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Abstract— Multimodal change detection (MCD) is a topic of
increasing interest in remote sensing. Due to different imaging
mechanisms, the multimodal images cannot be directly com-
pared to detect the changes. In this article, we explore the
topological structure of multimodal images and construct the
links between class relationships (same/different) and change
labels (changed/unchanged) of pairwise superpixels, which are
imaging modality-invariant. With these links, we formulate the
MCD problem within a mathematical framework termed the
locality-preserving energy model (LPEM), which is used to
maintain the local consistency constraints embedded in the links:
the structure consistency based on feature similarity and the label
consistency based on spatial continuity. Because the foundation
of LPEM, i.e., the links, is intuitively explainable and universal,
the proposed method is very robust across different MCD
situations. Noteworthy, LPEM is built directly on the label of each
superpixel, so it is a paradigm that outputs the change map (CM)
directly without the need to generate intermediate difference
image (DI) as most previous algorithms have done. Experiments
on different real datasets demonstrate the effectiveness of the
proposed method. Source code of the proposed method is made
available at https://github.com/yulisun/LPEM.

Index Terms— Energy, heterogeneous, locality preservation,
multimodal change detection (MCD), topological structure.

I. INTRODUCTION

A. Background

AS A fundamental and challenging problem in the fields
of computer vision and remote sensing, change detection

aims at identifying changes of a particular area on the Earth
surface over time by comparing multitemporal remote sensing
imagery of the same geographical area taken at different
times [1], [2]. It has received significant attention in recent
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years, due to the vital role it plays in a wide variety of appli-
cations including damage assessment (e.g., natural disasters
such as floods, earthquakes, forest fires.), land management,
urban development, and environment monitoring [3], [4], [5].
Especially with the rapid development of imaging techniques,
high-resolution multitemporal remote sensing images at a large
geographical scale can be acquired more easily and conve-
niently than before, enabling even more research opportunities
for detecting and monitoring subtle changes in the Earth
surface at a finer scale [6], [7], [8].

Homogeneous change detection, performing conventional
change detection with images that come from the same sensor,
has been widely investigated [9], [10], [11]. In other words,
traditional change detection heavily relies on homogeneous
data acquired by the same sensor, which has serious limitation
for many realistic applications. In recent years, as an emerging
and challenging problem, multimodal change detection (MCD)
has received increasing attention. MCD deals with images
that come from different sources, such as different types of
sensors (e.g., synthetic aperture radar (SAR) and optical) and
same sensor type but with different modalities (e.g., different
spectral channels for optical sensors and different microwave
frequencies or polarizations for radar instruments) [12], [13].
It is highly demanding to perform MCD that combines various
Earth observation data, including multispectral and radar with
different frequency bands and polarisations, etc. [14], [15].
One important application is in case of sudden events (such
as floods and earthquakes), where MCD allows to use the first
available images to assess the damages instead of waiting for
collection of a homogeneous image pair.1 This shortens the
response time of the change analysis [16], [17]. Another use
of MCD is to enable comparisons with old data acquired by
outdated sensors [18], [19].

Despite its practical value, MCD poses challenges because
multimodal images come from different data domains and have
significantly different characteristics [20], [21], [22], such as
SAR and optical images. This diversity makes direct com-
parisons infeasible, e.g., simple pixel differences commonly
used in traditional monomodal change detection. Therefore,
it becomes critical to reveal the connections between the
multimodal images and transform them to a common domain
in which they can be compared [23], [24]. To meet this
challenge, several kinds of methodologies have been proposed,

1In such cases, homogeneous images may not be available due to the
sensor’s repeat cycle and adverse light and weather conditions.
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which are related to the topics of data transformation and
domain adaptation [25], [26].

B. Related Work

Comparing with the monomodal change detection, there
are relatively few works that have been devoted to MCD.
To make the multitemporal images of X and Y comparable,
the existing MCD methods can basically be generalized in
terms of the sequential operations DI = M1(X)⊖M2(Y ) and
CM = B(DI) [14], [27], which first calculate the difference
image (DI) with the transform functions M1 and M2 and
the pixelwise difference operator ⊖, and then compute the
change map (CM) with the binary segmentation operator B.
Thus, previous approaches have been devoted to the design of
M1, M2, ⊖, and B.

According to whether the labels of training samples are
required in the transformation process or not, the MCD
methods can be classified as supervised and unsupervised. The
supervised methods perform the transformation with the help
of labeled samples [15], [20], [28], [29], [30], [31], [32], [33],
while the unsupervised methods usually construct or learn a
transformation that is independent of the imaging modality
based on certain assumptions [26], [34], [35], [36], [37], [38],
[39]. Currently, the unsupervised MCD methods are more
attractive than supervised ones, and more applicable for real
scenarios since the ground truth in Earth observation is very
difficult to collect.

According to the nature of the transformed common domain,
the MCD methods are based on postclassification comparison,
feature transformation, or image regression. The classification
comparison methods first transform the images into a common
category space by taking M1 and M2 as classifiers, and then
compare the classification results to detect changes [40], [41].
The feature transformation methods transform the images into
a common constructed feature space [15], [23], [31] or latent
learning feature space [42], [43], [44] as M1 : X → Z and
M2 : Y → Z ′. The image regression methods transform one
image to the domain of the other image as M1 : X → Y ′

or M2 : Y → X ′, such as the traditional image translation
methods [24], [28] and the deep translation methods [26],
[45], [46] with generative adversarial networks (GANs) [47]
or cycle GAN [48].

According to the methods used for M1 and M2, the
MCD methods can be classified as: 1) traditional signal-
processing-based methods, such as dictionary learning [49],
[50], copular theory [20], multidimensional scaling [51],
fractal projection [37], and graph processing [23]; and 2) deep-
learning-based methods, some of which use convolutional
neural networks (CNNs) to learn new representation [14], [44],
[52], [53], and some use the GAN to accomplish domain
adaptation [26], [45], [46]. However, the datasets for MCD
are relatively limited until now, which is because construct-
ing a ground-truth map that reflects real change information
requires a high cost of manual operation and great expert
knowledge in practice [54]. Although there are large datasets
available for homogeneous change detection that can support
pretrained models [55], [56], [57], there is currently no such
dataset for MCD, and these deep-learning-based methods
are mostly based on the pre-event and post-event images

themselves to detect the changes. Therefore, the traditional
unsupervised MCD methods (e.g., the proposed LPEM) are
still very appealing: first, they can quickly and automatically
extract change information and second, they can provide assis-
tance to deep-learning-based methods, such as constructing
high-confidence pseudotraining sets [24], or supporting the
training process [26].

Once the DI is obtained by comparing the transformed
images of DI = M1(X) ⊖ M2(Y ), the final CM solution
can be treated as an image segmentation problem with the
paradigm CM = B(DI), which divides the DI into changed
and unchanged classes, e.g., the thresholding methods such as
Otsu threshold [58], or clustering methods such as the k-means
clustering [59] and fuzzy c-means (FCM) clustering [60],
or Markov random field (MRF)-based methods [23], [35], [37].

We can find that there are two important issues to cope with
the problem of unsupervised MCD.

