi in the optical image. However, for the changed target part Xi ,
the structure in the SAR image is no longer conformed by the optical image.

As illustrated in Fig. 1, in the heterogeneous CD, directly
comparing the pixel values of x (m, n, c) and y (m, n, c), such
as |x (m, n, c) − y (m, n, c)| and

���log x(m,n,c)
y(m,n,c)

��� in the homoge-
neous CD, is not feasible. However, with the self-similarity
property, each small part of the image (Xi in the SAR image)
can always find some similar parts (X j in the SAR image)
within the same image. Then, the structure of Xi , which is
represented by this similarity relationships between Xi and its
similar parts X j , can be well preserved by the unchanged part
Yi in the optical image, showing that Yi and Y j are also very
similar, as illustrated by the unchanged part in Fig. 1. On the
contrary, if the area represented by image Xi has changed in
the event, the structure of Xi is no longer preserved by Yi ,
showing that Yi and Y j are very different, as illustrated by
the changed part in Fig. 1. Therefore, we can find that the
structure consistency is quite imaging modality-invariant, and
the change level can be measured by how dissimilar between
the structure of pre-event image and post-event image. Then,
three main problems need to be solved: how to represent the
structure, how to calculate the structural difference, and how
to detect the changes.

The proposed heterogeneous CD method consists of four
steps: 1) superpixel segmentation and feature extraction;
2) structure representation by constructing KNN graph;
3) structural difference calculation and DI generation;
4) binary CM calculation by MRF model. The framework is
illustrated in Fig. 2. In the general CD process, the calculation
of binary CM is after the construction of DI, which is a
one-way process. However, we find that the quality of gen-
erated DI is affected by the CM in the proposed method, and
in light of this, we use an iterative framework to combine the
DI construction process and binary CM calculation process.
This framework is also applicable to some other unsupervised
algorithms, such as those that need to pick pseudo-training
sets [26], or those where the DI is affected by changed
regions [20], [31], [32].

A. Superpixel Segmentation and Feature Extraction

Rather than focusing on the individual pixel, image block
is chosen as the basic analysis unit in the proposed method,
which is obtained by superpixel segmentation. In this paper,
the simple liner iterative clustering (SLIC) method [33] is
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Fig. 2. Framework of the proposed heterogeneous change detection method.

applied on each image to generate the superpixels for its
superior in both efficiency and boundary preservation. The
original SLIC method is designed for optical image with R,
G, B bands, which transforms the RGB space to the CIELAB
space and then computes the color distance d as

d =
��

li − l j
�2 + �ai − a j

�2 + �bi − b j
�2 (1)

where l, a, and b represent the pixel values in CIELAB
color space. However, the images involved in heterogeneous
CD are not only RGB optical images, but also multispectral
images and SAR images. For the multispectral images X with
CX > 3, the principle component analysis (PCA) method
is firstly used to reduce its dimension to obtain the first
three principle components X� ∈ R

M×N×3, and then SLIC
is used to complete the superpixel segmentation by directly
using (1) without the CIELAB space transformation. For the
SAR image, it is usually assumed to be contaminated by
the well-accepted multiplicative speckle noise modeled by a
Gamma distribution. It is obviously inappropriate to use (1)
to calculate the distance for SAR image. Inspired by the
generalized likelihood ratio (GLR) based similarity criterion of
patches in SAR image proposed in [34], the following distance
dG L R is used to produce the superpixels instead of (1)

dG L R = log

�
xi + x j

2
√

xi x j

�
(2)

where xi and x j are intensity values of two pixels.
We first segment X and Y independently into superpixels,

and denote the corresponding segmentation maps of �X

and �Y as the region sets of each superpixel, i.e., �X =�
�X

i |i = 1, · · · , N1
	

and �Y =


�Y

j | j = 1, · · · , N2

�
respec-

tively, where �X
i is the region of the i -th superpixel

of X and �Y
j is the region of the j -th superpixel of

Y. Denote �S
(i, j ) = �X

i ∩ �Y
j , we have a new indi-

vidual region �S
(i, j ) in the segmentation map �S as

�S
(i, j ) =



(m, n) | (m, n) ∈ �X

i ; (m, n) ∈ �Y
j

�
. By eliminating

the empty sets in �S and merging the small regions (i.e.,
regions that are smaller than the NS -th smallest region in �S)
into the nearest larger regions, we can get the co-segmentation

map �S with the new subscript index as

�S =


�S

i |i = 1, · · · , NS

�
; �S

i ∩ �S
j = ∅, i f i �= j

(3)
Ns�

i=1

�S
i = {(m, n) |m = 1, · · · , M; n = 1, · · · , N } ;

The i -th superpixels of X and Y are defined as
Xi = �x (m, n, c) | (m, n) ∈ �S

i , c = 1, · · · , CX
	

and Yi =�
y (m, n, c) | (m, n) ∈ �S

i , c = 1, · · · , CY
	
, respectively.

Therefore, each superpixel in the co-segmentation map �S

exhibits homogeneous structural property in both pre-event
image X and post-event image Y. Compared with the square
patch based methods (such as FPMS, PSGM and NPSG),
the proposed superpixel based method can group more adja-
cent pixels, adhere to edges, and preserve the object structures
of both images. Hence, it can explore the contextual infor-
mation more accurately and improve the CD performance in
accuracy and efficiency.

Once the co-segmentation map �S is obtained, differ-
ent kinds of feature information can be extracted from the
superpixel, such as the spectral (intensity), textural, and
spatial information. Denote the feature extraction opera-
tor as F , we have the feature vectors of Xi and Yi as
X̃i = F (Xi ) and Ỹi = F (Yi ), respectively. In the
proposed method, the mean, median, and variance val-
ues of each band are taken as the superpixel’s features.
Then we can obtain the feature matrices of X and Y as
X̃ ∈ R

3CX×NS and Ỹ ∈ R
3CY×NS respectively, each column of

which represents a feature vector.

