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a b s t r a c t 

Change detection between heterogeneous images has become an increasingly interesting research topic in 

remote sensing. The different appearances and statistics of heterogeneous images bring great challenges 

to this task. In this paper, we propose an unsupervised iterative structure transformation and condi- 

tional random field (IST-CRF) based multimodal change detection (MCD) method, combining an imaging 

modality-invariant based structure transformation method with a random filed framework specifically 

designed for MCD, to acquire an optimal change map within a global probabilistic model. IST-CRF first 

constructs graphs to represent the structures of the images, and transforms the heterogeneous images 

to the same differential domain by using graph based forward and backward structure transformations. 

Then, the change vectors are calculated to distinguish the changed and unchanged areas. Finally, in order 

to classify the change vectors and compute the binary change map, a CRF model is designed to fully ex- 

plore the spectral-spatial information, which incorporates the change information, local spatially-adjacent 

neighbor information, and global spectrally-similar neighbor information with a random field framework. 

As the changed samples will influence the structure transformation and reduce the quality of change 

vectors, we use an iterative framework to propagate the CRF segmentation results back to the structure 

transformation process that removes the changed samples, and thus improve the accuracy of change de- 

tection. Experiments conducted on different real data sets show the effectiveness of IST-CRF. Source code 

of the proposed method will be made available at https://github.com/yulisun/IST-CRF . 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Background 

Change detection (CD) is a process to detect changed regions 

y analyzing multitemporal remote sensing images acquired over 

he same area, which plays an important role in the military (such 

s missile early-warning, battlefield dynamic monitoring) and civil 

pplications (such as environmental monitoring, damage assess- 

ent) [1–3] . 

Until now, many CD techniques have been proposed for solv- 

ng the monomodal CD (or named homogeneous CD) problem, 

hich assumes that the multitemporal images are obtained from 

he same imaging modality, i.e., the images are acquired by the 

ame sensor (e.g., optical sensor and synthetic aperture radar (SAR) 

ensor) with similar imaging conditions. In this monomodal case, 

he multitemporal images can be directly compared to generate a 
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031-3203/© 2022 Elsevier Ltd. All rights reserved. 
ifference image (DI) to measure the change level by using arith- 

etical operators, such as the image differencing of optical images 

4] and image rationing/log-rationing of SAR images [5] . However, 

he homogeneity assumption does not always hold in many prac- 

ical applications, especially when different sensors are involved. 

With the rapid development of remote sensing related tech- 

ologies, more and more image data representing the information 

bout the Earth’s surface can be acquired from different sensors, 

hich brings multimodal CD (or named heterogeneous CD) into 

he spotlight. The multimodal CD (MCD) is a procedure for iden- 

ifying changes based on heterogeneous sources of data, which 

oughly contains two types: images acquired by different sensor 

ypes (multisource images, such as a pair of optical and SAR im- 

ges); and images acquired by the same sensor type but with dif- 

erent sensors (cross-sensor or multisensor images, such as two 

ultispectral images obtained from Landsat-8 and Sentinel-2, re- 

pectively). Thus, MCD can be regarded as a generalization of the 

raditional monomodal or homogeneous CD problem. 

MCD is particularly attractive for the following two reasons: 

rst, it can increase the temporal resolution or extend the time 

https://doi.org/10.1016/j.patcog.2022.108845
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108845&domain=pdf
https://github.com/yulisun/IST-CRF
mailto:alaleilin@163.com
https://doi.org/10.1016/j.patcog.2022.108845
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rame of long-term trend monitoring by inserting heterogeneous 

mages along the timeline [6,7] ; second, it can shorten the re- 

ponse time of CD analysis in the case of emergency natural disas- 

ers (such as flood and earthquake) and rescue operations [8] . MCD 

llows to detect changes using the first image of opportunity in- 

tead of waiting to obtain a comparable homogeneous image and, 

ore importantly, the obtained homogeneous image may not be 

sable due to the adverse light and weather conditions accompa- 

ying the disasters. 

.2. Related work 

MCD encounters greater challenges since it must be capable 

f comparing images of any existing different modalities to detect 

hanges. Let X and Y be the co-registered images recorded at time 

 1 and t 2 respectively, and let x and y be two data samples drawn 

n the same spatial location from X and Y , respectively. According 

o the basic analysis unit of CD method, x and y can be individ-

al pixels, squared patches, or irregular superpixels. Let H 0 and H 1 

ndicate the “unchanged” and “changed” hypotheses, respectively. 

hen in the homogeneous CD, one can directly compare x and y to 

btain the DI under the assumption that x and y exhibit the same 

or similar) statistical properties when conditioned to H 0 . However, 

his assumption is violated in MCD because the multimodal images 

rovide different descriptions of the same object and exhibit quite 

ifferent characteristics. 

The main purpose of MCD method is to make the “incompara- 

le” heterogeneous images “comparable”, which are related to the 

opic of image transformation [9–11] . Generally, most MCD meth- 

ds are designed to accomplish the following two types of trans- 

ormations. The first can be regarded as image translation or im- 

ge regression and expressed as two mappings of ξ : x → y ′ and 

: y → x ′ , such that y ′ and y , x ′ and x have the same distribu-

ion when conditioned to H 0 . That is, the y ′ (or x ′ ) and y (or

 ) can be directly compared to obtain the DI as in homogeneous 

D by these two mappings of ( ξ , ζ ) . In order to construct these 

appings, Liu et al. [11] propose a homogeneous pixel transfor- 

ation (HPT) method by using kernel regression trained by the 

nown unchanged pixels. To eliminate the dependence on labeled 

ata (unchanged samples), Luppino et al. [12] propose an unsu- 

ervised image regression method that first picks out the proba- 

ly unchanged pixels as the pseudo-training data by affinity ma- 

rix difference (AMD), and then performs the image translation. 

ith the self-expression property, another unsupervised regres- 

ion method is proposed in [13] , which learns a patch similarity 

raph matrix (PSGM) to represent the structure of one image and 

hen transforms the PSGM to the other image domain to obtain 

he regression image. Some deep learning based translation meth- 

ds have also been proposed, such as the AMD change prior based 

-Net and adversarial cyclic encoder network (ACE-Net) [14] , the 

onditional generative adversarial network (cGAN) [15] , the cou- 

ling translation networks (CPTN) [16] , and the image style trans- 

er based method [17] . 

The second type of transformation can be expressed as two 

appings of μ : x → z and ϑ : y → z ′ , such that z and z ′ have

he same (or quite similar) distribution when conditioned to H 0 , 

hich can be regarded as transforming the heterogeneous images 

o a new common domain. The classification-based MCD meth- 

ds transform the multitemporal images into a common category 

pace, such as the post-classification comparison method (PCC) 

18] , the multitemporal segmentation and compound classification 

ethod (MS-CC) [19] , and the classified adversarial network based 

ethod (CAN) [20] . The feature-based MCD methods transform the 

mages to a common constructed or learned feature space, such 

s the manifold learning based method [21] , the kernel canoni- 

al correlation analysis based method (kCCA) [22] , the logarith- 
2 
ic transformation feature learning network (LT-FL) [23] , the prob- 

bilistic model based on bipartite convolutional neural network 

BCCN) [24] , the deep sparse residual model based on anomaly 

eature learning (AFL-DSR) [25] , and the commonality autoencoder 

ased common feature learning method (CACFL) [26] . 

According to the construction process of the mappings of ( ξ , ζ ) 
nd ( μ, ϑ ) , the transformation based MCD methods can be divided 

nto supervised, semi-supervised and unsupervised. In the super- 

ised and semi-supervised methods, the labeled unchanged sam- 

les are used to train the image regression model [8,11] , the classi- 

er [18,27] , or the common feature learning [21,28] . Since labeling 

amples requires a high cost of manual operation and needs exten- 

ive expert knowledge in practice, the unsupervised MCD meth- 

ds are more remarkably interesting for applications. Since there 

s no ground truth to guide the transformation process, unsuper- 

ised methods usually need a pre-constructed pseudo-training set 

12,14,29] , or involve a self-supervised framework [30] , or use a 

oarse-to-fine filtering process [31,32] . 

Once the image transformations of ( ξ , ζ ) or ( μ, ϑ ) are com- 

leted, the DI can be calculated by comparing the transformed y ′ 
nd y ( x ′ and x ) or z ′ and z. Then, the final change map (CM) solu-

ion can be treated as an image segmentation problem as in homo- 

eneous CD, which can be accomplished by using the thresholding 

ethods such as Otsu threshold [33] , or clustering methods such 

s the K-means clustering [34] and fuzzy c-means (FCM) cluster- 

ng [35] , or the random field models such as Markov random field 

MRF) and conditional random field (CRF) models. In the random 

eld models based CD (either monomodal or multimodal), the lo- 

al interactive information of pixels (or patches, superpixels) can 

e passed to the global information with the help of a global prob- 

bilistic framework. 

In the homogeneous CD, the DI is usually used as the ob- 

ervation field, and the spectral and spatial contextual informa- 

ion of the image are incorporated in the segmentation process 

y the MRF-based methods [36,37] and CRF-based methods [38–

0] . For the MCD, Mignotte [41] proposes a fractal projection and 

arkovian segmentation based method (FPMS) to binarize the DI, 

hich contains a parameter estimation process with a mixture 

f two Gaussian likelihood distributions (for the two class la- 

els: “changed” and “unchanged”) by using expectation maximiza- 

ion (EM) or stochastic EM algorithms and a segmentation pro- 

ess based on the estimated parameters. Touati et al. [42] propose 

 Markov model for MCD (named M3CD for short). M3CD con- 

tructs a visual cue to distinguish the two pixels that belong to 

wo different class labels (different pixel-pairwise labels) or share 

he same class label (identical pixel-pairwise label), and assumes 

hat the visual cue obeys a Gaussian distribution under the differ- 

nt pixel-pairwise label and obeys an exponential distribution un- 

er the identical pixel-pairwise label. Recently, an iterative robust 

raph and MRF co-segmentation model (IRG-McS) is proposed for 

CD [43] . IRG-McS calculates the DI by graph mapping and fuses 

he DI in the MRF co-segmentation process, which assumes that 

he DI obeys a uniform distribution. 