1) How to learn the robust transformations of M1 and
M2? This requires that these transformations can bring
the data to a common latent space where they can
be efficiently compared, and that they are available
for different MCD situations [37]. The transformations
between multimodal images established by previous
methods are generally based on certain assumptions
(e.g., some imaging modality-invariant assumptions in
traditional methods) or trained on pseudolabeled samples
(e.g., some networks in deep-learning-based methods).
These transformations may not be sufficiently stable nor
universal, such as when the MCD scene is very complex
(e.g., diversity of ground objects, difference in imaging
conditions), the noise in image is severe (especially the
speckle noise in SAR image), or the training samples
are not sufficient or mixed with wrong samples.

2) How to suppress the influence of unknown change
samples on the transformation? It includes the influence
on the process of learning the transformation func-
tions M1 and M2 and completing the transformations
M1(X) and M2(Y ) when they are not based on indi-
vidual pixels [38]. This point is rarely mentioned by
other studies for two reasons. First, it is partly due
to the fact that this challenge is unique to MCD, i.e.,
it is not a problem in monomodal change detection
that directly compares the images without the design of
transformations [6]. Second, previous research usually
treats the MCD as a two-step process, with the first step
transforming images to the same domain to obtain the
DI = M1(X)⊖M2(Y ), and the second step segmenting
the DI to obtain the final CM = B(DI) [14], [43].
Although this two-step strategy is intuitive, it carries a
hidden risk of tending to ignore the influence of changes
on the transformation process (M1, M2), i.e., the DI
calculation will be affected by the change samples in
the CM. Even though a few studies have focused on this
point, they still require the use of a complex, coarse-to-
fine iterative process to alleviate the influence [23].

C. Motivation

Recently, some image-structure-based unsupervised MCD
methods have been proposed [12], [23], [24], [26], [38], [61],
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[62], which are based on the assumption that the topolog-
ical structure of the multimodal images is the same in the
unchanged regions and different in the changed regions. Lup-
pino et al. [12], [24], [26] divide the images into overlapped
patches and compute two affinity matrices to capture the struc-
ture within the patch. They then directly compare the affinity
matrices to obtain the change prior, which can be further used
to select the unchanged pseudosamples for traditional image
regression [24], or assist the training process for deep image
regression [12], [26]. Touati and Mignotte [51] calculate the DI
using a nonlocal pairwise energy-based model (EBM), which
encodes the pairwise pixel relationships between each pixel
and all other pixels within the whole image, and then segments
the DI by five different automatic thresholding algorithms to
obtain a fused CM. In [62], k-nearest neighbor (KNN) graphs
that connect each patch with its KNNs within the whole image
are constructed to represent the structure of an image. Then,
it compares the graphs within the same domain by means of
graph mapping to calculate the DI, and then segments the DI
to obtain the final CM. Although such structure comparison
methods based on pairwise pixel relationships are intuitive
and robust, they still suffer from a drawback: the influence
of change samples on the structure comparison is ignored.
Although an attempt to solve this problem has been made in
our previous work [23], which propagates the CM obtained in
the previous iteration to the next round of DI calculation to
alleviate the change influence, it is still a complex, redundant
iterative process. This prompts us to think about using a
paradigm that outputs the CM directly without computing the
intermediate variable of DI.

Touati et al. [35] have proposed a Markov random field
model for MCD (named M3CD for short), which, to our
knowledge, is the first energy model that directly outputs
the CM for MCD. Based on three constraints on pixel pairs,
M3CD constructs a visual cue to distinguish two pixels that
belong to two different class labels (different pairwise labels)
from two pixels who share the same label (identical pairwise
label) and assumes that the visual cue obeys a Gaussian
distribution or an exponential distribution in these respective
cases. The attractiveness of M3CD lies in its use of pairwise
constraints to construct an energy model for directly outputting
the pixel label (change/unchanged), i.e., the CM.

Inspired by the pairwise relationship-based methods [24],
[62] and the energy model [35], [51], and to address the chal-
lenges of unsupervised MCD, we propose a simple yet highly
effective approach, named locality-preserving energy model
(LPEM). LPEM extends the concept of detecting changes
by measuring structural differences between images, which
is achieved by comparing distances or affinities [23], [24].
Similar to methods proposed in [35] and [51], we convert
MCD into an energy minimization problem based on the links
between class relationships and change labels, but with quite
different terms of constraint construction, energy building,
metrics, structure representation, basic unit, model solution,
etc., as discussed in the Appendix. For a superpixel pair at
the same location in multimodal images of the same scene
(without changes), the superpixels vary significantly and their
statistical features cannot be directly compared due to differ-
ent appearances, but the neighborhood similarity relationship
among superpixels representing the topological structure of
one image can be well-preserved by the other image due to

physical constraints. Based on this observation, we establish
links between class relationships (same/different) and change
labels (changed/unchanged) of pairwise superpixels,2 which is
more adequate and more accurate than in M3CD [35]. Since
these links are intuitively explainable and universal, it ensures
that our proposed method is highly robust and adaptable to a
variety of different MCD situations. Furthermore, to use these
links for detecting changes, LPEM implements three types
of constrains: 1) a feature-similarity-based structure consis-
tency that encodes the interactions between each superpixel
and its spectral neighborhoods; 2) a spatial-continuity-based
label consistency that encodes the interactions between each
superpixel and its spatial neighborhoods; and 3) a typical
prior constrain that the changes happen in small regions. The
LPEM is built directly on the label (changed/unchanged) of
each superpixel, so minimizing it will directly output the CM,
without calculating the intermediate DI while avoiding the
negative influence of changes.

D. Contribution
The main contributions are summarized as follows.
1) We construct robust, imaging modality-invariant con-

nections between multimodal images by exploiting all
the links between class relationships (same/different)
and change labels (changed/unchanged) of pairwise
superpixels. From these links, we extract six mappings
as the criteria to identify superpixel labels for the MCD
problem, which is widely available across different
MCD situations.

2) We use an EBM to release the ability of detecting
changes in the extracted criteria, which can directly com-
pute the CM without calculating the intermediate DI,
unlike the two-step process of most previous approaches
(calculating DI and segmenting DI).

3) The proposed model is used for locality preservation
defined as structure consistency in the feature space
and label consistency in the geographic space between
multimodal images. Moreover, by considering the label
of each sample in the structure consistency-based con-
straint, the proposed model reduces the negative impact
of change samples. The experimental results on five real
datasets show that the proposed method obtains better
performance than state-of-the-art (SOTA) methods.

II. LINKS BETWEEN RELATIONSHIPS AND LABELS

Let us consider the bitemporal MCD problem and assume
that two coregistered images of the same Earth region X ∈

RM×N×Cx and Y ∈ RM×N×Cy are given, where M × N
denotes the spatial size of the image, and Cx and Cy represent
their number of image channels. The objective of MCD is
to compute a binary CM B ∈ RM×N where each pixel label
indicates changed or unchanged.

