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Change detection of heterogeneous remote sensing images is an important and challenging topic, which 

has found a wide range of applications in many fields, especially in the emergency situation resulting 

from nature disaster. However, the difference in imaging mechanism of heterogeneous sensors makes it 

difficult to carry out a direct comparison of images. In this paper, we propose a new change detection 

method based on similarity measurement between heterogeneous images. The method constructs a graph 

for each patch based on the nonlocal patch similarity to establish a connection between heterogeneous 

data, and then measures the change level by measuring how much the graph structure of one image still 

conforms to that of the other image. The graph structures are compared in the same domain, so it can 

avoid the leakage of heterogeneous data and bring more robust change detection results. Experiments 

demonstrate the effective performance of the proposed nonlocal patch similarity based heterogeneous 

change detection method. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Background 

The change detection (CD) of remote sensing images is a pro-

ess of identifying the changes of objects or phenomenon in the

ame geographical area at different times by analyzing the differ-

nces between images [1] . CD has been widely used in many real-

orld applications, such as land-use and land-cover evaluation [2] ,

rban growth monitoring [3,4] , nature disaster assessment [5,6] ,

tc. 

CD with homogeneous images, i.e. image collected by the same

ind of sensors, e.g., radar or optical sensors, has been of inter-

st for a long time [7] . Researchers have proposed many relatively

ature algorithms for homogeneous CD, such as the change vector

nalysis (CVA) [8] , compressed change vector analysis (C 

2 VA) [9] ,

ultivariate alteration detection (MAD) [10] , iteratively reweighted

AD (IR-MAD) [11] , the generalized Kittler and Illingworth thresh-

lding (GKIT) algorithm [12] , reformulated fuzzy local information

-means clustering algorithm (RFLICM) [13] , principal component

nalysis with K-means clustering (PCAKM) [14] , Gabor wavelets

ith two level fuzzy c-means clustering (GaborTLC) [15] . However,

he wide range of different sensors found in remote sensing makes
∗ Corresponding author. 

E-mail address: alaleilin@163.com (L. Lei). 

a  

i  

r

ttps://doi.org/10.1016/j.patcog.2020.107598 

031-3203/© 2020 Elsevier Ltd. All rights reserved. 
he detection of changes in images acquired by heterogeneous sen-

ors a growing interest topic. In particular, the heterogeneous CD

as great practical significance for the immediate evaluation and

mergency disasters. In such scenarios (e.g., earthquake or flood),

he rapid mapping of damages is needed. The pre-event SAR im-

ge is sometimes unavailable and the pre-event optical image can

e obtained from the archived data of remote sensing platforms,

hereas maybe only the post-event SAR image can be available

ue to adverse atmospheric conditions. 

However, heterogeneous CD is very challenging because of the

istinct feature representations of ground object in images ac-

uired by different sensors, especially for these images obtained

rom optical and SAR sensors respectively. The optical sensor is

assive, which can measure the intensity of reflected light in vis-

ble and near-infrared spectral bands. Therefore, the optical image

eflects the surface reflection and illumination information of the

bject. SAR sensor is active, which can measure the backscatter

haracteristics of objects by transmitting radar waves. Therefore,

he SAR image reflects the geometric and dielectric characteristics

f the target. As the images acquired by heterogeneous sensors

how different physical quantities and different statistical behav-

ors, it is difficult to calculate pixelwise difference between hetero-

eneous images. This is different from that in homogeneous im-

ges, which only requires a simple arithmetical operation such as

mage differencing (usually for optical images) and image ratio/log-

atio (usually for SAR images). 

https://doi.org/10.1016/j.patcog.2020.107598
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Generally, according to whether the label information is used,

the existing heterogeneous CD methods can be divided into su-

pervised and unsupervised. Meanwhile, it can also be divided into

three categories according to the different methods for generating

the binary change map. The first is the method based on classifica-

tion. These methods first classify the images separately and trans-

form the heterogeneous images into the same category space, then

compare the classification results to detect the changes. Among

them, post-classification comparison (PCC) is the most widely used

method [16,17] . The accuracy of PCC strongly depends on the per-

formance of classification, and the PCC may suffer from the error

propagation or error accumulation [18] . Recently, the PCC based on

multitemporal segmentation and compound classification (MS-CC)

[19] and its extended version based on cooperative multitemporal

segmentation and hierarchical compound classification (CMS-HCC)

[20] have been proposed to overcome the error propagation. How-

ever, as shown in these papers, image segmentation will affect the

accuracy of CD, in particular, it is well known that the SAR image

segmentation is very difficult, which brings a big challenge to its

accurate detection. 