B. Robust Adaptive KNN Graph Construction and Change
Level Measurement

1) KNN Graph Construction: As the graph model can
efficiently capture crucial information of an image, we propose
to construct a weighted graph to represent the structure of each
image.

Definition 1 (KNN Graph): Given a set of data points z =
{z1, z2, · · · , zn} with zi ∈ R

d in domain Z , G = {V , E, w} is
a weighted directed graph, where V = z, and

�
zi , z j

� ∈ E if
and only if distZi, j is among the k smallest elements of the set
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distZi,l |l = 1, · · · , n; l �= i

�
, and w (i, j) = exp


−ηdistZi, j

�
for
�
zi , z j

� ∈ E , where distZi, j represents the distance between
zi and z j with defined distance metric.

Given the pre-event image X with the co-segmentation map
�S , we set each superpixel as a vertex and construct the KNN
graph GX = {VX, EX, wX} as

VX = {Xi |i = 1, 2, · · · , NS}
EX =


�
Xi , X j

� |i = 1, 2, · · · , NS; j ∈ N K
Xi

�
(4)

wX (i, j) = exp

−ηdistXi, j

�
,∀ �Xi , X j

� ∈ EX

where η > 0 is a bandwidth parameter of exponential

kernel, distXi, j =
���X̃i − X̃ j

���2

2
represents the distance between

superpixels Xi and X j by using the feature vectors, distXi ∈
R

NS denotes the distance vector composed of distXi, j , N K
Xi

represents the position set of the K NNs of Xi by sorting
all elements except distXi,i in the distance vector distXi and
taking out the K smallest elements. For the post-event image
Y with the co-segmentation map �S , we can construct KNN
graph GY = {VY, EY, wY} in domain Y similar as GX in (4).

2) Change Level Measurement: In the constructed directed
graph GX, each superpixel of X is treated as a vertex, and
each vertex is connected with its neighbors by K directed
edges with associate weights wX representing the similarities
between the vertex and its NNs. In this way, the structure
information of the image X can be characterized by the con-
structed KNN graph. Therefore, we can compare the difference
between graphs GX and GY to measure the changes between
X and Y.

Because the heterogeneous images X and Y represent
different physical quantities, the graphs GX and GY are con-
structed in different domains of X and Y respectively, directly
comparing GX and GY (such as |wX − wY|) will cause the
leakage of heterogeneous data. In order to make GX and GY
comparable, we first map the GX to the other image domain
Y to obtain the mapped graph Gmap

Y = �V map
Y , Emap

Y , w
map
Y

	
as

V map
Y = {Yi |i = 1, 2, · · · , NS }

Emap
Y =


�
Yi , Y j

� |i = 1, 2, · · · , NS , j ∈ N K
Xi

�
(5)

wY (i, j) = exp

−ηdistYi, j

�
,∀ �Yi , Y j

� ∈ Emap
Y

From this mapping process, we can find that the Gmap
Y

is constructed in domain Y by using the edges information
of GX but computing the corresponding weights by using
distYi, j , which is also a K connected graph. In this way, since
Gmap

Y and GY are constructed in the same domain Y , they
are comparable. Then, the forward change level f Y can be
measured by the structure difference between Gmap

Y and GY
with the distance criterion or similarity criterion as

f Y
i = 1

K
(
�

j �∈N K
Xi

di stYi, j � −
�

j∈N K
Yi

di stYi, j )

f Y
i = 1

K
(
�

j∈N K
Yi

wY (i, j) −
�

j �∈N K
Xi

wY
�
i, j ��) (6)

Intuitively, the structure difference is calculated by how
different the two KNN position sets of N K

Xi
and N K

Yi
are in

the image Y. If the area represented by superpixel Xi does
not change in the event, the superpixel Y j � , j � ∈ N K

Xi
will

be similar as Yi with a high probability, then the change
level f Y

i of (6) will be very small; on the contrary, if the
area represented by superpixel Xi changes in the event,
the superpixel Y j � , j � ∈ N K

Xi
is no longer similar to Yi with a

high probability, and then it leads to a large f Y
i . In this way,

the changed and unchanged superpixels can be distinguished.

3) Adaptive KNN: In the KNN construction and structure
difference calculation (6), we can find that the number “K ”
of the NNs has an important role in the performance of
change level measurement. Obviously, a very small K is not
appropriate, which will make the measurement (6) not robust
enough. For example, for the unchanged superpixel Yi , when
a mapped neighbor Y j � , j � ∈ N K

Xi
in (5) is polluted by noise,

distYi, j � will be a large value and it brings errors in (6). In this
case, a larger K will reduce the influence of this polluted Y j �
because (6) takes the mean value of all K neighbors. However,
a particularly large K is also not appropriate, which will make
the measurement (6) less discriminative. For example, for the
changed superpixel Yi , when the value of K exceeds the actual
number of its real similar neighbors, some large distYi, j will be
introduced into (6). In the extreme case of K = NS , the change
level will always equal to 0. Therefore, the choice of K is
a challenge and it is not feasible to set the same K for all
vertexes. Instead, we need to set a suitable K for each vertex
according to the principle: “each vertex is connected to as
many truly similar vertices as possible”. However, it is difficult
to achieve this goal completely. Here, we propose a strategy
to adaptively select K for each vertex.