.3. Motivations and contributions 

1) A main challenge in unsupervised MCD is that the image 

ransformation must be learnt from a dataset that includes noise 

nd changes, which means that the noise and changed pixels will 

ontaminate the mappings of ( ξ , ζ ) and ( μ, ϑ ) . To alleviate the in- 

uence of noise, the proposed method calculates the change vector 

y comparing the structure difference between heterogeneous im- 

ges with a self-similarity based structure transformation, which is 

ore robust to the noise than the common transformation based 

ethods that aim to learn a luminance transformation function 

11,12] . More importantly, we pay particular attention to the in- 
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uence of changed pixels on image transformation, which is rarely 

entioned by other studies. Similar to the iterative framework in 

RG-McS [43] , the proposed method combines the image trans- 

ormation process and image segmentation process to reduce the 

egative impact of changed pixels, which propagates the detection 

esult calculated by CRF segmentation model back to the structure 

ransformation process to calculate change vectors. This can bring 

wo benefits: first, it makes the transformation more robust and 

akes the change vectors highlight more the changed regions; sec- 

nd, it improves the detection accuracy of final CM with the gen- 

rated high-quality change vectors. 

2) The self-similarity property has been widely used in the im- 

ge denoising and image super-resolution fields with the so-called 

nonlocal-based” methods [44] , which is a widespread property 

cross different types of satellite images (also common to natu- 

al images) that can be expressed as “any small part of the im- 

ge has many similar parts within the same image”. Recently, it 

as also been exploited in the MCD to establish a connection be- 

ween heterogeneous images. For example, the self-similarity is 

sed to complete the image regression in PSGM [13] and FPMS 

41] as ξ : x 
w −→ y ′ by image reconstruction with a self-expression 

atrix w and fractal projection with fractal code w , respectively. 

n [45,46] , the self-similarity is used to complete the graph map- 

ing μ : x → w , ϑ : y → w 

′ with w and w 

′ denoting the K-nearest

eighbor (KNN) graphs, which is similar to the approach adopted 

n the proposed method. However, different from the above liter- 

ture, we apply the self-similarity to structure transformation and 

nalyze the transformation process in detail in this paper. We ex- 

licitly give the transformation expression, that is, how to trans- 

orm the heterogeneous images to the same differential domain 

nd how to compare the transformed images. Moreover, unlike the 

NN graphs in [45] and [46] that select nearest neighbors (NNs) 

or each vertex with fixed K and without considering the status 

f the neighbors (changed or unchanged), the graph constructed in 

he proposed method is more robust by adaptively selecting NNs in 

he unchanged class for each vertex with different K. At the same 

ime, different from IRG-McS [43] that calculates a change prob- 

bility value for each pixel, the proposed method computes two 

hange vectors (change features) for each superpixel by compar- 

ng the structure difference between heterogeneous images, which 

ontains more change information than the univariate probability 

alue. 

3) The distribution assumption in MRF, such as the Gaussian 

istribution assumption in FPMS [41] , the exponential distribution 

ssumption in M3CD [42] , and the uniform distribution in IRG-McS 

43] , is not always suitable for MCD with different kinds of het- 

rogeneous images. Different from MRF which is a Bayesian gen- 

rative model, CRF is a discriminative probability model which di- 

ectly builds the posterior distribution of the CM conditioned on 

he DI, so it is more flexible and robust. In this paper, a novel

RF model is designed to calculate the CM by incorporating the 

hange information, local spatially-adjacent-neighbor information 

LSAN), and global spectrally-similar-neighbor information (GSSN) 

ith a random field framework. Specifically, the unary potential 

hat represents the probability of a superpixel being labeled as 

hanged/unchanged is obtained by adopting the FCM algorithm 

n the change vectors, without prior assumption of the distri- 

ution of changed/unchanged class. Considering the specificity of 

he MCD problem, we design two pairwise potentials for the CRF 

odel: LSAN based pairwise potential and GSSN based pairwise 

otential. The LSAN takes into account not only the spatial con- 

inuity of the pairwise superpixels, but also their similarity re- 

ationships in the original multitemporal images. The interaction 

f spectrally similar superpixels is considered by introducing the 

SSN into the CRF model, which can make full use of the struc- 

ure information of the heterogeneous images. By using the ro- 
3 
ust unary potential and combining the local and global infor- 

ation based pairwise potentials, the CD results of the proposed 

ethod can be greatly improved with less false detection and miss 

etection. 

The main contributions of the proposed iterative structure 

ransformation and conditional random field (IST-CRF) based 

ethod are summarized as follows: 

• A structure transformation is proposed to transform the het- 

rogeneous images to the same differential domain. 

• A CRF model is designed for MCD by incorporating the change 

nformation based unary potential, LSAN and GSSN based pairwise 

otentials. 

• An iterative framework is used to combine the structure 

ransformation and CRF segmentation to improve the detection ac- 

uracy. 

.4. Outline 

The rest of this paper is organized as follows. Section II de- 

cribes the structure transformation process of the proposed MCD 

ethod. Section III describes the details of the proposed CRF 

odel. Section IV presents the experimental results by compar- 

ng them with some existing state-of-the-art (SOTA) methods and 

ives some discussions. Finally, we conclude this paper in Sec- 

ion V. 

. Structure transformation 

We consider a pair of co-registered heterogeneous images ob- 

ained at time t 1 (pre-event) and t 2 (post-event) denoted as X ∈ 

 

H×W ×C X and Y ∈ R 

H×W ×C Y , which are from different domains of 

 and Y , respectively. We define the pixel vectors in X and Y as

 ( h, w ) ∈ R 

C X and y ( h, w ) ∈ R 

C Y , 1 ≤ h ≤ H, 1 ≤ w ≤ W . Here, H, W 

nd C X (or C Y ) represent the height, width, and number of channels 

f the image X (or Y ), respectively. 

As mentioned in the introduction, the heterogeneous images 

ive different descriptions of the same object and exhibit different 

haracteristics, so it is meaningless to directly compare the pixel 

alues of x ( h, w ) and y ( h, w ) in MCD. Therefore, we first need to 

ransform the “incomparable” heterogeneous images into a com- 

on domain to make them “comparable”, and then segment the 

omparison result into binary CM to detect changes. 

The proposed MCD method consists of three steps: 1) pre- 

rocessing, which contains superpixel segmentation and feature 

xtraction; 2) image transformation, which contains structure rep- 

esentation, structure transformation, and change vector calcu- 

ation; 3) image segmentation, which contains CRF model con- 

truction and solution. The framework of IST-CRF is illustrated 

n Fig. 1 . 

.1. Pre-processing 

In the pre-processing, the main task is to generate the co- 

egmentation superpixels and extract the features of superpixels. 

ather than focusing on the individual pixel or squared patch 

such as methods in [41,45] ), the image block (superpixel) is cho- 

en as the basic analysis unit in IST-CRF, which can bring two 

enefits: first, the superpixel can maintain the structure, edge 

nd context information of object as the interior of each super- 

ixel itself is homogeneous (it internally belongs to the same 

ind of object); second, it can reduce the computational com- 

lexities of the subsequent image transformation and segmen- 

ation, which is very useful for large-scale very-high-resolution 

mages. 

In IST-CRF, the simple linear iterative clustering (SLIC) method 

47] is applied on each image to generate the superpixels. Since 
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Fig. 1. Framework of the proposed IST-CRF. 
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he original SLIC is designed for the optical image with RGB bands, 

e need to adjust it to fit the remote sensing images involved in 

CD. For the optical image X with RGB bands, the original SLIC 

s directly employed. For the multispectral image X with C X > 3 , 

he principal component analysis (PCA) method is firstly adopted 

o reduce its dimension so that each pixel contains three princi- 

al components, and then SLIC is used to segment the image. For 

he SAR image, inspired by the generalized likelihood ratio (GLR) 

ased similarity criterion for multiplicative speckle noise model 

ith Gamma distribution proposed in [48] , we use the GLR based 

istance, d GLR = log 

(
x i + x j 

2 
√ 

x i x j 

)
, to replace the Euclidean distance in 

riginal SLIC and generate the superpixels for SAR image, with x i 
nd x j being the intensity values of two pixels. 

Once the SLIC (or adjusted SLIC) is performed on each image in- 

ependently, we can obtain the segmentation map of each image, 

enoted as �X and �Y . By taking the intersection of segmenta- 

ion maps �X and �Y , eliminating the empty sets, and merging 

he very small regions (i.e., regions that are smaller than the N S - 

h smallest region in the co-segmentation map) into the nearest 

arger regions whose centers are the closest to the centers of these 

mall regions in spatial Euclidean distance, we can obtain the co- 

egmentation map � = { �i | i = 1 , · · · , N S } and the segmented su- 

erpixels of X and Y , denoted as X i = { x ( h, w ) | ( h, w ) ∈ �i } and 

 i = { y ( h, w ) | ( h, w ) ∈ �i } respectively with i = 1 , · · · , N S . Since the 

o-segmentation map � is an intersection of �X and �Y , the set of 

ixels inside each superpixel in � exhibits homogeneous structure 

n both multitemporal images of X and Y . 