The second is the method based on deep learning. Some of

them use the Convolutional Neural-Networks (CNNs) and stacked

denoising autoencoders (SDAEs) to extract the high-level feature

representation and explore the inner relationships of heteroge-

neous images, such as the symmetric convolutional coupling net-

work (SCCN) [21] , and logarithmic transformation feature learning

(LTFL) with SDAE [22] . Some of them use the translation network

to translate the two heterogeneous images into homogeneous ones,

between which the difference image can be obtained in a com-

mon observation space, such as the conditional generative adver-

sarial network (cGAN) [23] , the X-Net with two fully convolutional

networks and the Adversarial Cyclic Encoders Network (ACE-Net)

with two autoencoders whose code spaces are aligned by adver-

sarial training [24] . Despite their excellent performance on the de-

tection accuracy, deep learning-based method still has two major

flaws: the time-consuming training process and the construction of

large training set, which requires a high cost of manual operation

in practice under the supervision mode or requires a complicated

screening process to select the training samples under the unsu-

pervision mode. 

The third is the method based on similarity measure. Such

methods usually define a function to measure the difference be-

tween images by using a sliding or analysis window. Mercier et al.

use the copula theory to model the dependence between un-

changed areas and then employ the Kullkack-Leibler (KL) distance

on local statistical measures to calculate the changes [25] . Prendes

et al. propose a multivariate statistical approach, which models the

objects contained in analysis window by local joint distributions

and then uses the manifold to measure the change indices [26] . In

[27] , they further introduce a Bayesian nonparametric framework

to deal with the unknown number of objects in the analysis win-

dow. This kind of method based on parameter estimation requires

an explicit data distribution, a complex parameter estimation and

a large amount of training data. In [28] , a series of similarity mea-

sures are employed for automatic CD of optical and SAR images,

such as the distance to independence, mutual information, cluster

reward algorithm [29] , Woods criterion [30] , robust Woods crite-

rion [31] , and correlation ratio [32] . By assuming that the hetero-

geneous images with absence of change have similar local internal

layouts, the distance of sorted histogram (SH) is employed to es-

timate the dissimilarity between the images [33] . The pixels pair

(PP) method assumes that the mapping between the pixel values

of images in the image pair are monotonic, then it computes differ-

ences between pixels in each image separately, and the difference

scores are then compared between images in the pair to generate

the change map [34,35] . Luppino et al. propose the affinity ma-
rices distance (AMD) method to calculate the change possibility

f each pixel, which can be used to generate the CD map directly

y thresholding operation, and can be further used to construct

he pseudo-training data for the unsupervised traditional image

egression based CD [36] or can be treated as the change prior

o guide the deep image translation based heterogeneous CD [24] .

he main advantages of these imaging modality-invariant operator

ased methods (such as SH, PP and AMD) are intuitive, unsuper-

ised and easy to implement. However, they do not take into ac-

ount the different statistical characteristics of the heterogeneous

mages when the scene is complex or the noise in the image is

ery high (especially the speckle noise of SAR image), these de-

igned operators can not fully represent the similarity (or differ-

nce) between heterogeneous images, resulting in a sharp deterio-

ation in CD performance. 

From the above discussion, we can see that the goal of these

eterologous CD methods is to transform the heterogeneous im-

ges to a space where they can be directly compared, such as the

ategory space of classification based methods, the learned high-

imensional feature space of deep learning based methods, and the

onstructed feature space of similarity measure based methods.

hen direct comparison is possible, methods for homogeneous CD

an be used to extract the changes. 

.2. Contribution 

In this paper, we propose a nonlocal self-similarity based

ethod for heterogeneous CD, which belongs to the family of

imilarity-based methods. Although the heterogeneous images re-

er to completely different imaging mechanisms, and hence, there

s no direct relationship between their pixel values, they share im-

ortant structure information, which can be used to detect the

hanges between images. To exploit this structure information, we

se the nonlocal patch similarity based graph (NPSG) to measure

he structure consistency between heterogeneous images. The pro-

osed CD method mainly consists of two parts. First, the image is

ivided into a number of overlapped squared patches. In the for-

ard detection, for each target patch in the pre-event image, its

 -nearest NPSG within the pre-event image is calculated by us-

ng the statistical based similarity measurement, then we map this

 -nearest NPSG to the post-event image, and compare its own K -

earest NPSG of the post-event image with this mapped K -nearest

PSG from the pre-event image by calculating the similarity differ-

nce. If changes occur within this patch area, then the graph struc-

ure of this patch will change. Intuitively, the more changes occur

n the patch, the more the two K -nearest NPSGs will diverge. After

hat, we also similarly do the backward detection by mapping the

 -nearest NPSG of post-event image to the pre-event image. Then

he forward and backward detections are combined to further im-

rove the robustness of CD with respect to the noise and modality

ifference of images. Second, with combined difference image, the

nal binary change map (CM) can be treated as an image binary

egmentation problem, which can be solved by the thresholding

ethods such as Otsu threshold [37] , or clustering methods such

s the PCAKM [14] and GaborTLC [15] for the homogeneous CD. 