Step 1: Choose a large Kmax and a small Kmin, and construct
the KNN graphs GX and GY with K = Kmax;

Step 2: Calculate the in-degree di (Xi ) and di (Yi ) of each
vertex in GX and GY, respectively;

Step 3: Calculate K X
i and K Y

i as K X
i =

min {Kmax, max {di (Xi ) , Kmin}} and K Y
i =

min {Kmax, max {di (Yi ) , Kmin}}, respectively;
Step 4: Set Ki = min

�
K X

i , K Y
i

	
for each vertex Xi and

Yi , and construct the adaptive KNN graph G(a)
X by replacing

the N K
Xi

in (4) with N Ki
Xi

, and construct G(a)
Y with a similar

operations.
Here, the Kmax and Kmin should satisfy the following

desirable properties: the large Kmax should be small enough
to represent the real structure of objects with the most
superpixels, while the small Kmin should be large enough to
preserve the structure of objects with the least superpixels;
Kmax and Kmin should be data-dependent. In the proposed
method, we set Kmax = �√NS

�
and Kmin = �√NS/10

�
to satisfy these conditions, where 	·
 represents the rounding
up operation. The in-degree di (Xi ) in GX is the number of
times Xi occurs among the K NNs of all other vertices in GX,
which can be used to measure the “popularity” of Xi . A larger
di (Xi ) means that Xi is “popular” in the KNN graph, while
a very small di (Xi ) means that Xi is “alone” in the graph.
With this strategy, we can choose an appropriate K for each
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vertex, whether it has many truly similar vertices (belonging
to high density) or few truly similar vertices (belonging to low
density).

4) Robust KNN Graph: In the KNN graph construction,
we find the NNs of each Xi in the whole X image without
considering the stability of neighbors, that is, whether the
neighbors will change in the event. Next, we will show that
the unstable (changed) neighbors degrade the performance of
structure difference measurement (6).

For the unchanged superpixel Xi , when its K NNs contain
the changed superpixel X j � , j � ∈ N K

Xi
, although Xi and X j �

are very similar in GX, Yi and Y j � in the mapped Gmap
Y are

quite different (resulting a large distYi, j � ). Then, it increases

the value of unchanged f Y
i . On the contrary, for the changed

superpixel Xi , when its K NNs contain the changed superpixel
X j � , j � ∈ N K

Xi
, if Xi and X j � changed to the same category, Yi

and Y j � in the mapped Gmap
Y are also quite similar (resulting

a small distYi, j � ). Then, it reduces the value of changed f Y
i .

From the above analysis, we can find that whether for the
changed or unchanged superpixel Xi , its unstable K NNs will
make the structure difference measurement less discriminative
(as illustrated by Fig. 6 in the subsection III-C).

In order to reduce the impact of unstable neighbors, we need
to eliminate them in the KNN graph construction. However,
we can’t know which superpixels are changed in advance,
so we use an iterative framework to achieve this elimina-
tion. That is, we use the binary CM of previous round
(in Section II-C) to guide the adaptive KNN graph construction
of next round, to enhance the quality of the DI and improve the
accuracy of the final CM, which is an iterative coarse-to-fine
process.

Suppose the previous CD results with MRF seg-
mentation in Section II-C is the index subset S of
unchanged superpixels and the index subset T of changed
superpixels, we can construct the robust KNN graph

G(r)
X =



V (r)

X , E (r)
X , wX

�
by replacing the EX in (4) with

E (r)
X =


�
Xi , X j

� |i = 1, 2, · · · , NS , j ∈ NSK
Xi

�
, where

NSK
Xi

represents the position set of the K NNs of the Xi

in the unchanged subset S. This means that it finds the K
NNs of each superpixel in the set of unchanged superpixels
rather than the whole X.

With the adaptive K selection strategy and unchanged index
subset S, we can construct the robust adaptive KNN graph
G(r−a)

X =



V (r−a)
X , E (r−a)

X , wX

�
as

V (r−a)
X = {Xi |i = 1, 2, · · · , NS}

E (r−a)
X =


�
Xi , X j

� |i = 1, 2, · · · , NS , j ∈ NSKi
Xi

�
(7)

wX (i, j) = exp

−ηdistXi, j

�
, ∀ �Xi , X j

� ∈ Er−a
X

where the adaptive K is calculated with steps 1 to 4 in sub-
section II-B.3 by setting Kmax = �√|S|�, Kmin = �√|S|/10

�
and replacing KNN graphs (GX and GY) with robust KNN
graphs (G(r)

X and G(r)
Y ), respectively.

By constructing and mapping these robust adaptive KNN
graphs, we can re-calculate the structure difference (6) as

f Y
i = 1

Ki
(
�

j �∈NSKi
Xi

di stYi, j � −
�

j∈NSKi
Yi

di stYi, j )

f Y
i = 1

Ki
(
�

j∈NSKi
Yi

wY (i, j) −
�

j �∈NSKi
Xi

wY
�
i, j ��) (8)

5) DI With Robust Adaptive KNN Graph: In addition,
by defining DX ∈ R

NS×NS as the distance matrix of image
X with element

�
DX�

i, j = distXi, j , and ZX ∈ R
NS×NS as the

K -connection matrix of image X with element
�
ZX�

i, j = 1

if j ∈ NSKi
Xi

and
�
ZX
�

i, j = 0 if j /∈ NSKi
Xi

, then the

robust adaptive KNN graph G(r−a)
X can be represented by

the weighting matrix WX = exp
�−ηDX

� � �ZX
�
, where �

represents the Hadamard product, and
�
WX
�

i, j > 0 represents

a directed edges from Xi to X j with weights
�
WX�

i, j , and�
WX�

i, j = 0 means that there is no directed edges from Xi to

X j . Through similar definition, we can define DY, ZY, and WY

for image Y. Using these defined matrices, we can rewrite (8)
into its equivalent form as

f Y
i = 1

Ki

NS�
j=1

�
DY �


ZX − ZY

��
i, j

f Y
i = 1

Ki

NS�
j=1

�
exp

−ηDY

�
�


ZY − ZX
��

i, j
(9)