After the superpixel co-segmentation is completed, features 

epresenting different information can be extracted from the su- 

erpixel, such as the spectral (intensity), textural, and spatial in- 

ormation. In this paper, the mean, median, and variance values 

f each band are selected as the features. By stacking the feature 

ectors of ˜ X i ∈ R 

3 C X and 

˜ Y i ∈ R 

3 C Y of superpixels X i and Y i , we can 

btain the feature matrices of ˜ X ∈ R 

3 C X ×N S and 

˜ Y ∈ R 

3 C Y ×N S , respec- 

ively. 
4 
.2. Structure transformation 

The structure transformation of IST-CRF is based on the inher- 

nt self-similarity property of images, that is, each small part of 

he image can always find some similar parts within the same im- 

ge. At the same time, this self-similarity can be preserved across 

ifferent modalities. As the multitemporal images involved in MCD 

re acquired at the same geographical area, if X i and X j represent 

he same kind of object (showing that they are very similar in the 

re-event image) and neither of them changed during the event, 

hen Y i and Y j also represent the same kind of object (showing 

hat they are also very similar in the post-event image). We use 

he similarity relationships between the target part ( X i ) and its 

imilar parts ( X j ) to represent the structure of this target part ( X i ).

his nonlocal similarity within the image itself would eliminate the 

iscrepancy between the two modalities. Therefore, these similar- 

ty relationships based on structure consistency are quite imaging 

odality invariant. 

.2.1. Structure representation 

We construct a graph to capture the structure information of 

ach image, which is an effective tool for image representation and 

nalysis [49,50] . Given the pre-event image X with the superpixel 

egmentation map �, we set each superpixel as a vertex and con- 

truct the directed KNN graph G X = { V X , B X } , with the set of ver- 

ices V X and the set of edges B X such that 

 X = { X i | i = 1 , · · · , N S } , 
 X = 

{(
X i , X j 

)| i = 1 , · · · , N S ; j ∈ N 

K 
X i 

}
, (1) 

here N 

K 
X i 

represents the position set of the K NNs of X i . Here, we

efine D 

X ∈ R 

N S ×N S as the feature distance matrix of image X with 

he element D 

X 
i, j 

= 

∥∥ ˜ X i − ˜ X j 

∥∥2 

2 
being the distance between super- 

ixels X i and X j . Then, j ∈ N 

K 
X i 

if and only if D 

X 
i, j 

is among the K-

mallest elements except D 

X 
i,i 

in the distance vector D 

X 
i 

. The graph 

 X can be formally represented by its adjacent matrix A 

X ∈ R 

N S ×N S , 

ith each element defined as 

 

X 
i, j 

de f = 

{
1 , if 

(
X i , X j 

)
∈ B X 

0 , if 
(
X i , X j 

)
/ ∈ B X 

(2) 

For the post-event image Y , we can construct the directed KNN 

raph G Y = { V Y , B Y } and obtain the corresponding adjacent matrix 

 

Y ∈ R 

N S ×N S in a similar way. 

.2.2. Structure transformation and change vector calculation 

Since the KNN graphs of G X and G Y are constructed in differ- 

nt domains, it is not appropriate to compare them directly (such 

s A 

X − A 

Y ), which will cause the leakage of heterogeneous data. 

ext, we transform the heterogeneous images of X and Y into a 

ommon domain by using the structure based graphs of G X and 

 Y , respectively. 

For the forward transformation, the pre-event image X and 

ost-event image Y are transformed to their respective differential 

omains to calculate the mean difference between each superpixel 

nd its own K NNs as 

f w ( X i ) = 

1 

K 

∑ 

j∈N K 
X i 

∣∣ ˜ X i − ˜ X j 

∣∣ = 

1 

K 

∑ 

j∈N K 
X i 

∣∣�X 
i, j 

∣∣, 
ϑ 

f w ( Y i ) = 

1 

K 

∑ 

j∈N K 
Y i 

∣∣˜ Y i − ˜ Y j 

∣∣ = 

1 

K 

∑ 

j∈N K 
Y i 

∣∣�Y 
i, j 

∣∣, (3) 

here �X 
i, j 

= ̃

 X i − ˜ X j and �Y 
i, j 

= ̃

 Y i − ˜ Y j are the feature difference 

ectors between superpixels, and | ·| denotes the absolution opera- 

ion. 
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For the backward transformation, the pre-event image X and 

ost-event image Y are transformed into each other’s differential 

omain to calculate the mean difference between each superpixel 

nd its mapped K NNs as 

μbw ( X i ) = 

1 
K 

∑ 

j∈N K 
X i 

∣∣˜ Y i − ˜ Y j 

∣∣ = 

1 
K 

∑ 

j∈N K 
X i 

∣∣�Y 
i, j 

∣∣, 
ϑ 

bw ( Y i ) = 

1 
K 

∑ 

j∈N K 
Y i 

∣∣ ˜ X i − ˜ X j 

∣∣ = 

1 
K 

∑ 

j∈N K 
Y i 

∣∣�X 
i, j 

∣∣. (4) 

Then, with these structure transformations, we can compare the 

tructure of X i and Y i in the same differential domains to calculate 

he change vectors of f X 
i 

and f Y 
i 

as 

f X 
i 

= 

∣∣μ f w ( X i ) − ϑ 

bw ( Y i ) 
∣∣, 

f Y 
i 

= 

∣∣μbw ( X i ) − ϑ 

f w ( Y i ) 
∣∣. (5) 

y using the adjacent matrices of A 

X and A 

Y , the change vectors 

an be rewritten as 

f X 
i 

= 

1 
K 

∣∣∑ N S 
j=1 

(
A 

X 
i, j 

− A 

Y 
i, j 

)∣∣�X 
i, j 

∣∣∣∣, 
f Y 
i 

= 

1 
K 

∣∣∑ N S 
j=1 

(
A 

X 
i, j 

− A 

Y 
i, j 

)∣∣�Y 
i, j 

∣∣∣∣. (6) 

Intuitively, the change vectors are calculated by how different 

he adjacent matrices of A 

X and A 

Y are in the differential domains. 

rom (3) to (6) , we can find that if the areas represented by super-

ixel X i does not change in the event, the mapped superpixel X j ′ , 
j ′ ∈ N 

K 
Y i 

will be similar as X i with a high probability, then the dif-

erence between �X 
i, j 

, j ∈ N 

K 
X i 

and �X 
i, j ′ , j ′ ∈ N 

K 
Y i 

will be small, thus

eading to small values of the elements in the change vector f X 
i 

. On

he contrary, if the areas represented by superpixel X i changes in 

he event, the mapped superpixel is no longer similar to X i with 

 high probability, then the difference between �X 
i, j 

, j ∈ N 

K 
X i 

and 

X 
i, j ′ , j ′ ∈ N 

K 
Y i 

will be large, thus leading to large values of the ele-

ents in the change vector f X 
i 

. Also, the superpixel Y i and change 

ector f Y 
i 

has a similar relationship. Therefore, we can find that 

he f X 
i 

and f Y 
i 

have different representations for the changed and 

nchanged superpixels, that is, the changed and unchanged super- 

ixels can be distinguished. 

.2.3. K-selection 

In the structure transformation (3), (4) and change vector cal- 

ulation (6) , we can find that the number K of the KNN graph 

lays an important role. Obviously, a very small K is not appropri- 

te, which will make the graph ( G X and G Y ) less informative, and

akes the change measurement ( f X and f Y ) not robust enough. 

n the contrary, a particular large K is also not appropriate, which 

ends to over connect the graph and leads to confusion in the 

hange measurement. For example, in the extreme case of K = N S , 

he f X 
i 

and f Y 
i 

will always be equal to 0, regardless of whether X i 

hanges. 

Therefore, we need to choose a suitable k i for each vertex in- 

tead of a fixed K as in the common KNN graph. Here, we propose 

 K-adaptive strategy similar to the one in IRG-McS [43] to pursue 

he goal of “each superpixel is connected to as many truly similar 

ertices as possible”. 

Step 1. Set k max = 

⌈ √ 

N S 

⌉ 
with � ·	 represents the rounding up 

peration, and construct the KNN graph of G X with K = k max . 

Step 2. Calculate the in-degree di ( X i ) = 

∑ N S 
j=1 

A 

X 
j,i 

for each ver- 

ex X i , that is, compute the number of times X i occurs among the

 max nearest-neighbors of all the vertexes. 

Step 3. Set k min = 

⌈ √ 

N S / 10 

⌉ 
, and calculate k X i = 

in { k max , max { di ( X i ) , k min } } . Then, construct the adaptive KNN 

raph G X ( a ) with k X i for each vertex X i . 
5 
Similarly, we can construct the adaptive KNN graph G Y ( a ) with 

 Y i 
for each vertex Y i . With this strategy of K-selection, we can 

elect a smaller k for superpixel that belongs to low density and 

elect a larger k for superpixel that belongs to high density. 

.2.4. Robust graph construction 

In the backward structure transformations of μbw and ϑ 

bw (4) , 

e directly mapped the A 

X and A 

Y to each other’s differential do- 

ains without considering the status of the neighbors (changed or 

nchanged). However, the changed neighbors will affect the struc- 

ure transformation and degrade the performance of change vec- 

ors of f X and f Y (6) . 