The core issue in tackling MCD lies in the difficulty
in comparing two different physical quantities measured by
the two sensors. In other words, direct comparison of two
multimodal images in terms of simple pixelwise differencing,

2Here, the “pairwise” term comprises two aspects: first, pairs of superpixels
in different regions on the same image and second, pairs of superpixels in the
same region of different images, as illustrated by Fig. 1 and Table I.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on May 30,2024 at 01:33:43 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Illustration of the LPEM. The two images show the same area in Qu, Dazhou, China. The pre-event optical image is collected by Sentinel-2 on 22 June,
and the post-event SAR image is collected by Sentinel-1 on 11 July (data processed by ESA, http://www.copernicus.eu). These two images show the flooding
caused by the dramatic rise in the level of Qujiang River as a result of heavy rainfall on 11 July 2021. In the pairwise relationships, “O(Xi , X j ) = same”
and “O(Xi , X j ) = different” means that superpixels of Xi and X j belong to the same kind and different kinds of objects, respectively. In the pairwise labels,
Label_i and Label_ j represent the labels of the i th and j th superpixels, respectively.

TABLE I
LINKS BETWEEN CLASS RELATIONSHIPS AND CHANGE

LABELS OF PAIRWISE SUPERPIXELS

which is commonly used for traditional monomodal change
detection, is meaningless, as illustrated in Fig. 1. Therefore,
we need to find a robust, transferable connection between
the multimodal images. The structure consistency [23], [24],
[62] is based on the self-similarity property of images, that
is, for the multimodal images of the same region without
any changes, although direct pixelwise difference cannot be
applied here, the topological structure of the two images is
the same. Specifically, if the pixels (or patches/superpixels)
of x1 and x2 located at positions of (m1, n1) and (m2, n2),
respectively, in image X belong to the same kind of object,3

showing a very small difference of x1 – x2, then the pixels
(or patches/superpixels) of y1 and y2 located at the same
positions of (m1, n1) and (m2, n2), respectively, in image Y
also represent the same kind of object, and showing that the
difference of y1 – y2 is also very small.

In this article, we define the similarity relationships between
each superpixel and its KNNs within the whole image as
the topological structure of this image. Then the other image
with a different modality from the same scene should also
conform to this topological structure, unless changes have

3In the object-based change detection approaches, the term “object” is
usually defined as a group of pixels with homogeneous spectra/intensity and
spatial continuity [6], [7], [40], [63].

occurred. The more straightforward explanation would be that
the nonlocal similarity within the image itself could eliminate
the discrepancy between images across different modalities.

A. Preprocessing
As aforementioned, we need to consider the pairwise rela-

tionships among all the pixels in an image. Obviously, we have
quadratic time complexity that is proportional to the square
of the number of pixels, i.e., O(M2 N 2). For computational
efficiency, we choose superpixels as the basic analysis unit,
instead of using individual pixels or rectangular image patches.
As a result of perceptual grouping of pixels, superpixels
encapsulate more information than pixels and align better with
image edges than rectangular image patches. In addition, using
superpixels can lead to significant speed-up of subsequent
processing, as the number of superpixels of an image is
substantially smaller than the number of pixels.

To obtain the cosegmented superpixels, each image is
independently oversegmented with the simple linear itera-
tive clustering (SLIC) method [64]. For different types of
images, such as optical images with RGB bands, multi-
spectral images, and SAR images, the SLIC algorithm can
be modified to match the image statistics, such as in [38]
and [65]. Then, the superpixel segmentation maps from X
and Y are combined through the intersection operator to
obtain the cosegmentation map 3 = {3i |i = 1, . . . , NS}

which consists of NS cosegmented superpixels, denoted as
Xi = {x(m, n, c)|(m, n) ∈ 3i , c = 1, . . . , Cx } and Yi =

{y(m, n, c)|(m, n) ∈ 3i , c = 1, . . . , Cy}, respectively. Thus,
the superpixels of Xi or Yi represent the same geographical
area, and the set of pixels inside each superpixel (Xi or
Yi ) in 3 have the property to be internally homogeneous
simultaneously in X and Y.

B. Connections Between Multimodal Images
To investigate the topological structure of the images,

we consider class relationships (same/different) between pairs
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of superpixels ⟨i, j⟩ in each of two images X and Y
and use the relationships to identify the change labels
(changed/unchanged) of superpixels ⟨i, j⟩.

We use O(·, ·) to define the class relationships of pairwise
superpixels: if the superpixels of Xi and X j belong to the same
kind of object, we define

O
(
Xi , X j

)
= same (1)

and if the superpixels of Xi and X j belong to the different
kinds of objects, we define

O
(
Xi , X j

)
= different. (2)

The O(·, ·) will be determined by radiometric distances
that can be computed with sensor specific distance mea-
sures adapted to the statistics of the sensor, under the
assumption that superpixels from same/different objects or
classes will have low/high distance that can be distin-
guished sufficiently well. Then, the pairwise relationships of
⟨O(Xi , X j ), O(Yi , Y j )⟩ have a total of four combinations,
as listed in the first column of Table I.

We let Label_i and Label_ j represent the change labels
of superpixels in the CM located at 3i and 3 j , respectively,
being either changed or unchanged. Then, the pairwise labels
of ⟨Label_i, Label_ j⟩ also have a total of four combinations,
as listed in the last column of Table I.

Although there are 16 links between ⟨O(Xi , X j ),

O(Yi , Y j )⟩ and ⟨Label_i, Label_ j⟩ when using exhaustive
enumeration, four links are unrealistic in MCD problem. For
example, if we have known that O(Xi , X j ) = same and
O(Yi , Y j ) = same, then the superpixels ⟨i, j⟩ can only be
labeled as both changed and unchanged. In Table I, we list all
the possible links between the relationships of pairwise super-
pixels ⟨Xi , X j ⟩, ⟨Yi , Y j ⟩ and the labels of ⟨i, j⟩. The symbols
of △, ⃝, □, † in the second column of Table I are used as
examples to illustrate different kinds of objects. It should be
noted that Touati et al. [35], [51] have also established the
connections between the relationship and labels of pairwise
pixels. However, these are not as accurate and complete as
Table I in this article. For example, they ignore the 5th, 8th,
9th, and 12th links of Table I and directly assume that the pair-
wise relationships of ⟨same, different⟩, ⟨different, same⟩, and
⟨different, different⟩ all correspond to the different pairwise
labels of ⟨unchanged, changed⟩, or ⟨changed, unchanged⟩.
Fig. 2 shows some examples of the links between the rela-
tionships and labels.

Because the task of MCD is to obtain the change label of
superpixels, the links listed in Table I can provide us guidance.
On one hand, we can find that these links are universal and
constant, and no other assumptions are used, so it can embrace
change detection in both homogeneous and different kinds of
heterogeneous data. On the other hand, how to use these links
to detect changes needs to be solved, i.e., which links are
useful and how to turn these links in mathematical decision
rules. Next, we use the EBM to address this problem, which
can encode the pairwise superpixel interactions embedded in
the links.

III. LOCALITY-PRESERVING ENERGY MODEL

An EBM can capture dependencies between variables by
associating a scalar energy to each configuration of the vari-
ables [66]. The attractiveness of EBM is that one is free to

Fig. 2. Some examples of the links between the relationships and labels.

construct the energy in any reasonable way, thus giving it a
great deal of flexibility and expressiveness [67], [68], [69],
which has also been used for MCD [35], [51]. Here, we use
the EBM to realize the potential value of links listed in Table I
for MCD.