From (9), we can find that f Y is computed in the Y
domain by calculating the difference between the mapped
edges exp

�−ηDY
� � ZX and its own edges WY, which can

be seen as the exp
�−ηDY

�
weighted difference between two

K -connection matrices ZX and ZY.
Similarly, the backward change level f X can be measured

by mapping the G(r−a)
Y to the X domain, and comparing

the structure difference between the mapped G(r−a)map
X and

G(r−a)
X as

f X
i = 1

Ki

NS�
j=1

�
DX �


ZY − ZX

��
i, j

f X
i = 1

Ki

NS�
j=1

�
exp

−ηDX

�
�


ZX − ZY
��

i, j
(10)

Before fusing the forward f Y and backward f X, it is
reasonable to clip the change levels f Y and f X beyond
some standard deviations of the mean value (e.g., f X >
mean

�
f X�+3×std

�
f X�), so that outliers do not compromise

the fusion step. Then, we can obtain the final change level as

f f inal = f X/mean


f X
�

+ f Y/mean


f Y
�

(11)

By assigning the forward, backward and final change levels
to the i -th superpixel �S

i , we can obtain the forward (DI f w),
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Fig. 3. Example of graph cut co-segmentation: (a) graph Gseg connects two
subgraphs G f w and Gbw ; (b) transformed single graph segmentation.

backward (DI bw) and final (DI f inal ) DIs, respectively.

DI f w
m,n = f Y

i , DI f w
m,n = f X

i , DI f inal
m,n = f f inal

i ; (m, n)∈�S
i

(12)

C. Binary CM Calculation by MRF Model

Once the DIs are obtained, the CD problem can be converted
into a binary segmentation problem. We define the binary CM
calculation as a superpixel-labeling problem, which assigns a
label Li for each superpixel �S

i with Li = 1 representing
the changed class and Li = 0 representing the unchanged
class. This superpixel-labeling problem can be realized by
minimizing the energy function E , which is the log likelihood
of the posterior distribution of an MRF [35], [36], composing
a data energy Ed and a smoothness energy Es

min
L∈R

NS
E (L) = Ed (L) + Es (L) (13)

where Ed mainly captures the change level information and
the Es mainly captures the spatial contextual information in
the MRF framework.

In order to intuitively understand the construction of energy
function, we design a graph Gseg = �Vseg, Eseg, wseg

	
for

the MRF model (in order to avoid the symbol confusion with
the previous KNN graph G, we use G to represent the graph
constructed in MRF model). Each edge Eseg in the graph Gseg

is assigned a nonnegative weight to form the energy function
E (L), and the minimum cost of the graph cut gives an optimal
labeling L in (13).

The designed graph Gseg connects two subgraphs G f w =�
V f w, E f w,w f w

	
and Gbw = {Vbw, Ebw,wbw}, which rep-

resent forward and backward DIs respectively, as shown
in Fig. 3. In the subgraphs, the nodes pi ∈ V f w and qi ∈ Vbw

in G f w and Gbw represents the superpixels �S
i in the forward

and backward DIs, respectively. Meanwhile, there are two
additional nodes: the unchanged terminal (source s) and the
changed terminal (sink t). Therefore, we have

Vseg = V f w ∪ Vbw ∪ {s, t} (14)

The set of edges consists of three types of edges:
t-links (terminal links), g-links (subgraph links), and n-links
(neighborhood links). Each superpixel in DI f w and DI bw is
connected to two terminals (unchanged and change) through
two t-links, and each superpixel at the same location in

DI f w and DI bw is connected together through a g-link. The
R-adjacency neighborhood system is used for n-links, that
is, as long as the boundaries of two superpixels (�S

i and
�S

j ) intersect or the distance between the centers of two
superpixels is less than R (we set R = 2

√
M N/NS in

this paper for simplicity), the two superpixels are marked
to be R-adjacency neighbors of each other as i ∈ N R−ad j

j

(or j ∈ N R−ad j
i ). Then, each pair of neighboring super-

pixels
�

pi , p j
�

or
�
qi , q j

�
is connected by an n-link.

We have

Eseg = Et ∪Eg ∪En

Et = �(s, pi ) , (pi , t) |∀pi ∈V f w

	∪{(s, qi ) , (qi , t) |∀qi ∈Vbw}
Eg = �(pi , qi ) |pi ∈V f w, qi ∈Vbw, i = 1, · · · , NS

	
En =


�
pi , p j

�
,
�
qi , q j

� |∀pi ∈V f w,∀qi ∈Vbw, j ∈N R−ad j
i

�
(15)

All edges in Eseg are assigned some weights or costs. The
cost of t-links corresponds to a penalty for assigning the
corresponding label to the superpixel

wt (s, pi ) = max


−θ log


f Y
i /2T1

�
, 0
�

wt (s, qi ) = max


−θ log


f X
i /2T2

�
, 0
�

wt (pi , t) =
�

−θ log
�
1 − f Y

i /2T1
�
, i f f Y

i ≤ 2T1

W1, otherwi se

wt (qi , t) =
�

−θ log
�
1 − f X

i /2T2
�
, i f f X

i ≤ 2T2

W2, otherwi se
(16)

and it can be used to form the data energy term Ed in (13) as

Ed =
NS�
i=1

Dpi

�
L pi

�+ NS�
i=1

Dqi

�
Lqi

�

Dpi

�
L pi

� =
�

wt (s, pi ) , i f L pi = 1

wt (pi , t) , i f L pi = 0

Dqi

�
Lqi

� =
�

wt (s, qi ) , i f Lqi = 1

wt (qi , t) , i f Lqi = 0
(17)

where θ ∈ (0, 1) is a balance parameter, T1 and T2 are two
threshold parameters, which are determined by the maximum
inter class variance criterion with the Otsu method [37] on f Y