For the unchanged superpixel X i , if one of its K NNs changed 

n the event, i.e., the superpixel X j ′ , j ′ ∈ N 

K 
X i 

is changed, then the

apped Y i and Y j ′ are dissimilar (belongs to different objects). This 

rings an unstable �Y 
i, j ′ with large elements in the backward trans- 

ormation μbw ( X i ) (4) of the unchanged superpixel X i , and thus 

akes the value of element in the f Y 
i 

larger. On the contrary, for 

he changed superpixel X i , if one of its K NN changed the same 

ay as X i , that is X i and X j ′ , j ′ ∈ N 

K 
X i 

changed to the same cat-

gory, then the mapped Y i and Y j ′ are similar (belongs to same 

bjects). This brings an unstable �Y 
i, j ′ with small elements in the 

ackward transformation μbw ( X i ) (4) of the changed superpixel X i , 

nd thus makes the value of the element in the f Y 
i 

smaller. From 

he above analysis, we can find that whether for the changed or 

nchanged superpixel X i , its changed K NNs will make the change 

ector f Y 
i 

less discriminative. Also, for the superpixel Y i and the 

hange vector f X 
i 

, we have the same conclusion. 

To reduce the negative impact of the changed neighbors, we 

eed to eliminate them in the backward structure transformation 

4) . However, we cannot identify in advance which superpixels are 

hanged, so we employ an iterative framework to complete the 

limination of changed neighbors in the backward structure trans- 

ormation. Therefore, we propagate the detection result generated 

y CRF segmentation of the previous round (in Section III) back to 

he structure transformation of the next round. 

Let the previous round result of CRF segmentation in Section III 

e the index subset T of changed superpixels and the index sub- 

et S of unchanged superpixels. With the K-adaptive strategy and 

nchanged index subset S , we can construct one adaptive KNN 

raph G X ( a ) = 

{
V X ( a ) , B X ( a ) 

}
and one adaptive-robust KNN graph 

 X ( a −r ) = 

{
V X ( a −r ) , B X ( a −r ) 

}
for image X as 

V X ( a ) = V X ( a −r ) = { X i | i = 1 , · · · , N S } , 

B X ( a ) = 

{ (
X i , X j 

)| i = 1 , · · · , N S ; j ∈ N 

k X i 
X i 

} 
, 

B X ( a −r ) = 

{ (
X i , X j 

)| i = 1 , · · · , N S ; j ∈ N S 
k S X i 

X i 

} 
. 

(7) 

ere, N 

k X i 
X i 

represents the position set of k X i NNs of X i in the 

hole image X with the adaptive k X i calculated by Steps 1–3 , 

nd N S 
k ′ 

X i 
X i 

represents the position set of k ′ 
X i 

NNs of X i in the un- 

hanged set 
{

X j | j ∈ S 
}

with the adaptive k ′ 
X i 

calculated by Steps 

–3 with k max = 

⌈ √ 

card ( S ) 
⌉ 

and k min = 

⌈ √ 

card ( S ) / 10 

⌉ 
, where 

ard ( ·) denotes the cardinality of a set. Then, we can obtain the 

orresponding adjacent matrices of A 

X ( a ) and A 

X ( a −r ) . For the post- 

vent image Y , we can construct the adaptive G Y ( a ) = 

{
V Y ( a ) , B Y ( a ) 

}
nd adaptive-robust G Y ( a −r ) = 

{
V Y ( a −r ) , B Y ( a −r ) 

}
, and obtain the cor- 

esponding adjacent matrices of A 

Y ( a ) and A 

Y ( a −r ) in a similar way. 
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.2.5. Robust structure transformation and DI calculation 

By using the structure based graphs of G X ( a ) , G X ( a −r ) , G Y ( a ) and 

 Y ( a −r ) , the robust forward transformation of (3) can be rewritten 

s 

μ f w ( X i ) = 

1 
k X i 

∑ 

j∈N 
k X i 
X i 

∣∣�X 
i, j 

∣∣, 
ϑ 

f w ( Y i ) = 

1 
k Y i 

∑ 

j∈N 
k Y i 
Y i 

∣∣�Y 
i, j 

∣∣. (8) 

he robust backward transformation of (4) can be rewritten as 

μbw ( X i ) = 

1 
k ′ 

X i 

∑ 

j∈ NS 
k ′ 

X i 
X i 

∣∣�Y 
i, j 

∣∣, 
ϑ 

bw ( Y i ) = 

1 
k ′ 

Y i 

∑ 

j∈ NS 
k ′ 

Y i 
Y i 

∣∣�X 
i, j 

∣∣. (9) 

hen the robust change vectors of f X 
i 

and f Y 
i 

can be calculated by 

f X 
i 

= 

∣∣μ f w ( X i ) − ϑ 

bw ( Y i ) 
∣∣ = 

∣∣∣∑ N S 
j=1 

(
A 

X ( a ) 
i, j 

k X i 
− A 

Y ( a −r ) 
i, j 

k ′ 
Y i 

)∣∣�X 
i, j 

∣∣∣∣∣, 
f Y 
i 

= 

∣∣μbw ( X i ) − ϑ 

f w ( Y i ) 
∣∣ = 

∣∣∣∑ N S 
j=1 

(
A 

Y ( a ) 
i, j 

k Y i 
− A 

X ( a −r ) 
i, j 

k ′ 
X i 

)∣∣�Y 
i, j 

∣∣∣∣∣. 
(10) 

hen, by assigning the change features of f X 
i 

and f Y 
i 

to the pix- 

ls located in �i , we can obtain the DI X ∈ R 

H×W ×( 3 C X ) and DI Y ∈ 

 

H×W ×( 3 C Y ) respectively with 

DI X ( h, w, c ) = f X 
i ( c ) 

DI Y ( h, w, c ) = f Y 
i ( c ) 

} 

if ( h, w ) ∈ �i . (11) 

. CRF segmentation 

Once the DIs are obtained by calculating the structure differ- 

nce, the CD problem can be regarded as an image segmentation 

roblem. In the proposed method, a CRF model is designed to la- 

el superpixels as “changed” or “unchanged” by considering both 

he unary component and pairwise components. 

CRF is an undirected graphical model to estimate probability 

istribution conditioned on observation. Formally, let G = (V, B) be 

 graph constructed on random variables Z = { Z i , · · · , Z N } with la- 

els L = { L i , · · · , L N } . Then ( Z , L ) is a CRF when the probability of 

abeled variables L conditioned on observed variables Z obeys the 

arkov property. CRF models the conditional probability of a label 

equence given the observed data sequence [51] , as follows: 

 ( L | Z ) = 

1 
J ( L ) 

∏ 

c∈ C 
�c ( L c , Z ) , (12) 

here c is a clique and C is the set of all cliques, J ( L ) is the nor-

alization constant, and �c ( L c , Z ) is the potential function defined 

n clique c, such as unary, pairwise potential, and even high-order 

otentials. 

In the proposed CRF model, the following notations and defini- 

ions are used. 

1) Given the observation field Z = { Z i | i ∈ I } with Z i = 

[
f X 
i 

; f Y 
i 

]
∈ 

 

( 3 C X +3 C Y ) being the stacked change vector and representing the 

hange features of the i -th superpixel, where I = { 1 , 2 , · · · , N S } is 

he set of superpixel indices. 

2) L = { L i | i ∈ I } is the corresponding label field with L i ∈ { 0 , 1 } , 
here L i = 0 means that the region of �i is unchanged and L i = 1 

eans that the region of �i is changed in the event. 

The proposed CRF for MCD is formulated by considering the 

nary potential, local spatially adjacent neighbor (LSAN) based 

airwise potential, and global spectrally similar neighbor (GSSN) 
6

ased pairwise potential as follows 

 ( L | Z ) = 

1 

J ( L ) 
exp 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

−
∑ 

i ∈I 
ϕ i ( Z , L i ) ︸ ︷︷ ︸ 
unary 

− α
∑ 

i ∈I 

∑ 

j∈N LSAN 
i 

φi j 

(
Z , L i , L j 

)
︸ ︷︷ ︸ 

LSAN pairwise 

−β
∑ 

i ∈I 

∑ 

j∈N GSSN 
i 

ψ i j 

(
Z , L i , L j 

)
︸ ︷︷ ︸ 

GSSN pairwise 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ 

, (13) 

here ϕ i is the unary potential that represents the single rela- 

ionship between the change vector and its corresponding label, 

i j is the LSAN based pairwise potential that constructs the in- 

eraction between the i -th node and its spatial neighborhood de- 

ned by N 

LSAN 
i 

, and ψ i j is the GSSN based pairwise potential that 

onstructs the interaction between the i -th node and its spectrally 

imilar neighborhood ( K NNs) defined by N 

GSSN 
i 

, and α, β > 0 are 

wo balancing parameters to control the weights of these poten- 

ials. The Gibbs energy for the CRF model is given as 

 ( L | Z ) = 

∑ 

i ∈I 
ϕ i ( Z , L i ) ︸ ︷︷ ︸ 
E unary 

+ α
∑ 

i ∈I 

∑ 

j∈N LSAN 
i 

φi j 

(
Z , L i , L j 

)
︸ ︷︷ ︸ 

E LSAN 

+ β
∑ 

i ∈I 

∑ 

j∈N GSSN 
i 

ψ i j 

(
Z , L i , L j 

)
︸ ︷︷ ︸ 

E GSSN 

, (14) 

hich consists of E unary , E LSAN and E GSSN . Next, we introduce the 

esigned potentials for the MCD problem. 

.1. Unary potential 

The unary potential considers the probability of a superpixel 

eing labeled as changed or unchanged, ignoring the influence of 

ther superpixels. Therefore, some discriminative classifiers includ- 

ng support vector machine (SVM), FCM, and logistic regression, 

an be used for the unary potential. In the MCD, it is difficult to 

stimate changes with a fixed distribution model because MCD in- 

olves images with different modalities. The soft clustering method 

f FCM is suitable for the unary potential without prior assumption 

f the distribution of changed/unchanged class. 