We define the index set as I = {1, 2, . . . , NS}, and the
putative label set as an binary vector L ∈ RNS , where L i ∈

{0, 1} represents the label of the i th superpixel. Specifically,
we divide I into the unchanged subset U = {i |L i = 0, i ∈

I} and the changed subset C = {i |L i = 1, i ∈ I}. Then,
we convert the MCD task into an EBM optimization problem

L∗
= arg min

L∈{0,1}
I

EH (L; X, Y) (3)

where the energy function EH can measure the “goodness” of
each possible configuration of X, Y and L with the criteria
extracted from the links.

A. From Links to Constraints
Although there are 12 different links in total in Table I, none

of them is a one-to-one mapping from class relationships to
change labels, i.e., each category of O(Xi , X j ), O(Yi , Y j )

corresponds to more than one label of ⟨Label_i, Label_ j⟩.
For example, when O(Xi , X j ) = same and O(Yi , Y j ) =

different, there are three possible label pairs for the superpixels
⟨i, j⟩, namely, ⟨unchanged, changed⟩, ⟨changed, unchanged⟩,
and ⟨changed, changed⟩, as illustrated by Links 3–5 in Table I.
Therefore, we need to add some restrictions to extract some
one-to-one mappings that can help define an EBM to identify
the superpixel labels.

For each superpixel in the image, we mainly consider
the relationships between itself and its neighbors in feature
space or geographical space, i.e., superpixels with feature
similarity or spatial proximity. Accordingly, two types of
pairwise relationship are studied: #1, each superpixel and its
feature space neighbors and #2, each superpixel and its spatial
neighbors, which can help extract some one-to-one mappings
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Fig. 3. Illustrations of the mappings in LPEM. The red dashed lines in (a) are the restrictions of each case. (a) Mappings of case #1. (b) Mappings of case
#2. (c) Illustrations of case #1 and case #2.

to be used in formulating the EBM, as shown in cases #1 and
#2 of Fig. 3.

Specifically, with these mappings, we can construct EH
with three types of constrains, i.e., the feature-similarity-based
structure consistency, spatial-continuity-based label consis-
tency, and change-prior-based sparse penalty, as follows:

EH = αESC + βELC + ESP (4)

where ESC, ELC, and ESP are the corresponding energy
functions, respectively, and α, β > 0 are two balancing
parameters. Next, we will present these criteria and ESC,
ELC, and ESP in detail.

B. Feature-Similarity-Based Structure Consistency

Cases #1a and #1b. In Table I, if we restrict that Xi
and X j belong to the same kind of objects (e.g., △) and
the j th superpixel is unchanged, we can obtain two one-to-
one mappings: case #1a, the i th superpixel belongs to the
unchanged class if Yi and Y j also belong to the same kind of
objects (e.g., △); case #1b, the i th superpixel belongs to the
changed class if Yi and Y j belong to the different kinds of
objects (e.g., ⃝ for Yi and △ for Y j ), as shown in Fig. 3.

To further enable these two mappings to help detect changes
(i.e., to identify the label of the i th superpixel), we construct
a function as

f y
i, j = d y

i, j − d̂ y
i , j ∈ N x

i ∩ U (5)

where d y
i, j represents the feature distance between superpixels

Yi and Y j (such as d y
i, j = ||Ỹ i − Ỹ j ||

2
2 with Ỹ i and Ỹ j being

the feature vectors). We define the index set of the KNN of Yi
in Y as N y

i by sorting the distance vector {d y
i, j | j ̸= i, j ∈ I}

and define d̂ y
i = max j ′∈N y

i
(d y

i, j ′) as the maximum distance
between Yi and its KNNs. Similarly, we can define d x

i, j , d̂ x
i

and N x
i for image X.

In the function f y
i, j of (5), the constraint of j ∈ N x

i ∩ U
is used to satisfy the restrictions of cases #1a and #1b, that
is, j ∈ N x

i is used to constrain that Xi and X j belong to the
same kind of objects, and j ∈ U means that the j th superpixel
is unchanged. The function f y

i, j can be used to measure the
likelihood that Yi and Y j belong to the same kind of objects:

if O(Yi , Y j ) = same, then d y
i, j will be small and we have a

small f y
i, j ; on the contrary, if O(Yi , Y j ) = different, then d y

i, j
will be larger and we have a larger f y

i, j . Therefore, f y
i, j | j∈N x

i ∩U
of (5) can be used to measure the constraint power of cases
#1a and #1b. It can also be found that case #1a makes use of
Link 1 and case #1b makes use of Link 4 and Link 3 (just
swapping i and j) of Table I.

Cases #1c and #1d. On the other hand, if we restrict that
Yi and Y j belong to the same kind of objects (e.g., △) and
the j th superpixel is unchanged in Table I, we can also obtain
two one-to-one mappings: cases #1c and #1d, similar to cases
#1a and #1b, respectively, as shown in Fig. 3.

Similarly, we can construct the function f x
i, j to measure the

constraint power of cases #1c and #1d as

f x
i, j = d x

i, j − d̂ x
i , j ∈ N y

i ∩ U . (6)

It can also be found that case #1c makes use of Link 1 and
case #1d makes use of Link 7 and Link 6 (swapping i and j)
of Table I.

Case #1e. Meanwhile, if we restrict that Xi and X j , Yi and
Y j represent the same kind of objects, respectively (e.g., △

for Xi and X j , △ for Yi and Y j ), and the j th superpixel is
changed in Table I, we can obtain a one-to-one mapping: case
#1e, the i th superpixel belongs to the changed class, as shown
in Fig. 3.

We construct the function for case #1e as follows:

gi, j = d y
i, j − d̂ y

i + d x
i, j − d̂ x

i , j ∈ N x
i ∩N y

i ∩ C (7)

where the constraint j ∈ N x
i ∩N y

i ∩ C is used to satisfy the
restrictions of case #1e. The gi, j of (7) can be used to maintain
the mapping of case #1e, which makes use of Link 2 of Table I.

1) Structure-Consistency-Based Energy: By combining f y
i, j

of (5), f x
i, j of (6), and gi, j of (7), we have the structure-

consistency-based energy function as

ESC =

∑
i∈U

 ∑
j∈N x

i ∩U

f y
i, j +

∑
j∈N y

i ∩U

f x
i, j

+

∑
i∈C

∑
j∈N x

i ∩N y
i ∩C

gi, j .

(8)
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With U = {i |L i = 0, i ∈ I} and C = {i |L i = 1, i ∈ I}, ESC
can be rewritten as

ESC =

∑
i∈I

(1 − L i )

 ∑
j∈N x

i

(
1 − L j

)
f y
i, j +

∑
j∈N y

i

(
1 − L j

)
f x
i, j


+

∑
i∈I

L i

∑
j∈N x

i ∩N y
i

L j gi, j . (9)

C. Spatial-Continuity-Based Label Consistency

Based on the reasonable assumption that spatially adjacent
nodes may be very similar and thus should share the same
label with high probability, the label-consistency-based energy
is constructed by taking the contextual information into con-
sideration, which can reduce the salt-and-pepper noise in the
CM.