and f X, respectively. Specially, when f Y
i > 2T1 (or f X

i >
2T2), the cost of edge (s, pi ) (or (s, qi )) is assigned to zero
because of the hard constraint condition, and the cost of edge
(pi , t) (or (qi , t)) is assigned to W1 (or W2), which is set to be
the maximum sum of all n-links weights for each superpixel.
In addition, this type of Ed can be regarded as derived from
the assumption that f Y

i (or f X
i ) obeys a uniform distribution

between 0 and 2T1 (or 2T2).
The cost of g-links corresponds to a penalty for discon-

tinuity between the i -th superpixel in DI f w and the i -th
superpixel in DI bw , which can be used to form the consistency
energy term Ec. Since the pre-event and post-event images are
completely registered, the position of the changed area in these
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two images is the same, that is, L p and Lq should be the same.
Then, we have

wg (pi , qi ) = ∞
(18)

Ec =
NS�
i=1

− log
�
1 − ��L pi − Lqi

���

The cost of n-links corresponds to a penalty for discontinu-
ity between the superpixels and their R-adjacency neighbors,
which can be used to form the adjacency energy term Ea .
Here, we propose a novel costs of n-links, which takes into
account not only the spatial continuity, but also the relationship
between two subgraphs in the heterogeneous CD task.

wn
�

pi , p j
�

j∈N R−ad j
i

= wn
�
qi , q j

�
j∈N R−ad j

i
= 1 − θ

2d

�S

i ,�S
j

�

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

�
−distYi, j

2σ 2
1

− distXi, j

2σ 2
2

�
,

i f distYi, j ≤ σ 2
1 , distXi, j ≤ σ 2

2

exp

�
distYi, j

2σ 2
1

− distXi, j

2σ 2
2

− 1

�
,

i f distYi, j ≤ σ 2
1 , distXi, j > σ 2

2

exp

�
−distYi, j

2σ 2
1

+ distXi, j

2σ 2
2

− 1

�
,

i f distYi, j > σ 2
1 , dist X

i, j ≤ σ 2
2

exp (−1) ,

i f distYi, j > σ 2
1 , distXi, j > σ 2

2

(19)

where d

�S

i ,�S
j

�
represents the Euclidean spatial distance

between superpixels, σ 2
1 =

�
distYi, j

�
and σ 2

2 =
�
distXi, j

�
are

two normalization parameters with �·� representing the average
feature distance over the whole image. Then we have the
corresponding adjacency energy term Ea as

Ea =
NS�

i=1

�
j∈N R−ad j

i

�
wn
�

pi , p j
�
δ
�
L pi − L p j

�
(20)

+wn
�
qi , q j

�
δ
�
Lqi − Lq j

�	
where function δ (·) is defined as δ (x) = 0 if x = 0 and
δ (x) = 1 if x �= 0. From (19) and (20), we can find that
it gives a penalty for the discontinuity of L pi �= L p j and
Lqi �= Lq j in four cases: a large penalty when Yi and Y j ,
Xi and X j are similar; a small penalty when Yi and Y j are
similar and Xi and X j are dissimilar; a small penalty when
Yi and Y j are dissimilar and Xi and X j are similar; and a
median penalty when Yi and Y j , Xi and X j are dissimilar.

With these constructed costs of different
links (16), (18), (19) and the corresponding energy
terms (17), (18), (20), we can obtain the total energy E

TABLE I

THE OVERALL FRAMEWORK OF IRG-MCS

as

E = Ed + Ec + Ea

=
NS�

i=1

{Dpi

�
L pi

�+ Dqi

�
Lqi

�− log
�
1 − ��L pi − Lqi

���
+

�
j∈N R−ad j

i

wn
�

pi , p j
�
δ
�
L pi − L p j

�
+ wn

�
qi , q j

�
δ
�
Lqi − Lq j

�} (21)

This energy minimization problem is equivalent to the
minimum cut problem on the graph Gseg = �Vseg, Eseg, wseg

	
,

which is to find a cut that has the minimum cut cost among
all cuts to partition the nodes in the graph into two disjoint
subsets: the unchanged nodes connecting to source s and the
changed nodes connecting to sink t .

Due to the hard constraint of Ec, we have an equality
constraint L pi = Lqi , i = 1, · · · , Ns and the optimal cut
take the form of plane cuts as shown in Fig. 3(a). Then,
the minimization problem of (21) can be rewritten as

min
Lo∈R

NS
E =

NS�
i=1

{Doi

�
Loi

�
+
�

j∈N R−ad j
i

wn
�
oi , o j

�
δ
�
Loi − Lo j

�} (22)

where Doi

�
Loi

� = Dpi

�
L pi

� + Dqi

�
Lqi

�
and wn

�
oi , o j

� =
wn
�

pi , p j
� + wn

�
qi , q j

�
. Therefore, the co-graph segmen-

tation problem is transformed to a single graph segmenta-
tion as shown in Fig. 3(b), which can be solved by the
min-cut/max-flow algorithm in [38]. Once the optimal Lo

is assigned, we can obtain the unchanged index subset of
nodes connecting to source S = �i |Loi = 0; i = 1, · · · , NS

	
and the changed index subset of nodes connecting to sink
T = �i |Loi = 1; i = 1, · · · , NS

	
.