Specifically, FCM is employed on the change matrices f X and f Y 

eparately to minimize the following objective functions 

E X = 

1 ∑ 

c=0 

N S ∑ 

i =1 

(
u 

X 
i,c 

)m 

∥∥ f X 
i 

− v X c 

∥∥2 

2 
, 

E Y = 

1 ∑ 

c=0 

N S ∑ 

i =1 

(
u 

Y 
i,c 

)m 

∥∥ f Y 
i 

− v Y c 

∥∥2 

2 
, 

(15) 

here v X c ∈ R 

3 C X (and v Y c ∈ R 

3 C Y ) is the center of the c-th cluster, 

 

X 
i,c 

∈ [ 0 , 1 ] (and u Y 
i,c 

∈ [ 0 , 1 ] ) is the membership grade of i -th su-

erpixel in cluster c (i.e., c = 0 represents the unchanged class, and 

 = 1 represents the changed class) with the constraint 
1 ∑ 

c=0 

u X 
i,c 

= 1 

and 

1 ∑ 

c=0 

u Y 
i,c 

= 1 ), m > 1 is the exponent for the fuzzy partition ma-

rix that controls the amount of fuzzy overlap between clusters, 

ith larger values indicating a greater degree of overlap. 

Once the membership values of u X 
i,c 

and u Y 
i,c 

for each superpixel 

re calculated by N f cm 

iteration, the unary potential can be con- 
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Fig. 2. Illustrations of LSAN and GSSN. Four cases in LSAN: #1a, #1b, #1c, and #1d. 

Four cases in GSSN: #2a, #2b, #2c, and #2d. 
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tructed as 

 i ( Z , L i ) = 

1 ∑ 

c=0 

δ( L i = c ) 
(
− log 

(
u 

X 
i,c 

)
− log 

(
u 

Y 
i,c 

))
, (16) 

here δ( ·) being 1 if the specified condition inside parenthesis 

olds, and 0 otherwise. 

.2. LSAN based pairwise potential 

Based on the reasonable assumption that spatially adjacent 

odes may be very similar and thus should share the same label 

ith high probability, the LSAN is constructed by taking the con- 

extual information into consideration, which can reduce the salt- 

nd-pepper noise in the CM. First, an R -adjacency neighbor sys- 

em is constructed for LSAN, that is, if two superpixels (located 

t �i and � j ) intersect or the spatial distance between their cen- 

er points is less than R , these two superpixels are marked as the

 -adjacency neighbors of each other and denoted as i ∈ N 

LSAN 
j 

(or 

j ∈ N 

LSAN 
i 

). Because the average size of superpixel generated by the 

LIC segmentation is around HW/ N S , we set R = 2 
√ 

HW/ N S for sim- 

licity. 

The commonly used pairwise potential for CD usually takes into 

ccount both spatial and spectral information, similar to the fol- 

owing form 

i j 

(
Z , L i , L j 

)
= 

δ( L i 
 = L j ) 
d ( �i , � j ) 

exp 

(
− D X 

i, j 

2 σ 2 
X 

)
exp 

(
− D Y 

i, j 

2 σ 2 
Y 

)
, (17) 

here σ 2 
X 

and σ 2 
Y 

are two normalization parameters, d 
(
�i , � j 

)
is 

he Euclidean spatial distance between the i -th and j-th superpix- 

ls. 

However, this kind of pairwise potential in (17) does not con- 

ider the specificity of MCD task. For example, when the i -th su- 

erpixel X i and j-th superpixel X j in the pre-event image are very 

imilar (i.e., D 

X 
i, j 

is very small), but the i -th superpixel Y i and the 

j-th superpixel Y j in the post-event image are very different (i.e., 

 

Y 
i, j 

is very large), then the probability that labels of L i and L j are 

ifferent should be high, and φi j 

(
Z , L i , L j 

)
should be small. And as 

he similarity between X i and X j becomes stronger and the differ- 

nce between Y i and Y j becomes greater, the probability that the 

abels of L i and L j are different should be higher, and φi j 

(
Z , L i , L j 

)
hould be smaller. However, it is clear that the cost of (17) does 

ot satisfy this requirement. 

Here, we propose a novel LSAN based pairwise potential for 

RF, which takes into account not only the spatial continuity, but 

lso the similarity relationship of the original multitemporal im- 

ges in the MCD task. It is defined as 

i j 

(
Z , L i , L j 

)
= 

δ
(
L i 
 = L j 

)
d 
(
�i , � j 

) ×

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

exp 

(
− D X 

i, j 

2 σ 2 
X 

)
exp 

(
− D Y 

i, j 

2 σ 2 
Y 

)
; if D

exp 

(
D X 

i, j 

2 σ 2 
X 

− 1 

)
exp 

(
− D Y 

i, j 

2 σ 2 
Y 

)
; if D

exp 

(
− D X 

i, j 

2 σ 2 
X 

)
exp 

(
D Y 

i, j 

2 σ 2 
Y 

− 1 

)
; if D

exp ( −1 ) ; if D

here the normalization parameters of σ 2 
X 

and σ 2 
Y 

are set to 

e σ 2 
X 

= 

∑ N S 
i =1 

∑ 

j∈N LSAN 
i 

D X 
i, j ∑ N S 

i =1 
card 

(
N LSAN 

i 

) and σ 2 
Y 

= 

∑ N S 
i =1 

∑ 

j∈N LSAN 
i 

D Y 
i, j ∑ N S 

i =1 
card 

(
N LSAN 

i 

) , representing 

he average neighborhood feature difference over the whole im- 

ge. From (18) and the LSAN based energy function E LSAN = ∑ 

 ∈I 

∑ 

j∈N LSAN 
i 

φi j 

(
Z , L i , L j 

)
, we can find that E LSAN gives a penalty for 

he discontinuity of L i 
 = L j in four cases, as shown in Fig. 2 . Case
7 
σ 2 
X , D 

Y 
i, j 

≤ σ 2 
Y 

σ 2 
X , D 

Y 
i, j 

> σ 2 
Y 

 σ 2 
X , D 

Y 
i, j 

≤ σ 2 
Y 

 σ 2 
X , D 

Y 
i, j 

> σ 2 
Y 

, (18) 

1a: a large value when X i and X j , Y i and Y j are both similar; Case

1b: a small value when X i and X j are similar but Y i and Y j are

issimilar; Case #1c: a small value when X i and X j are dissimilar 

ut Y i and Y j are similar; Case #1d: a median value when X i and

 j , Y i and Y j are both dissimilar, which means that the i -th and

j-th superpixels are not spectrally closely related to each other, so 

he relationship between their labels is also ambiguous. 

.3. GSSN based pairwise potential 

For each superpixel in the image, its neighbors include not only 

eighbors on the local space (the R -adjacency neighbors), but also 

pectrally similar neighbors (the K NNs). Therefore, in the pro- 

osed CRF model, we constructs the interaction between the i -th 

ode and its spectrally similar neighborhood. 

By using the K-adaptive graphs of G X ( a ) and G Y ( a ) , the spec- 

rally similar neighborhood N 

GSSN 
i 

for the i -th nodes can be defined 

s N 

GSSN 
i 

= N 

k X i 
X i 

∪ N 

k Y i 
Y i 

, which means that j is a spectrally simi- 

ar neighbor of i (i.e., j ∈ N 

GSSN 
i 

) as long as
(
X i , X j 

)
is an edge of 

 X ( a ) (i.e., A 

X ( a ) 
i, j 

= 1 ) or
(
Y i , Y j 

)
is an edge of G Y ( a ) (i.e., A 

Y ( a ) 
i, j 

= 1 ). 

ig. 2 illustrates the constraints between nodes in GSSN. 

1) We first investigate the relationship between the i -th node 

nd its neighbors j ∈ N 

k X i 
X i 

. As X j belongs to the truly similar

eighbors of X i by using the K-adaptive strategy, we can assume 

hat X j and X i represent the same kind of object. Case #2a: if Y j 

nd Y i also represent the same kind of object ( Y j and Y i are very

imilar), we have that the i -th node and j-th node should belong 

o the same class label of unchanged or changed, that is, the prob- 

bility of L i = L j is higher. Case #2b: on the contrary, if Y j and Y i 

re dissimilar (they may represent different kinds of objects), we 

ave that the i -th node and j-th node may belong to the different

lass labels, that is, the probability of L i = L j is lower. 
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2) Second, for the i -th node and it neighbors j ∈ N 

k Y i 
Y i 

, we have

 similar deduction. Case #2c: if X j and X i are very similar, then 

he i -th node and j-th node should belong to the same class label

i.e., L i = L j ). Case #2d: on the contrary, if X j and X i are dissimilar,

hen the i -th node and j-th node may belong to the different class

abels (i.e., L i 
 = L j ). 