First, a spatially adjacent neighbor is defined for each
superpixel: if two superpixels ⟨i, j⟩ (located at 3i and 3 j )
intersect or the spatial distance between their center points
is less than R, superpixels ⟨i, j⟩ are marked as spatially
adjacent neighbors of each other, denoted as i ∈ N R

j or
j ∈ N R

i . Because the average size of a superpixel generated
by the SLIC segmentation averages MN/NS , here we set
R = 2(MN/NS)

1/2 for simplicity.
Second, for superpixels ⟨i, j⟩ that are spatially

adjacent, we drop two mappings of O(Xi , X j ) = same
and O(Yi , Y j ) = different → Label_i = changed,
Label_ j = changed and O(Xi , X j ) = different, O(Yi , Y j ) =

same → Label_i = changed, Label_ j = changed listed
in Table I (the fifth and eighth links), which has a small
probability of appearing in practice. That is, it is not probable
that adjacent superpixels belonging to the same type of objects
at time t1 (e.g., △) will change into two different objects at
time t2, respectively (e.g., † and □). With the spatial continuity,
there are four possible cases (#2a–#2d) as shown in Fig. 3.

We construct a novel spatially adjacent-based energy using
cases #2a–#2d, which not only takes into account the tradi-
tional spatial continuity but also the specificity of MCD task
by considering the similarity relationships of original multi-
temporal images. The label-consistency-based energy function
ELC is defined as follows:

ELC =

∑
i∈I

∑
j∈N R

i

φi, j

d
(
3i , 3 j

)δ
(
L i ̸= L j

)
(10)

with d(3i , 3 j ) being the Euclidean spatial distance between
two superpixels, δ(·) being 1 if the specified condition inside
parenthesis holds, and 0 otherwise, and φi, j is defined as

φi, j =


1/2, if d x

i, j >ρ2
1 , d y

i, j >ρ2
2

σ

2
(

d x
i, j −ρ2

1

)(
d y

i, j −ρ2
2

)
ρ2

1ρ
2
2

, else

(11)

where the sigmoid function is defined as σ(z) = 1/(1 + e−z),
and the normalization parameters of ρ2

1 and ρ2
2 are set

to be ρ2
1 = (

∑
i∈I

∑
j∈N R

i
d x

i, j/
∑

i∈I |N R
i |) and ρ2

2 =

(
∑

i∈I
∑

j∈N R
i

d y
i, j/

∑
i∈I |N R

i |), respectively, representing the
average neighborhood feature distance over the whole image.

The function φi, j gives a penalty for the discontinuity of
L i ̸= L j in four situations, corresponding to the four cases
in Fig. 3.

Case #2a: O(Xi , X j ) = same and O(Yi , Y j ) = same.
In this case, φi, j gives a large penalty for the discontinuity
of L i ̸= L j , and as d x

i, j and d y
i, j decreases, the discontinuity

penalty is larger.
Case #2b: O(Xi , X j ) = same and O(Yi , Y j ) = different.

In this case, φi, j gives a small penalty for the discontinuity
of L i ̸= L j , and as d x

i, j decreases and d y
i, j increases, the

discontinuity penalty is smaller.
Case #2c: O(Xi , X j ) = different and O(Yi , Y j ) = same.

Similar to case #2b, φi, j gives a small penalty for the discon-
tinuity of L i ̸= L j in this case, and as d x

i, j increases and d y
i, j

decreases, the discontinuity penalty is smaller.
Case #2d: O(Xi , X j ) = different and O(Yi , Y j ) =

different. In this case, the i th and j th superpixels are likely
to be located at the junction of two objects of different kinds.
This means that the i th superpixel and the j th superpixel are
not closely related to each other, i.e., the relationship between
their labels is also ambiguous. Then, φi, j gives a median
discontinuity penalty for this case.

D. Change-Prior-Based Sparse Penalty
Based on the fact that only a small part of the area changes

and most of the area remains unchanged during the event in
the practical change detection problem, we have the following
sparse penalty ESP as

ESP = ∥L∥0 =

∑
i∈I

L i (12)

which discourages changes and avoids trivial solution of
L∗

= 1. Using the penalty ESP, a sparse CM can be obtained
which reduces the false alarms in the change detection results.

E. Minimization of LPEM
By combining the energies of ESC, ELC, and ESP, we can

find the unknown label set by solving

L∗
= arg min

L∈{0,1}
I
{EH (L; X, Y, α, β) := αESC + βELC + ESP}

(13)

with the hybrid energy function EH defined in (4). We further
set

α =
α∗NS∑

i∈I

(∑
j∈N x

i
f y
i, j +

∑
j∈N y

i
f x
i, j

)
β =

β∗NS∑
i∈I

∑
j∈N R

i
φi, j/d

(
3i , 3 j

) (14)

as α∗ and β∗ are relatively easier to tune.
From the formulation of EH , we can see that EH encodes

the interactions between each superpixel and its KNNs ( j ∈

N x
i or j ∈ N y

i ) using ESC of (9) and encodes the interactions
between each superpixel and its spatial neighbors ( j ∈ N R

i )
using ELC of (10). This means that we have considered locality
preservation of multimodal images in both feature space (struc-
ture consistency) and geographic space (label consistency),
where the “locality” means the “neighborhood relationships
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in feature space and geographic space.” At the same time, the
influence of changed superpixels is also taken into account
in the locality preservation-based constraint with j ∈ U and
j ∈ C in the function of ESC.

The energy minimization of (13) is an integer quadratic
optimization problem. However, because EH is a nonsub-
modular energy function [70], [71], [72], the minimization
problem (13) cannot be solved by the traditional graph cuts
(such as min-cut/max-flow algorithm [73]), which are designed
for minimizing submodular energy functions. To solve (13),
the quadratic pseudo-Boolean optimization (QPBO) [72],
[74] and the local submodular approximation (LSA)-based
method [70] can be used, which iteratively uses nonlinear sub-
modular approximations and optimizes them without leaving
the domain of integer solutions.

Once the label set L∗ is obtained by solving the model
of (13) with LSA, we can compute the binary CM B as

B(m, n) = L∗

i , (m, n) ∈ 3i (15)

where the unchanged areas are shown in black and changed
areas are shown in white. The overall framework of the
LPEM-based MCD method is shown in Fig. 4.

IV. EXPERIMENTS AND ANALYSIS

In this section, experiments are performed to evaluate the
performance of LPEM. We first provide a brief description
of the experimental setting, including the datasets, imple-
mentation details, and evaluation metrics. Following that, the
experimental results are presented and analyzed. Finally, some
discussions are given.

A. Experimental Setting
1) Dataset: Five multimodal datasets4 are used to evaluate

the performance of MCD methods as listed in Table II and
shown in Fig. 5, which contain different types of hetero-
geneity: multisensor image pairs (same sensor type but with
different sensors), e.g., images acquired from Landsat-5 and
Advanced Land Imager (ALI) from the Earth Observing (EO-
1) in dataset #1, and images acquired from Pleiades and
WorldView2 in dataset #2; multisource image pairs (different
sensor types), e.g., images obtained from Radarsat-2 and
Google Earth in datasets #3 and #4, and images obtained from
Landsat-8 and Sentinel-1A in dataset #5. These datasets reflect
quite different MCD conditions: different resolution levels,
different image sizes, and different change events, which can
evaluate the generalizability and robustness of the propose
method.