The final changed map can be obtained as

cm (m, n) = Loi ; i f (m, n) ∈ �S
i (23)

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 17,2021 at 04:58:14 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: ITERATIVE ROBUST GRAPH FOR UNSUPERVISED CD 6285

Fig. 4. Fused DI of IRG-McS and binary CM of different methods on heterogeneous data set. From top to bottom, they correspond to datasets #1 to #6,
respectively. From left to right are: (a) pre-event image; (b) post-event image; (c) the ground truth; (d) fused DI of IRG-McS with distance criterion; (e) fused
DI of IRG-McS with similarity criterion; (f) binary CM of M3CD; (g) binary CM of FPMS; (h) binary CM of NPSG; (i) binary CM of IRG-McS with
distance criterion; (j) binary CM of IRG-McS with similarity criterion. In the binary CM, White: true positives (TP); Red: false positives (FP); Black: true
negatives (TN); Green: false negatives (FN).

Meanwhile, it should be noted that this fused graph seg-
mentation is different from the segmentation on the fused
DI, that is, instead of first fusing DI and then segmenting
it, the propose method combines fusion and segmentation
in the same framework. The benefit of this combination is
that it can further explore the information in the forward
and backward DIs (as shown in (16), (18), and (19)) and
better use them to improve the CD accuracy. The over-
all framework of the proposed IRG-McS is summarized
in Table I.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, experiments are performed to evaluate the
performance of IRG-McS, which are conducted on six pairs
of heterogeneous RS images.

A. Heterogeneous Data Sets and Quantitative Measures

Six heterogeneous data sets are used to verify the effective-
ness of the proposed approach, as listed in Table II. These data
sets include two different types of heterogeneity: multisensor
optical image pairs (images are acquired by different optical
sensors, e.g., #1, #2, and #3 in the first three rows of
Figs. 4(a)-(c)) and multisource image pairs (images are
acquired by different types of sensors, e.g., #4, #5, and
#61 [26] in the last three rows of Figs. 4(a)-(c)). These data sets
cover different image sizes (varying from 300 to 4135 pixels
in length or width), different resolution levels (varying from
0.52m to 30m) and different types of changes (lake overflow,
flooding and building construction), which can evaluate the
robustness of the algorithm in different scenarios.

1Dataset #6 is kindly available at https://sites.google.com/view/luppino
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TABLE II

DESCRIPTION OF THE SIX HETEROGENEOUS DATA SETS USED IN THE MANUSCRIPT

Fig. 5. ROC curves of IRG-McS generated DIs.

In order to discuss and compare CD results of different
methods, two types of quantitative measures are selected.
The quality of DI can be evaluated by the empirical receiver
operating characteristics (ROC) curves, which take the prob-
ability of detection (PD) as a function of the probabil-
ity of false alarm (PFA). Moreover, the area under the
curve (AUC) is used as the quantitative criterion for the ROC
curve. The quality of binary CM can be evaluated by the
widely used measures: the percentage of correct classification
(PCC), the Kappa coefficient (KC) and the F-measure: Fm =
(2TP)/(2TP+ FP + FN), where TP, TN, FN, FP represent
the true positives, negatives, false negatives and positives,
respectively.

B. Experimental Results

The main parameters of IRG-McS are the NS of the
superpixels numbers, the maximum number of iterations I ter ,
and the balance parameter θ. For all the experiments, we set
NS = 5000, I ter = 6, θ = 0.05 (except θ = 0.1 for dataset
#2). The impact of these parameters will be analyzed in detail
in subsection III-C.

Figs. 4(d)-(e) show the fused DIs DI f inal (12) of different
data sets generated by IRG-McS with distance criterion in (8)
(denoted as IRG-McS.dist for short) or similarity criterion
in (8) (denoted as IRG-McS.sim for short). The ROC curves
of these DIs are plotted in Fig. 5. From these results,
we can find that the proposed IRG-McS can well build the
relationship between heterogeneous images and highlight the
changes in the DIs, which can obtain high quality ROC
curves and gain large AUC (as listed in the last row of
Table V).

In order to evaluate the binary CM generated by
IRG-McS2, we choose the recently proposed Markov Model
for Multimodal CD method (M3CD)3 [39], FPMS4, and
NPSG5 for comparison, and use the default parameters in their
codes, which are also consistent with their papers. Figs. 4(f)-(j)
show the final CM of different methods on all the evaluated
heterogeneous data sets. Table III reports the PCC, KC and
Fm of these different methods. From the comparison of CMs
in Fig. 4, we can see that the changed and unchanged areas are
well detected by IRG-McS with relatively small FN and FP.
From the quantitative measures of CMs in Table III, we can
find that the IRG-McS can obtain the best or second-best
result whether using distance or similarity criterion, which
demonstrates the effectiveness of the proposed heterogeneous
CD method.

In order to further evaluate the performance of
IRG-McS, we also select some other representative and state-
of-the-art (SOTA) methods for comparison as summarized
in Table IV, including HPT [12], SCCN [14], RMN (reliable
mixed-norm based method) [17], PSGM [20], AM-IR [26], LT-
FL [28], DFR-MT (deep feature representation and mapping
transformation based method) [40], MDS (multidimensional
scaling based method) [41], ALSC (adaptive local structure
consistency based method) [42], AFL-DSR (anomaly feature
learning based deep sparse residual model) [43], MDER
(multidimensional evidential reasoning based method) [44],
and NLPEM (nonlocal pairwise energy-based model) [45],
where SCCN, LT-FL, DFR-MT and AFL-DSR are deep
learning based methods. For the sake of fairness, we directly
quote the results of the corresponding datasets in their
original published papers. From Table IV, we can see that the
IRG-McS can achieve better or quite competitive accuracy
rate by comparing with these SOTA methods, and show the
ability to gain consistent good results on different data sets.
The average PCC obtained on the six heterogeneous data sets
of IRG-McS is about 0.95.