Based on these constraints, we construct the GSSN based pair- 

ise potential ψ i j 

(
Z , L i , L j 

)
as follows 

 i j 

(
Z , L i , L j 

)
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

ω 

Y 
i j 
δ
(
L i 
 = L j 

)
+ � 

Y 
i j 
δ
(
L i = L j 

)
;

ω 

X 
i j 
δ
(
L i 
 = L j 

)
+ � 

X 
i j 
δ
(
L i = L j 

)
;(

ω 

X 
i j 

+ ω 

Y 
i j 

)
δ
(
L i 
 = L j 

)
+ 

(
� 

X 
i j 

+ � 

Y 
i j 

)
δ
(
L i = L j 

)
;

here the auxiliary functions of ω 

Y 
i j 

, ω 

X 
i j 

, � 

Y 
i j 

and � 

X 
i j 

are defined

s 

ω 

Y 
i j 

= 

⎧ ⎨ ⎩ 

exp 

(
− D Y 

i, j 

ρ2 
Y i 

+ ρ2 
Y j 

)
; if D 

Y 
i, j 

≤
ρ2 

Y i 
+ ρ2 

Y j 

2 

exp 

(
− 1 

2 

)
; otherwise 

, 

ω 

X 
i j 

= 

⎧ ⎨ ⎩ 

exp 

(
− D X 

i, j 

ρ2 
X i 

+ ρ2 
X j 

)
; if D 

X 
i, j 

≤
ρ2 

X i 
+ ρ2 

X j 

2 

exp 

(
− 1 

2 

)
; otherwise 

, 

� 

Y 
i j 

= 

⎧ ⎨ ⎩ 

2 exp 

(
− 1 

2 

)
− exp 

(
− D Y 

i, j 

ρ2 
Y i 

+ ρ2 
Y j 

)
; if D 

Y 
i, j 

≤
ρ2 

Y i 
+ ρ2 

Y j 

2 

exp 

(
− 1 

2 

)
; otherwise 

, 

� 

X 
i j 

= 

⎧ ⎨ ⎩ 

2 exp 

(
− 1 

2 

)
− exp 

(
− D X 

i, j 

ρ2 
X i 

+ ρ2 
X j 

)
; if D 

X 
i, j 

≤
ρ2 

X i 
+ ρ2 

X j 

2 

exp 

(
− 1 

2 

)
; otherwise 

, 

(20) 

ith ρ2 
X i 

= 

1 
k X i 

∑ 

j∈N 
k X i 
X i 

D 

X 
i, j 

and ρ2 
Y i 

= 

1 
k Y i 

∑ 

j∈N 
k Y i 
Y i 

D 

Y 
i, j 

represents 

he average feature difference over the K NNs of i -th node in the 

re-event image and post-event image, respectively. 

In (19) and (20) , we use the relationships between the values of 

 

X 
i, j 

and 

(
ρ2 

X i 
+ ρ2 

X j 

)
/ 2 , D 

Y 
i, j 

and 

(
ρ2 

Y i 
+ ρ2 

Y j 

)
/ 2 to evaluate whether 

 i and X j , Y i and Y j are similar, respectively. For the case #2a,

hen D 

Y 
i, j 

≤
(
ρ2 

Y i 
+ ρ2 

Y j 

)
/ 2 , we consider that Y i and Y j belong to 

he same kind of object, and then ω 

Y 
i j 

is larger than exp (−1 / 2) ,

nd � 

Y 
i j 

is smaller than exp (−1 / 2) , resulting in a larger penalty

or L i 
 = L j in ψ i j 

(
Z , L i , L j 

)
for the case #2a. However, for the case

2b, there is an ambiguity in measuring the dissimilarity, that is, 

e can infer that Y i and Y j most probably belong to the same kind

f object when D 

Y 
i, j 

is smaller than 

(
ρ2 

Y i 
+ ρ2 

Y j 

)
/ 2 , but we cannot 

irectly conclude that Y i and Y j belong to different kinds of ob- 

ects when D 

Y 
i, j 

is greater than 

(
ρ2 

Y i 
+ ρ2 

Y j 

)
/ 2 . In this case, we as-

ign the same value to ω 

Y 
i j 

= exp (−1 / 2) and � 

Y 
i j 

= exp (−1 / 2) due

o this ambiguity, resulting an equal penalty for L i 
 = L j and L i = L j 

n ψ i j 

(
Z , L i , L j 

)
for the case #2b. In the same way, for cases the of 

2c and #2d, we have the same analysis. 

By substituting the equations of δ
(
L i = L j 

)
+ δ
(
L i 
 = L j 

)
= 1 and 

 

X 
i j 

+ � 

X 
i j 

= ω 

Y 
i j 

+ � 

Y 
i j 

= 2 exp (−1 / 2) into (19) , and eliminating the

onstant irrelevant items (not relevant to L i and L j ), the GSSN 
8 
j ∈ N 

k X i 
X i 

\ N 

k Y i 
Y i 

j ∈ N 

k Y i 
Y i 

\ N 

k X i 
X i 

j ∈ N 

k X i 
X i 

∩ N 

k Y i 
Y i 

, (19) 

ased pairwise potential ψ i j 

(
Z , L i , L j 

)
of (19) can be simplified as 

 i j 

(
Z , L i , L j 

)
= δ
(
L i 
 = L j 

)
×

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

2 

(
ω 

Y 
i j 

− exp 

(
− 1 

2 

))
; if j ∈ N 

k X i 
X i 

\ N 

k Y i 
Y i 

2 

(
ω 

X 
i j 

− exp 

(
− 1 

2 

))
; if j ∈ N 

k Y i 
Y i 

\ N 

k X i 
X i 

2 

(
ω 

X 
i j 

+ ω 

Y 
i j 

− 2 exp 

(
− 1 

2 

))
; if j ∈ N 

k X i 
X i 

∩ N 

k Y i
Y i 

(21) 

.4. Inference by the graph cut algorithm 

By substituting the unary potential ϕ i of (16) , LSAN based φi j 

f (18) and GSSN based ψ i j of (21) into (14) , we can obtain the 

ibbs energy function E ( L | Z ) of the proposed CRF model. Then the 

aximum a posteriori (MAP) labeling of the CRF is given by 

 

∗ = arg max 
L 

P ( L | Z ) = arg min 

L 
E ( L | Z ) . (22) 

he energy minimization of (22) can be solved efficiently by us- 

ng the graph cuts. In the proposed IST-CRF, the min-cut/max-flow 

lgorithm [52] is selected to solve the energy minimization prob- 

em. Once the optimal L ∗ is calculated, we can obtain the changed 

ndex subset T = 

{
i | L ∗

i 
= 1 ; i ∈ I 

}
and the unchanged index sub- 

et S = 

{
i | L ∗

i 
= 0 ; i ∈ I 

}
, which should be propagated back to the 

tructure transformation process in the next iteration. 

Finally, the binary CM can be computed as 

M ( h, w ) = L ∗
i 
, ( h, w ) ∈ �i . (23) 

The overall framework of the proposed IST-CRF is summarized 

n Algorithm 1 , which uses an iterative framework to combine the 

lgorithm 1 IST-CRF. 

nput: Images of X and Y , parameters of N S , N Iter , α and β . 

reprocessing: Superpixel segmentation and feature extraction. 

mplement the Superpixel co-segmentation to obtain �. 

xtract the features to obtain the feature matrices ˜ X and 

˜ Y . 

ain iteration loop of IST-CRF: 

et initial index subset as S 0 = { 1 , 2 , · · · , N S } . 
or i = 1 , 2 , · · · , N Iter do 

. Structure transformation: 

onstruct G X ( a ) , G X ( a −r ) , G Y ( a ) and G Y ( a −r ) with S i −1 . 

mplement the structure transformations of μ f w , ϑ 

f w , μbw , ϑ 

bw . 

alculate the change vectors of f X and f Y . 

. CRF segmentation: 

alculate the potentials of ϕ i , φi j and ψ i j . 

olve the CRF model to obtain S i and T i . 
nd for 

utput: Compute the final change map. 

tructure transformation and CRF segmentation. 

. Experiments and discussions 

In this section, we first test the proposed IST-CRF on different 

eal data sets, and compare the IST-CRF with some SOTA methods. 
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Table 1 

Description of the five heterogeneous data sets. 

Dataset Sensor Size (pixels) Date Location Event (& Spatial resolution) 

#1 Landsat-5/Google Earth 300 × 412 × 1(3) Sept. 1995 - July 1996 Sardinia, Italy Lake expansion (30m.) 

#2 Pleiades/WorldView2 20 0 0 × 20 0 0 × 3(3) May 2012 - July 2013 Toulouse, France Construction (0.52m.) 

#3 Landsat-5/Landsat-8 1534 × 808 × 7(10) Aug. 2011 - June 2013 Texas, USA Forest fire (30m.) 

#4 Radarsat-2/Google Earth 593 × 921 × 1(3) June 2008 - Sept. 2012 Shuguang Village, China Building construction (8m.) 

#5 Landsat-8/Sentinel-1A 875 × 500 × 11(3) Jan. 2017 - Feb. 2017 Sutter County, USA Flooding ( ≈ 15 m.) 
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Table 2 

AUR and AUP of DIs generated by IST-CRF on the heterogeneous data sets. 

Measures DIs 

Datasets 

#1 #2 #3 #4 #5 

AUR ˜ DI 
X 

0.860 0.751 0.963 0.908 0.907 ˜ DI 
Y 

0.897 0.713 0.942 0.983 0.867 ˜ DI 
f use 

0.891 0.756 0.959 0.978 0.912 

AUP ˜ DI 
X 

0.521 0.475 0.848 0.402 0.403 ˜ DI 
Y 

0.522 0.383 0.678 0.797 0.174 ˜ DI 
f use 

0.622 0.453 0.823 0.766 0.332 

Table 3 

Quantitative measures of binary CMs generated by IST-CRF on the heterogeneous 

data sets. 

Datasets TN TP FP FN OA Kc Fm 

#1 0.926 0.047 0.013 0.015 0.973 0.758 0.773 

#2 0.824 0.073 0.025 0.079 0.897 0.529 0.585 

#3 0.907 0.069 0.006 0.019 0.976 0.836 0.849 

#4 0.950 0.037 0.004 0.009 0.987 0.848 0.855 

#5 0.931 0.021 0.025 0.023 0.952 0.447 0.472 

Average - - - - 0.957 0.683 0.706 
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F  
hen, some detailed discussions about the parameters and compu- 

ational complexity are provided. 