2) Implementation Detail: The proposed LPEM is imple-
mented with MATLAB 2016a. We set NS = 5000 for
superpixel segmentation and choose the mean and median
values of each band as the features to calculate the squared
distances of d x

i, j and d y
i, j for simplicity (this is not exclusive,

i.e., other features are also available). The neighborhood
size K for each superpixel is set using an in-degree based
k-selection strategy proposed in [38]. We set the balancing

4Dataset #1 is provided by Volpi et al. [15] and made avail-
able at https://sites.google.com/site/michelevolpiresearch/codes/cross-sensor.
Dataset #6 is provided by Luppino et al. [24] and made available at
https://sites.google.com/view/luppino.

Fig. 4. Framework of the proposed LPEM-based MCD method.

parameters β∗
= 5 for all the datasets and adjust α∗ (set

α∗
= 0.3 for #3 and #5, α∗

= 0.5 for #4, α∗
= 0.8 for

#1 and #2) in the hybrid energy function EH of (13). These
parameters will be analyzed in Section IV-C2.

3) Metrics: The binary change detection belongs to the
binary classification task, so the overall accuracy (OA), F1
score, and Kappa coefficient (Kc) are used to evaluate the
detection result, which are computed by: OA = (TP +

TN)/(TP + TN + FP + FN), F1 = (2TP)/(2TP + FP + FN),
and Kc = (OA − PRE)/(1 − PRE) with

PRE =
(TP + FN)(TP + FP) + (TN + FP)(TN + FN)

(TP + TN + FP + FN)2 (16)

where TP, FP, TN, and FN represent the true positives, false
positives, true negatives, and false negatives, respectively.
Besides, we also provide the detection maps to evaluate their
qualities by visual inspection.

B. Results
We compare the proposed LPEM-based method with

ten SOTA methods,5 including M3CD [35], FPMS [37],
NPSG [61], IRG-McS [23], AGSCC [39], SCCN [14], ACE-
Net [26], X-Net [26], CAAE [12], and ITSA [33], where
the latter five methods are deep-learning-based and ITSA
is a supervised method. For these comparison methods, the
publicly available codes with default parameters were run
to obtain the results. Quantitative results are presented in
Table III, and visualization results are shown in Fig. 5.

1) Qualitative Results: Fig. 5 shows the CMs of different
methods on all the evaluated datasets. We can find that
some methods do not perform robustly enough and their
performance degrades considerably on some datasets, such

5M3CD and FPMS are available at http://www-labs.iro.
umontreal.ca/ mignotte. NPSG, IRG-McS, and AGSCC are
available at https://github.com/yulisun. ACE-Net, X-Net, and CAAE
are available at https://github.com/llu025. ITSA is available at
https://github.com/ImgSciGroup/ITSA.
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TABLE II
DESCRIPTION OF THE FIVE MULTIMODAL DATASETS

Fig. 5. Binary CMs of different methods on multimodal datasets. From top to bottom, they correspond to datasets #1–#5, respectively. From left to right
are (a) pre-event image, (b) post-event image, (c) M3CD, (d) FPMS, (e) NPSG, (f) IRG-McS, (g) AGSCC, (h) SCCN, (i) ACE-Net, (j) X-Net, (k) CAAE,
(l) ITSA, (m) LPEM, and (n) ground truth. In the binary CM, white: true positives (TPs), red: false positives (FP), black: true negatives (TN), and green:
false negatives (FN).

TABLE III
QUANTITATIVE MEASURES OF BINARY CMS ON THE MULTIMODAL DATASETS. THE HIGHEST SCORE ARE HIGHLIGHTED IN BOLD

as M3CD, FPMS, and IRG-McS on dataset #1, FPMS and
ACE-Net on dataset #2, and M3CD and SCCN on dataset
#5. Conversely, the proposed LPEM can consistently achieve
better results across different CD conditions. On the whole, the
proposed LPEM can suppress the false positives and reduce
the false negatives simultaneously, and it outperforms most
comparison methods. These performances can be attributed
to two main factors: 1) the imaging modality-invariant link-
based locality-preserving constraint is robust to different MCD
conditions, such as scenes, noises, and sensors; and 2) the
negative influence of changes are taken into account in the
structure-consistency-based energy ESC in LPEM.

2) Quantitative Results: To further illustrate the superiority
of LPEM, the quantitative measures of CMs are reported in

Table III. It can be seen that the proposed LPEM outperforms
the SOTA methods on most datasets. For example, the LPEM
achieves the highest OA, Kc, and F1 in datasets #2, and
#3 (even comparing with the deep-learning-based ACE-Net,
X-Net, CAAE, SCCN, and ITSA). The average OA, Kc,
and F1 obtained by LPEM on all the evaluated datasets are
about 0.960, 0.714, and 0.737, respectively. These scores
are significantly higher than other methods, e.g., the average
Kc and F1 are improved by 0.070 and 0.067, respectively,
compared with the second-ranked supervised ITSA.

Finally, to further compare the performance of the proposed
LPEM, the results obtained by some representative and SOTA
methods [15], [17], [24], [44], [51], [75], [76], [77], [78],
[79], [80], [81], [82], [83], [84], [85] are summarized in
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TABLE IV
ACCURACY RATE OF CMS GENERATED BY DIFFERENT METHODS ON DIFFERENT DATASETS. THE RESULTS OF THESE COMPARISON METHODS ARE

REPORTED BY THEIR ORIGINAL PUBLISHED ARTICLES, EXCEPT RESULTS INDICATED WITH † ARE REPORTED BY [75] (THEY ARE CONSISTENT
WITH THEIR OPEN SOURCE CODES IN [15]). ITALICIZED AND UNDERLINED MARKS ARE USED FOR DEEP-LEARNING-BASED METHODS

Table IV, except for the methods that have been compared
in detail in Fig. 5 and Table III. Among these comparison
approaches, DCCAE [77], DCCA [75], AFL-DSR [79], DPFL
[76], CACFL [44], LT-FL [83], and SSL [85] are deep-learning-
based methods. For the sake of fairness, we directly quote
the results of the corresponding datasets in their original
published articles in Table IV (because the datasets used
in each article are not identical, Table IV is not aligned).
As can be seen in Table IV, the LPEM consistently yields
better or very competitive accuracy across different datasets by
comparing with these SOTA approaches, which again demon-
strates the effectiveness of the proposed locality preserving
model. In addition, the reason why the proposed LPEM does
not achieve the highest OA (but ranked second) on datasets
#1, #3, and #5 may lie in the following aspects: first, the
chosen weighting parameters in the hybrid energy function
do not balance the energy components well and second, the
superpixel feature distance metric is too simple to character-
ize the similarity relationships within the image in complex
scenes.