C. Discussion

1) The Effectiveness of Robust Adaptive KNN Graph: We
have proposed a strategy to adaptively select K for each
vertex of the KNN graph. To verify the effectiveness of the
proposed adaptive K -selection strategy, we will compare the

2IRG-McS will be available at https://github.com/yulisun/IRG-McS
3M3CD is kindly available at http://www-labs.iro.umontreal.ca/˜mignotte
4FPMS is kindly available at http://www-labs.iro.umontreal.ca/˜mignotte
5NPSG is available at https://github.com/yulisun/NPSG
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TABLE III

QUANTITATIVE MEASURES OF BINARY CMS ON THE HETEROGENEOUS DATA SETS

TABLE IV

ACCURACY RATE OF CM GENERATED BY DIFFERENT METHODS ON DIFFERENT DATA SETS. THE RESULTS OF THESE
COMPARISON METHODS ARE REPORTED BY THEIR ORIGINAL PUBLISHED PAPERS

TABLE V

AUC OF DIS GENERATED BY IRG-MCS.SIM WITH
DIFFERENT K ON DIFFERENT DATA SETS

adaptive KNN graph with Ki and the fixed KNN graphs with
fixed K = Kmin, Kmax, Kmean in the DI generation, where

Kmean = 1
NS

NS 
i=1

Ki is the mean value of the adaptive Ki .

Table V lists the AUC of DIs generated by IRG-McS with
different K on datasets #1 to #6. We can find that the adaptive
Ki produces a higher AUC than the fixed K , whether K takes
the maximum value Kmax, the minimum value Kmin, or the
mean value Kmean. This demonstrates the superiority of the
adaptive KNN graph.

In the IRG-McS, a robust KNN graph is constructed
by adaptively selecting unchanged NNs though an iterative
framework combining the DI generation and CM calculation
processes, which can reduce the impact of unstable neighbors
in the change level calculation. To demonstrate the effective-
ness of this iterative framework, we will compare the DI gener-
ated by each iteration of IRG-McS with similarity criterion in
detail. Fig. 6(c) shows the proportion of the changed superpix-
els in the K NNs of each superpixel in the pre-event image X

(or in the graph G(a)
X ), that is, pm,n =

���NCKi
Xi

���
Ki

, (m, n) ∈ �S
i ,

where NCKi
Xi

=



j | j ∈ N Ki
Xi

,�S
j i s changed

�
and
���NCKi

Xi

���
represents the number of the changed superpixels in N Ki

Xi
.

Fig. 6(d) shows the proportion of the changed superpixels in

the K NNs of the post-event event image Y (or in the graph
G(a)

Y ). From Figs. 6(a)-(d), we can easily find that the NNs
of some superpixels in the graph G(a)

Y contain a large number
of changed superpixels, as shown in the middle of Fig. 6(d)
(representing the lake). As analyzed in subsection II-B.4, these
changed NNs will make the structure difference measurement
less discriminative. Therefore, we can find that the quality of
backward DI in Fig. 6(e) (DI bw of the initial iteration) is much
worse than that of forward DI in Fig. 6(f) (DI f w of the initial
iteration), and the backward DI is hard to distinguish between
the changed and the unchanged areas, which is consistent
with our theoretical analysis. Figs. 6(g) and (h) show the
backward and forward DIs of the final iteration respectively,
which are generated by calculating the structure difference
of (8) with the robust adaptive KNN graphs by removing the
detected changed superpixels of previous iteration in the NNs.
By comparing Figs. 6(e) and (g), we can clearly find that the
backward DI of the final iteration is much better than that of
the initial iteration, which demonstrates the effectiveness of
the proposed robust KNN graph with the iterative framework.
In addition, we also plot the ROC curves of these DIs of initial
and final iterations in Fig. 7 for comparison.

2) Parameter Analysis: Another issue to be discussed is the
sensitivity of parameters used in IRG-McS. For the superpx-
iels number NS , it has two impacts on the algorithm: first,
it affects the detection granularity of the algorithm; second,
it determines the complexity of the algorithm. A larger NS

will make the segmented superpixel smaller, which improves
the detection granularity. Fig. 8 plots the fused DIs and CMs
generated by IRG-McS.dist on dataset #3 with NS = 2500,
5000, 10000 and 20000. In order to fully compare these
detection results, we mark some details with the white regions
in the DIs of Fig. 8. We can find that when NS is smaller,
the size of the generated superpixels is larger, the block effect
of the DI is more obvious, and then some minor changes in the
CM are easier to be ignored as shown in Fig. 8. On the other
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Fig. 6. DIs generated by the initial and final iterations of IRG-McS on
dataset #1. (a)-(b) the pre-event and post-event images of dataset #1, respec-
tively. (c)-(d) the proportion of the changed superpixels in the graphs G(a)

X
and G(a)

Y , respectively. (e)-(f) the backward and forward DIs generated by the
initial iteration of IRG-McS, respectively. (g)-(h) the backward and forward
DIs generated by the final iteration of IRG-McS, respectively.

Fig. 7. ROC curves of forward and backward DIs generated by the initial
iteration and final iteration of IRG-McS.

hand, a large NS also increases the computational complexity
as analyzed in the following Subsection III-C.3. In this paper,
we simply set NS = 5000 as a compromise choice, which can
be adjusted according to the granularity requirement and the
computing environment in practical applications.

For the maximum number of iterations I ter , according
to our experiments, the most obvious benefit of iterative
framework occurs after the initial iteration, and then gradually

Fig. 8. The fused DIs (top row) and CMs (bottom row) generated by IRG-
McS.dist on dataset #3 with different NS . From left to right are: (a) NS =
2500; (b) NS = 5000; (c) NS = 10000; (d) NS = 20000.

Fig. 9. Influences of parameter θ on the IRG-McS performance.

tends to be stable. At the same time, a larger I ter will
also increase the computational time of IRG-McS. Therefore,
we fix I ter = 6 as a compromise choice in our experiments.