.1. Data set description and quantitative evaluation metrics 

Five heterogeneous data sets are used to verify the effectiveness 

f the proposed MCD method, as listed in Table 1 . These data sets

ontain different types of modalities: multisensor (cross-sensor) 

mages, e.g., images obtained from Landsat-5 (near-infrared band) 

nd Google Earth (RGB bands) in Dataset #1, images obtained from 

leiades and WorldView2 in Dataset #2, and images obtained from 

andsat-5 and Landsat-8 in Dataset #3 1 ; multisource images, e.g., 

mages obtained from Radarsat-2 and Google Earth in Dataset #4, 

nd images obtained from Landsat-8 and Sentinel-1A in Dataset 

5 2 These data sets also contain different resolutions (varying from 

.52 to 30m), different image sizes (varying from 300 to 20 0 0 pix- 

ls in width or length) and different change types (such as flood- 

ng, fire, and construction), which can test the performance of MCD 

ethods under different conditions. 

To assess the performance of IST-CRF, two types of criteria are 

mployed. First, we evaluate the DI by the receiver operating char- 

cteristic (ROC) curve and the precision-recall (PR) curve, which 

re plotted by using the true positive rate (TPR, also known as the 

ecall rate) versus the false positive rate (FPR), and the precision 

ate versus the recall rate, respectively. The areas under the ROC 

urve and PR curve are called AUR and AUP, respectively. Second, 

e evaluate the final CM by the overall accuracy (OA), Kappa co- 

fficient (Kc), and F1-measure (Fm). These criteria are computed 

s TPR = Recall = TP/(TP + FN), FPR = FP/(TN + FP), Precision

 TP/(TP + FP), OA = (TP + TN)/(TP + TN + FP + FN), Fm =
2 ×Precision ×Recall)/(Precision + Recall), and Kc = (OA - PRE)/(1 - 

RE) with 

RE = 

( TP + FN )( TP + FP )+( TN + FP )( TN + FN ) 
( TP + TN + FP + FN ) 2 

, (24) 

here TP, FP, TN, and FN represent the true positives, false posi- 

ives, true negatives, and false negatives, respectively. 

.2. Experimental results 

As reported in Algorithm 1 , the main parameters of IST-CRF are 

he number of superpixels N S , the maximum number of iterations 

 Iter , the balance parameters of α and β . For all the experiments, 

e fix N S = 50 0 0 , N Iter = 7 , vary α, β ∈ { 1 , 3 , 5 , 7 , 9 , 11 , 13 } and se-

ect the best one as the result. We will analyze the impact of these 

arameters in detail in subsection IV-C. 

Figs. 3 (d)-(f) show the gray images of ˜ DI 
X 

, ˜ DI 
Y 

, ˜ DI 
f use 

gen- 

rated by IST-CRF on different data sets, which are computed 

y ˜ DI 
X 
( h, w ) = 

∥∥DI X ( h, w, : ) 
∥∥

2 
, ˜ DI 

Y 
( h, w ) = 

∥∥DI Y ( h, w, : ) 
∥∥

2 
, and ˜ I 

f use 
( h, w ) = 

˜ DI 
X 
( h, w ) /mean 

(˜ DI 
X 
)

+ 

˜ DI 
Y 
( h, w ) /mean 

(˜ DI 
Y 
)

, re- 

pectively. Some outliers in these DIs are smoothed for better 
1 Dataset #3 is provided by Volpi et al. [22] and made available at https://sites. 

oogle.com/site/michelevolpiresearch/codes/cross-sensor . 
2 Dataset #5 is provided by Luppino et al. [12] and made available at https://sites. 

oogle.com/view/luppino . 

t

u

d

a

a

9 
isplay. As can be seen from Figs. 3 (d)-(f), the DIs obtained by 

ST-CRF are able to highlight the changes very well, which demon- 

trates the effectiveness of the structure transformation. Fig. 4 

lots the ROC curves and PR curves of these DIs, and Table 2 lists

he corresponding AUR and AUP. From Figs. 3 –4 and Table 2 , we

an see the robustness of the structure transformation, which can 

stablish connections between multimodal images and be applied 

o different types of modalities. On the other hand, by comparing 

he DIs of each data set, we can also find that there are differences

etween DI X and DI Y , due to the fact that they are computed 

n different domains as illustrated by (10), (11) . Therefore, it is 

ecessary to fuse these two DIs for two reasons: first, since we do 

ot know in advance the changed areas in practice, it is impossi- 

le to judge which DI is better (highlighting the changes better); 

econd, these two DIs contain complementary change information, 

nd accurate fusion can improve the CD performance. However, 

irectly fusing these DI X and DI Y from different domains may not 

ork very well. For example, in Datasets #3 and #4, the fused ˜ I 
f use 

performs worse than 

˜ DI 
X 

and 

˜ DI 
Y 

respectively, resulting in a 

maller AUR and AUP in Table 2 . Therefore, in order to avoid the 

nformation loss caused by direct fusion of DI X and DI Y , we use 

he CRF model to incorporate them into the observation field, and 

use them in the segmentation process instead of the commonly 

sed fusion first and then segmentation. 

Fig. 3 (g) shows the binary CM obtained by IST-CRF on all the 

ata sets, and Table 3 lists the corresponding criteria of TN, TP, 

P, FN, OA, Kc and Fm. From Fig. 3 (g) and Table 3 , we can see

hat the proposed IST-CRF can detect the changed region very well 

nder different data sets with different types of modalities, which 

emonstrates the effectiveness of the IST-CRF. The average OA, Kc 

nd Fm obtained by IST-CRF on these five heterogeneous data sets 

re about 0.957, 0.683, and 0.706, respectively. 

https://sites.google.com/site/michelevolpiresearch/codes/cross-sensor
https://sites.google.com/view/luppino
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Fig. 3. DIs and binary CMs of IST-CRF on heterogeneous data sets. From top to bottom, they correspond to Datasets #1 to #5, respectively. From left to right are: (a) pre- 

event image; (b) post-event image; (c) the ground truth; (d) ˜ DI 
X 

; (e) ˜ DI 
Y 

; (f) ˜ DI 
f use 

; (g) binary CM of IST-CRF. In the binary CM, White: true positives (TP); Red: false positives 

(FP); Black: true negatives (TN); Green: false negatives (FN). 

Fig. 4. ROC curves (left) and PR curves (right) of IST-CRF generated DIs. 

10 
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Table 4 

Accuracy rate of CMs generated by different methods on different data sets. The 

results of these comparison methods are reported by their original published 

papers, except results indicated with † are reported by [59] (they are consistent 

with their open source codes in [22] ). Italicized and underlined marks are used 

for deep learning based methods. 

Dataset #1 OA 

DFR-MT [53] 0.975 

CACFL [26] 0.975 

IST-CRF 0.972 

IRG-McS [43] 0.971 

ALSC [54] 0.965 

M3CD [42] 0.964 

PSGM [13] 0.961 

MDS [55] 0.942 

AFL-DSR [25] 0.929 

FPMS [41] 0.928 

RMN [57] 0.847 

Dataset #2 OA 

IST-CRF 0.897 

IRG-McS [43] 0.882 

AFL-DSR [25] 0.880 

RMN [57] 0.877 

M3CD [42] 0.862 

NLPEM [56] 0.853 

FPMS [41] 0.838 

Dataset #3 OA 

IST-CRF 0.976 

DCCAE [58] 0.943 

DCCA [59] 0.939 
† KCCA [22] 0.917 
† CCA [22] 0.772 

Dataset #4 OA 

IST-CRF 0.987 

DPFL [60] 0.987 

X-Net [14] 0.984 

IRG-McS [43] 0.983 

ACE-Net [14] 0.982 

AFL-DSR [25] 0.980 

CACFL [26] 0.979 

PSGM [13] 0.977 

SCCN [32] 0.976 

NPSG [45] 0.975 

MDS [55] 0.967 

LT-FL [23] 0.964 

ALSC [54] 0.963 

FPMS [41] 0.942 

RMN [57] 0.884 

Dataset #5 OA 

IRG-McS [43] 0.959 

IST-CRF 0.952 

FPMS [41] 0.952 

DPFL [60] 0.945 

ALSC [54] 0.944 

NPSG [45] 0.941 

AMD-IR [12] 0.933 

SSL [30] 0.924 

ACE-Net [14] 0.915 

X-Net [14] 0.911 
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A comparison with different SOTA approaches is summarized 

n Table 4 , including DFR-MT [53] , CACFL [26] , IRG-McS [43] ,

LSC [54] , M3CD [42] , PSGM [13] , MDS [55] , AFL-DSR [25] , FPMS

41] , NLPEM [56] , RMN [57] , DCCAE [58] , DCCA [59] , kCCA [22] ,

CA [22] , DPFL [60] , X-Net [14] , ACE-Net [14] , SCCN [32] , NPSG

45] , LT-FL [23] , AMD-IR [12] , SSL [30] . Among these comparison

pproaches, DFR-MT , CACFL , AFL-DSR , DCCAE , DCCA , DPFL , X-Net , 

CE-Net , SCCN , LT-FL , and SSL are deep learning based methods. 

or the sake of fairness, we directly quote the results of the cor- 

esponding data sets in their original published papers in Table 4 . 
11 
s can be seen in Table 4 , the IST-CRF consistently yields bet- 

er or very competitive accuracy by comparing with these SOTA 

pproaches, which again demonstrates the effectiveness of the 

roposed iterative structure transformation and CRF segmentation 

ased method. 