C. Discussions
1) Difference Images: As the proposed LPEM is built on

the label of each superpixel, it can directly output the CM by
solving the minimization problem of (13), without the need
of calculating the intermediate DI as other MCD methods.
However, it does not mean that the LPEM has no capability to
output the DI. Sometimes the DI is also required, for example,
a high-quality DI can be used to construct the pseudotraining
set or assist the training process for some unsupervised deep-
learning-based methods [26], [86].

Once the label set L∗ is obtained by solving the model
of (13), we can calculate the change level of each superpixel
as

pi =

∑
j∈N x

i

(
1 − L∗

j

)
f y
i, j +

∑
j∈N y

i

(
1 − L∗

j

)
f x
i, j . (17)

The reverse process from calculating CM to calculating DI
makes the DI more accurate due to the removal of the negative
influence of changes. Fig. 6 shows the DIs calculated by
LPEM on datasets #3 and #4. It can be found that the DIs
are able to highlight the changes very well, which achieve the

Fig. 6. DIs calculated by LPEM with (17) on (a) dataset #3 and
(b) dataset #4.

Fig. 7. CMs calculated by LPEM on datasets #2 (top row) and #3 (bottom
row) with different NS . The F1 scores of CMs on dataset #2 from (a) to
(d) are 0.737, 0.741, 0.703, and 0.711, respectively; the F1 scores of CMs on
dataset #3 from (a) to (d) are 0.811, 0.817, 0.837, and 0.832, respectively.

Fig. 8. CMs generated by LPEM without ELC. From (a) to (e) are the results
on datasets #1–#5, respectively.

areas under the receiver operating characteristic (ROC) curves
equal to 0.968 and 0. 916, respectively.

2) Parameter Analysis: The main parameters in LPEM are
the number of superpixels NS and the balancing parameters
of α∗ and β∗.

Generally, NS should be selected according to image res-
olution and granularity requirement of MCD task. A larger
NS will improve the detection granularity as the segmented
superpixels are smaller. For example, when the detection task
focuses on changes in land cover (such as crops, rivers,
forests), a smaller NS can be chosen; when the detection
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Fig. 9. Sensitivity analysis of parameters α∗ and β∗ in LPEM on different datasets. The value identified by the arrow is α∗
= max{7.5 × cr, 0.9} and β∗

= 5,
where cr is the ratio of changed areas in ground truth. (a) Dataset #1. (b) Dataset #2. (c) Dataset #3. (d) Dataset #4. (d) Dataset #5.

task focuses on changes in targets with small size (such as
vehicles), a larger NS should be chosen. Fig. 7 shows the
CMs generated by LPEM on datasets #2 and #3 with NS =

2500, 5000, 7500, and 10 000, where some details are marked
with the blue ellipse to fully compare these detection results.
We can see that more details are detected as NS increases. The
average F1 scores of CMs generated by LPEM with different
NS (from 2500 to 10 000) on the five evaluated datasets are
0.707, 0.732, 0.722, and 0.726, respectively. On the other hand,
a larger NS also increases the computational time as analyzed
later. Therefore, we simply fix NS = 5000 as a compromise
choice, which guarantees detection accuracy while allowing
LPEM to be faster.

The parameters of α∗ and β∗ are used to balance the weights
of ESC, ELC and ESP in the LPEM. First, we perform the
ablation analysis.

1) If we only focus on ESC (i.e., set α∗
→ ∞), the solution

of (13) will be L∗
= 1; and if we remove ESC (i.e., set

α∗
→ 0 ), it will be L∗

= 0 with EH = 0.
2) If we only focus on ELC (i.e., β∗

→ ∞), the solution
of (11) is L∗

= 0 or L∗
= 1, and a larger β∗ indicates

a smoother CM. In Fig. 8, we show the CMs generated
by LPEM without ELC. By comparing Figs. 5(k) and 8,
a lot of salt-and-pepper noise and false alarms appear
in the CM when ELC is removed, making the detection
performance degrade.

3) If we only focus on ESP (i.e., set α∗
→ 0 and β∗

→ 0 ),
we have the trivial solution of L∗

= 0; and if we remove
ESP, we have the trivial solution of L∗

= 1.

Second, we show the performance of LPEM with varying
α∗ and β∗ in Fig. 9. We can find that LPEM can achieve good
results for a certain range of both α∗ and β∗, which indicates
that the algorithm is certain robust to the balance parameters.
To further observe the effects of α∗ on the algorithm, we show
the CMs of LPEM on dataset #4 by varying α∗ from 0.3 to
0.8 in Fig. 10. It can be found that α∗ acts like a threshold
that controls the number of changes detected. Based on the
compositional form of EH and the results in Fig. 9, we can
see that the value of α∗ should be related to the degree of real
change. Here, we recommend setting the balancing parameters
as α∗

= max{7.5 × ecr, 0.9} and β∗
= 5 in the hybrid energy

function EH of (13), where ecr represents the estimated ratio
of changed areas, i.e., the estimated sparsity of the ground
truth, as shown in Fig. 9. However, how to obtain the optimal
α∗ and β∗ without using ecr still needs to be studied, which
is also our future work.

3) Computational Time: The main computational com-
plexity of LPEM is concentrating on the processes of
preprocessing, energy model construction, and energy model

Fig. 10. CMs calculated by LPEM on dataset #4 with (a) α∗
= 0.3, (b) α∗

=

0.4, (c) α∗
= 0.5, (d) α∗

= 0.6, (e) α∗
= 0.7, and (f) α∗

= 0.8.

minimization. In the preprocessing, the complexity of SLIC
method is linear in the number of pixels in the image, i.e.,
O(MN), as reported in [64]. In the construction of energy
function EH of (6), computing the feature distances between
all the superpixels requires O((Cx + Cy)N 2

S ), and sorting the
feature distances to find the KNN of all the superpixels
requires O(N 2

S log NS), and computing the spatial distance
d(3i , 3 j ) and φi, j between adjacent superpixels in the ELC
of (12) requires O(NR) with NR =

∑
i∈I |N R

i |. In the LPEM
minimization of (13), the LSA method for the optimization
of binary nonsubmodular energy is used, whose running time
for problems of different scales is presented in detail in [70].
Generally, the LPEM is relatively efficient, which is faster
than the comparison traditional methods listed in Table III.
For example, the computational times (seconds) on dataset #2
are6: M3CD: 2611.6; FPMS: 92.4; NPSG: 176.5; IRG-McS:
20.5; AGSCC: 46.5; and LPEM: 19.7, where the preprocessing
takes 2.5 s, the energy model construction takes 3.1 s, and the
LSA takes 14.1 s in LPEM.

V. CONCLUSION

In this article, we propose an unsupervised MCD method
by exploring the links between class relationships of pair-
wise superpixels and their change labels, which is intuitively
explainable and universal across different MCD scenarios.