For the parameter θ ∈ (0, 1), which is used to balance
the data energy term and the smoothness energy term in
the MRF co-segmentation model. In order to investigate the
effect of θ on the IRG-McS, we test different θ on the
abovementioned data sets and select the AUC of the fused DI
and PCC of the final CM to evaluate the CD results obtained
by IRG-McS with similarity criterion, which can describe the
comprehensive performance of the method. In Fig. 9, we set
θ to make θ/ (1 − θ) vary from 0.01 to 100 with the ratio
of 10. It can be found that the IRG-McS is very robust for this
balance parameter. There are two main reasons for this: first,
for the high-quality DI, using threshold segmentation method
alone can obtain good CD results. With the increase of θ,
the data energy term becomes more important. In particular,
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TABLE VI

COMPUTATIONAL TIME (SECONDS) OF M3CD, FPMS, NPSG AND IRG-MCS WITH NS = 5000 AND NS = 10000

Fig. 10. Fused DIs and final CMs generated by IRG-McS with different θ.
The top row is the result on dataset #1: (a) fused DI with θ = 0.01; (b) fused
DI with θ = 0.99; (c) final CM with θ = 0.01; (d) final CM with θ = 0.99.
The bottom row is the result on dataset #4: (e) fused DI with θ = 0.01;
(f) fused DI with θ = 0.99; (g) final CM with θ = 0.01; (h) final CM with
θ = 0.99.

when we set θ = 1, the MRF co-segmentation degenerates
to the threshold (Otsu) co-segmentation. Second, different
from the general smoothness energy term which only consider
the spatial constraints, the proposed adjacency energy term
Ea (20) also contains the relationship between two subgraphs
by using (19), which can be used to assist segmentation. That
is, even if we set θ = 0.01 to reduce the weight of data
energy terms Ed , we can obtain satisfactory results by using
the adjacency energy term Ea . Fig. 10 shows the fused DIs
and final CMs generated by IRG-McS with θ = 0.01 and
θ = 0.99 on datasets #1 and #4. We can find that IRG-McS
is very robust with this balance parameter θ.

3) Computational Time: In addition, the computational
efficiency of the proposed IRG-McS is also evaluated.
In Table VI, we report the computational times of M3CD,
FPMS, NPSG, and each process of IRG-McS with NS =
5000, 10000 on different data sets. The C++ codes of M3CD
and FPMS are executed in a Linux computer with Intel(R)
Xeon(R) Silver 4110 CPU and 31 GB of RAM. The NPSG
and IRG-McS are performed in MATLAB 2016a running
on a Windows desktop with Intel(R) Core(TM) i7-8700K
CPU and 32GB of RAM. For the large scale dataset #2,
M3CD, FPMS and NPSG all reduce the size of the images
to be 500 × 500 with a bilinear interpolation for reducing
the computation. In Table VI, ts f represents the computational
time spent on the preprocessing (superpixel segmentation and
feature extraction), tDI and tcs represent the time spent on
the DI generation and MRF co-segmentation in each iteration
respectively, and ttotal represents the total computational time
of IRG-McS. From Table VI, we can find that IRG-McS
is very efficient compared with other method even with
the dataset #2 without any downsampling, which is mainly
because IRG-McS uses the superpixel as the basic analysis
unit. Meanwhile, the two most time-consuming processes of
IRG-McS are the DI generation and MRF co-segmentation.

For the former, calculating the distance matrices of DX and
DY requires O

�
(3CX + 3CY) N2

S /2
�
, and sorting the distance

matrix by column to construct the robust adaptive KNN graph
requires O

�
N2

S log NS
�
. For the latter, calculating Ed and Ea

requires O (NS) and O (NR) respectively, where NR is the
number of edges in the R-adjacency neighbor system. The
complexity of min-cut/maxflow algorithm has been studied
in [38], that is, the theoretical complexity of the worst-case
is O
�
2NR N2

S

�
and the empirical complexity is relatively low

on typical problem instances in vision, which can also be
seen in Table VI. In addition, for the large scale NS , the DI
generation process can be accelerated by using some efficient
graph construction methods, such as the Kgraph6 [42], whose
empirical cost is around O

�
n1.14
�

for constructing the KNN
graph with a set of n nodes.

IV. CONCLUSION

In this paper, we mainly address the problem of unsu-
pervised CD of heterogeneous RS images. The proposed
IRG-McS method uses an iterative framework combining
the DI generation and CM calculation processes, which can
improve the quality of DI and detection accuracy of CM.
In the DI generation process, IRG-McS exploits the inherent
self-similarity property and detects the changes in heteroge-
neous images by using the structure consistency, which is
represented by the constructed superpixel-based robust adap-
tive KNN graph. To avoid the leakage of heterogeneous data,
IRG-McS calculates the structure differences between hetero-
geneous images by graph mapping, which is a comparison of
similarity relationships. In the CM calculation process, a MRF
co-segmentation model is designed to fuse the forward and
backward DIs in the segmentation process, which can make
full use of the change information and spatial information
in DIs and the relationship between DIs. Once the changed
areas are detected by the MRF co-segmentation, they are
propagated back into the DI generation process to construct
the robust KNN graph, which can reduce the influence of
changed neighbors in the KNN graph. Experimental results
clearly show that IRG-McS can effectively detect the changes
in different heterogeneous data sets.

In this paper, we construct robust adaptive KNN graphs to
represent the image structure, focusing on the choice of K
and the nearest-neighbors, while we only use the Euclidean
distance for the similarity metric of KNN graph and do not
take into account the noise condition, such as the speckle
noise [47] or stripe noise in the images [48]. Our future work
is to design an appropriate similarity metric for the KNN graph
under different noise environments and study the distribution

6kgraph: http://www.kgraph.org/
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model of DI generated by KNN graph mapping on different
heterogeneous image pairs, so as to design a more accurate
segmentation model.
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