.3. Discussion 

.3.1. The iterative framework 

In order to reduce the influence of changed superpixels on the 

mage transformation, we use an iterative framework to combine 

he image transformation and image segmentation to eliminate the 

nstable neighbors (changed superpixels detected by CRF segmen- 

ation) in the backward structure transformation of (9) . To verify 

he effectiveness of the iterative framework, we further investigate 

he process of DI calculation. Figs. 5 (c1) and 5 (d1) show the pro-

ortions of changed superpixels in the K NNs of each superpixel in 

he graphs of G X ( a ) and G Y ( a ) , respectively. It is clear that some su- 

erpixels in G Y ( a ) contain a lot of changed superpixels in their NNs, 

s shown in the middle of Fig. 5 (d1). As illustrated in subsection 

I-B, these changed NNs will make the change vector f X 
i 

less dis- 

riminative, which in turn makes the two DIs ( ̃  DI 
X 

, ˜ DI 
Y 

) of the ini-

ial iteration perform very differently, as shown in Figs. 5 (a2) and 

 (b2). Figs. 5 (a2)-(d2) show the ˜ DI 
X 

of the initial, second, fourth, 

nd sixth iterations; and Figs. 5 (a3)-(d3) show the ˜ DI 
Y 

of these it- 

rations. Fig. 6 plots the ROC curve and PR curve of these DIs gen-

rated by IST-CRF with different iterations (iter = 1, 2, 4, 6). From 

igs. 5 –6 , we can find significant improvements in the quality of ˜ I 
X 

, where their corresponding AUR values are 0.774, 0.844, 0.857, 

nd 0.860, AUP values are 0.148, 0.379, 0.464, and 0.501, respec- 

ively. Furthermore, the detection accuracy can be improved as can 

e seen from Figs. 5 (a4)-(d4), where their corresponding Fm values 

re 0.671, 0.750, 0.758, and 0.771, respectively. 

.3.2. Parameter analysis 

As reported in the Algorithm 1 , the main parameters of the IST- 

RF are the superpixel number N S , maximum iterations N Iter , bal- 

nce parameters of α and β . 

Generally, a large N S will generate small superpixels, which can 

mprove the detection granularity, but it will also increase the 

omputational complexity. For the N Iter , based on our experiments, 

he most obvious benefit of the iterative framework occurs after 

he first iteration, and then gradually tends to be stable. Consid- 

ring the detection accuracy and computational complexity (com- 

uting environment), we fix the N S = 50 0 0 and N Iter = 7 as a com-

romise choice in our experiments. 

For the parameters of α and β , they are used to balance the 

nary potential based energy E unary , LSAN based energy E LSAN and 

SSN based energy E GSSN in the CRF segmentation model (14) . A 

igher value of α indicates a smoother CM, and a higher value of β
cquires more consistent results within the similar neighborhood 

f both images. A sensitivity analysis is conducted to measure the 

mpact of these balance parameters on the IST-CRF. In Fig. 7 , we 

erify α and β from 0 to 14 with an interval of 1. Two remarks 

an be observed in the Fig. 7 : first, the IST-CRF achieves good re- 

ults for a fairly large range of both α and β as shown in the 

ed area of the Fig. 7 , which indicates that the algorithm is cer- 

ain robust to the balance parameters; second, in these datasets, 

he OA value at the origin position ( α = β = 0 ) is always smaller,

nd the coordinates where the maximum OA values are located 

re not on the axis, i.e., neither α nor β is 0 at this time, which

hows the simultaneous effectiveness of LSAN and GSSN based 

airwise potentials. However, how to obtain the optimal α and 

is still an unsolved problem. Here we give a relatively effec- 
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Fig. 5. DIs and binary CMs generated by IST-CRF with different iterations on Dataset #1. (a1)-(b1) the pre-event and post-event images, respectively. (c1)-(d1) the proportions 

of changed superpixels in G X ( a ) and G Y ( a ) , respectively. From the second to the fourth row, they correspond to the ˜ DI 
X 

, ˜ DI 
Y 

and binary CM of IST-CRF. From left to right are 

the results generated by the first iteration (1st iter.), second iteration (2nd iter.), fourth iteration (4th iter.), and sixth iteration (6th iter.) of IST-CRF, respectively. 

Fig. 6. ROC curves (left) and PR curves (right) of IST-CRF generated DIs with different iterations (iter = 1, 2, 4, 6) on Dataset #1. 
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i

n

c

O LSAN 
ive empirical strategy by setting α = 

∑ 

i ∈I ϕ i ( Z , L i =1 ) ∑ 

i ∈I 
∑ 

j∈N LASN 
i 

φi j ( Z , L i , L j 
 = L i ) 
and 

= 

∑ 

i ∈I ϕ i ( Z , L i =1 ) ∑ 

i ∈I 
∑ 

j∈N GSSN 
i 

ψ i j ( Z , L i , L j 
 = L i ) 
in each iteration, which can usually 

btain relatively satisfactory results according to our experience. 

.3.3. Computational time 

The main computational complexity of the IST-CRF is concen- 

rating on the pre-processing (superpixel segmentation and feature 

xtraction), structure transformation and CRF segmentation (using 

in-cut/maxflow algorithm [52] ). 

Pre-processing. The complexity of SLIC is linear in the num- 

er of pixels in the image O ( HW ) as reported in [47] . The 

verage number of pixels within each superpixel is HW/ N S , 

hen the complexity of mean and variance feature extraction is 
12 
round O ( ( C X + C Y ) HW ) , the median feature extraction is around 

 ( ( C X + C Y ) H W log ( H W/ N S ) ) . 

Structure transformation. The complexity of calculating dis- 

ance matrices D 

X and D 

Y is O 

(
( 3 C X + 3 C Y ) N 

2 
S 
/ 2 
)
, the complexity 

f sorting the distance matrix by column to construct the KNN 

raphs is O 

(
N 

2 
S 

log N S 

)
by using some accelerated sorting algo- 

ithms, such as the Block sort or Tree sort. 

CRF segmentation. The complexity of FCM in the calculation 

f unary potential (15), (16) is O 

(
nmc 2 N f cm 

)
[61] , where n = N S is

he number of data point in change matrices f X and f Y , m = C X 
or m = C Y ) is the dimension of the data point in f X (or f Y ), c = 2

s the number of clusters (changed/unchanged), and N f cm 

is the 

umber of iterations in FCM ( N f cm 

= 100 in our experiments). The 

omplexity of computing E LSAN and E GSSN are around O ( N LSAN ) and 

 ( N GSSN ) respectively, where N represents the number of edges 
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Fig. 7. Sensitivity analysis of parameters α and β in IST-CRF for different data sets: (a) Dataset #1; (b) Dataset #2; (c) Dataset #3; (d) Dataset #4; (e) Dataset #5. 

Table 5 

Computational time (seconds) of each process of IST-CRF. 

Data sets N S t pre t st t seg t total 

Dataset #1 

300 × 412 × 1(3) 

5000 0.54 2.90 3.21 6.84 

10000 1.00 7.20 8.02 16.57 

20000 2.05 17.60 21.77 42.24 

Dataset #2 

20 0 0 × 20 0 0 × 3(3) 

5000 3.23 3.08 3.53 10.02 

10000 3.80 7.72 8.34 20.24 

20000 5.27 20.30 23.59 50.16 

i

t

f

m

t

H

l

T

C

i

1  

s

t

t  

r

e

5

I

c

“

t

g

o

d

t

t

a

m

o

q

s

H

s

f

a

w

p

w

p

D

w

e

o

c

r

t

M

A

e

a

P

t

f

o

R

n the R -adjacency neighbor system for LSAN and N GSSN represents 

he number of edges in the spectrally similar neighbor system 

or GSSN. The theoretical complexity and empirical complexity of 

in-cut/max-flow algorithm have been studied in [52] , that is, the 

heoretical complexity of the worst-case is O 

(
2 ( N LSAN + N GSSN ) N 

2 
S 

)
. 

owever, its empirical complexity is relatively low on typical prob- 

em instances in vision, as shown in the examples of [52] and the 

able 5 . 

Table 5 reports the computational time of each process of IST- 

RF with different N S on Datasets #1 and #2, which is performed 

n MATLAB 2016a running on a Windows Laptop with Intel Core i9- 

0980HK CPU and 64 GB of RAM. In Table 5 , t pre , t st , and t seg repre-

ent the computational times spent in the pre-processing, structure 

ransformation, and CRF segmentation respectively, t total represents 

he total running time of IST-CRF. As can be seen in Table 5 , the

unning time of IST-CRF is influenced by N S , and IST-CRF is very 

fficient because it uses superpixel as the basic unit of analysis. 

. Conclusion 

In this paper, an image transformation based method named 

ST-CRF is proposed for the unsupervised MCD problem, which 

ontains three highlights. First, to make the heterogeneous images 

comparable”, IST-CRF transforms the multitemporal images into 

he same differential domain with explicit expressions by using 

raph based structure transformations. Second, to make full use 

f the spectral-spatial information, a CRF segmentation model is 

esigned by incorporating the change information based unary po- 

ential, LSAN and GSSN based pairwise potentials. Third, to reduce 

he influence of changes and thus improve the detection accuracy, 

n iterative framework is used to combine the structure transfor- 

ation and CRF segmentation. The effectiveness and adaptability 
13
f the proposed method are validated on five real data sets ac- 

uired from different modalities. 

In the proposed IST-CRF, we first use the graph to capture the 

tructure information and then complete the image transformation. 

owever, the graph is constructed based on a single segmentation 

cale. In our future work, the multi-scale graph construction and 

usion strategy will be further explored to improve the detection 

ccuracy. In addition, we use the coarse-to-refine iterative frame- 

ork to alleviate the influence of changes on the transformation 

rocess, but it also increases the computational time. In the future, 

e will try to develop an end-to-end model that can directly out- 

ut the change results to further improve the detection efficiency. 
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