6LPEM, NPSG, IRG-McS, and AGSCC are performed in MATLAB 2016a
running on a Windows desktop with Intel Core i7-8700K CPU, the C++

codes of M3CD and FPMS are executed in a Linux computer with Intel
Xeon Silver 4110 CPU. Besides, M3CD, FPMS, and NPSG all downsample
the images of dataset #2 by a factor of 4, as suggested by the authors, to ensure
that the procedures are not interrupted by memory overflow errors.
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Moreover, we extract the locality preservation property from
the links and build an EBM by constructing three types of
constraints. It is a paradigm for MCD that can output the
CM directly by solving an energy minimization problem,
without the need to generate intermediate DI as most previous
algorithms have done, while overcoming the disadvantage that
other algorithms tend to ignore the influence of changes on
MCD. The experimental results demonstrate that our method
achieves excellent performance for MCD with various scenar-
ios.

In this article, we use the fixed KNN graph to characterize
the topological structure of image, which may have limitations
in some scenarios where the image structure is very complex.
We manually select the weighting parameters to balance the
energies, which is not robust enough. A future work would
be to use the adaptive graph and incorporate geometrical
structure information to make the EBM more accurate and use
adaptive balancing parameters to improve the robustness of the
proposed method. We hope that the proposed simple approach
will inspire a rethinking of MCD, especially as deep learning
methods are to be used systematically. Moreover, since the
links described in this article are widely available between
multimodal images, we believe that the proposed method may
also be useful for other fields, such as detecting lesions using
multimodal medical images (e.g., CT and MRI).

APPENDIX

DISCUSSIONS WITH OTHER ENERGY-BASED
MCD METHODS

In the appendix, we will discuss in detail the connections
and differences between the energy model proposed in this
article and previous energy models, to facilitate further under-
standing of these energy-based MCD methods by interested
readers.

Touati et al. [35], [51] have exploited energy models for the
MCD task, which construct three constraints (#1–#3) for two
distinct pixels i, j using the following connections between
pairwise pixel relationships and label:

#1, ⟨same, same⟩ → Label_i = Label_ j ;
#2, ⟨same, different⟩ → Label_i ̸= Label_ j ;

⟨different, same⟩ → Label_i ̸= Label_ j ;
#3, ⟨different, different⟩ → Label_i ̸= Label_ j .
Then, a visual cue η(i, j) is proposed for each pixel pairs

(i, j) based on these connections as

η(i, j) =

∣∣∣d x
i, j − d y

i, j

∣∣∣ (18)

where d x
i, j and d y

i, j are distance measures that are defined as
d x

i, j = max{(|xi − x j |/xi ), (|xi − x j |/x j )} in [51] and d x
i, j =

∥xi − x j∥1 in [35] with xi denoting the gray level and xi
denoting a local statistics vector at pixel i in the pre-event
image.

With this visual cue, a nonlocal pixel pairwise EBM
(NPPEM) is proposed in [51] to calculate the similarity map
Ŝ (can be regarded as DI)

Ŝ = arg min
S

∑
(i, j)i ̸= j

(
η(i, j) −

∥∥Si − S j
∥∥

2

)2
. (19)

Finally, Ŝ is segmented using different thresholding algorithms
to obtain a fused CM.

In M3CD [35], the visual cue η(i, j) (18) is assumed to obey
a Gaussian distribution in the case of identical pixel-pairwise
label of L i = L j , and an exponential distribution in the case
of different pixel-pairwise label of L i ̸= L j . Then, M3CD
builds an energy model as

E(L, η) =

MN∑
i=1

∑
j∈Gi

− ln P
(
η(i, j)

∣∣L(i, j)
)
+

∑
j∈εi

βδ
(
L i ̸= L j

)
(20)

and obtain the pixel label by L̂ = argminL E(L, η), where
L(i, j) represents the above two cases of L i = L j and L i ̸= L j .

By comparing NPPEM [51], M3CD [35], and the proposed
LPEM, it can be found that there are two common aspects
between them: they all use the pairwise relationship and
pairwise labels of the multitemporal images and build energy
models for the MCD problem. However, by deeply analyzing
these methods, we can find that LPEM differs from the
NPPEM and M3CD in the following.

1) Constraints construction: Both NPPEM and M3CD are
based on constraints #1–#3, which is a subset of the 12 links
in Table I. First, they ignore the Links 5, 8, 9, and 12 of
Table I and make constraints #2–#3 not accurate enough.
Second, NPPEM and M3CD only consider the pairwise labels
of “identical” (L i = L j ) and “different” (L i ̸= L j ) in the
constraints, so the models of (19) and (20) have two opposite
optimal solutions. However, LPEM not only considers the
identical/different pairwise labels in case #2 of Table I using
the spatial continuity but also considers the individual labels
of changed/unchanged in case #1 of Table I using the structure
consistency.

2) Energy model: NPPEM builds energy model (19) with a
set of MN(MN−1)/2 equality constraints that require that the
distance between pixels i, j in Ŝ is close to the visual cue η(i, j),
which is similar to multidimensional scaling [87]. M3CD
builds the MRF model (20) by assuming the distributions
of the visual cue η(i, j), whose solution process consists of
a parameter estimation step for the likelihood distributions
and a segmentation step for the maximum a posteriori (MAP)
solution of L̂ . However, the LPEM directly attributes energy
to each constraint in a reasonable way as (9), (10), and (12),
which takes full advantage of the EBM model’s flexibility and
expressiveness. Moreover, the energy model built from the
links can release the potential meaning they embed: locality
preservation between multimodal images.

3) Metrics: Both NPPEM and M3CD calculate the visual
cue η(i, j) that measures the difference in pairwise relationships
(i.e., structure difference) using (18), which directly compares
the distances calculated in different domains as d x

i, j − d y
i, j .

To make the distances comparable and to reduce the confusion,
NPPEM and M3CD first use the gray level (or a local statistics
vector), and then NPPEM uses the normalized distance metric
and M3CD uses a double histogram matching for the gray
images, respectively. However, LPEM measures the difference
in pairwise relationships using f y

i, j (5) and f x
i, j (6), which

compares the distances in the same domain. For example,
for the (i, j)th pixels or superpixels known to belong to the
same kind of objects in the pre-event image X, to determine
whether they also belong to the same kind of objects in
the post-event image Y, NPPEM and M3CD calculate the
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difference between d x
i, j and d y

i, j , while LPEM calculates f y
i, j

by comparing d y
i, j with max j ′∈N y

i
(d y

i, j ′) in (5). Intuitively,
LPEM measures the structure difference by how different
the two KNN position sets of N x

i and N y
i are in the same

domain. In the our previous article [61], [62], we have com-
pared the direct distance comparison with the mapped KNN
comparison.

4) Structure representation: NPPEM considers the pixel
pairwise relationships between each pixel and all other pixels
with (19), and M3CD uses the pairwise relationships between
the i th pixel and a subsample of 8 pixels regularly distributed
around a squared window of Gi (41 × 41 in [35]) with (20).
However, LPEM constructs the KNN graph that uses the
relationships between each superpixel and its KNNs within
the whole image as the structure, which brings two benefits:
first, it serves as a constraint in case #1 of Fig. 3, and
second, it allows to measure structural difference in the same
domain.

5) There are other differences, such as the basic process-
ing unit and the solution method of the energy model. For
example, NPPEM and M3CD are pixel-pairwise-based, while
LPEM is superpixel-pairwise-based, which greatly reduces the
computational complexity.
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