The core idea of the proposed method is that we use the NPSG

o represent the image structure, then the change level depends on

ow much one image still conforms to the NPSG from the other

mage. Meanwhile, there are two points should be noted. First, to

easure the structure differences of the post-event (pre-event) tar-

et patch, we only use the location information of the mapped

 -nearest NPSG from the pre-event (post-event) images, then the

tructure difference calculation is only carried out within this post-

vent (pre-event) image by comparing the similarity difference be-

ween the target patch and patches in the two K -nearest NPSG. It is

orth underlining that this operation avoids the leakage of hetero-
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eneous data, which exists in different degrees in other similarity

ased heterogeneous CD methods such as SH, PP, and AMD. Sec-

nd, to make the fusion process of forward detection and backward

etection more reasonable and accurate, we calculate the patch

imilarity based on the image statistical distribution and analyze

he characteristics of these similarities, and make the expectations

f forward and backward similarity difference balanced. The main

ontributions of this work are summarized as follows: 

1) We propose a novel CD framework with constructed graph

ased on nonlocal patch similarity, which makes the heteroge-

eous data comparable. This method measures the change level

etween the pre- and post-event images by measuring how much

he graph structure of one image still conforms to that of the other

mage. 

2) The proposed method avoids the leakage of heterogeneous

ata and reasonably combines the forward and backward detection

esults based on the statistical distribution, which can efficiently

educe the false alarms in CD of heterogeneous images. 

3) The proposed heterogeneous CD framework is completely

nsupervised, its parameters are easy to determine, and it exhibits

 good level of usability as shown in the experiments. 

.3. Outline 

The overall structure of this study takes the form of four sec-

ions, including this introductory section. Section 2 introduces the

roposed method. Section 3 presents the numerical results. In the

nd, we provide our conclusion in Section 4 . 

. Nonlocal patch similarity based heterogeneous CD 

We consider two co-registered images that represent the

ame region acquired by heterogeneous sensors before (time

 1) and after an event (time t 2), which are denoted as X =
 

x ( m, n, c ) | 1 ≤ m ≤ M, 1 ≤ n ≤ N, 1 ≤ c ≤ C X } lining in the domain 

 and Y = { y ( m, n, c ) | 1 ≤ m ≤ M, 1 ≤ n ≤ N, 1 ≤ c ≤ C Y } lining in

he domain Y, respectively. Here M and N are the height and the

idth of two images, C X and C Y are the number of channels of

wo images. As mentioned in Section 1 , the heterogeneous sensors

ake completely different imaging mechanisms, it is meaningless to

irectly compare their signal values for detecting changes. An in-

uitive method is to find a relationship between the heterogeneous

ata and make them comparable, which makes the unchanged ar-

as and changed areas show completely different forms. 

By exploiting image self-similarity, a small patch in the image

an always find some very similar patches in an extended search

indow (or the whole image) based on the patch-wise similar-

ty. This self-similarity is also the basis of the widely used nonlo-

al SAR image despeckling algorithms, such as probabilistic patch-

ased (PPB) algorithm [38] , SAR block-matching 3-D (SAR-BM3D)

39] , fast adaptive nonlocal SAR despeckling (FANS) [40] , and it

as also been applied to SAR image change detection [41] . On the

ther hand, this kind of nonlocal patch similarity also represents

he structural information of the image, which can establish the

elationship between heterogeneous images. As shown in Fig. 1 , in

he SAR image X , a small target patch T X is connected with sev-

ral similar patches S X . If the objects (areas) represented by these

atches do not change between t 1 and t 2, this nonlocal similarity

tructure can be followed by the optical image Y . This means that

he patch T Y is also very similar to patches S Y in the optical image

 , where the positions of T Y and S Y in Y are the same as that of

he T X and S X in X . If there is a change in the area represented by

 

X , we can find that this nonlocal similarity structure is no longer

onformed and the patch T Y is very different from the patches S Y 

n the image Y , as shown in target patch 2 in Fig. 1 . From this il-

ustration, we can find that the change level in the heterogeneous
mages can be measured by how dissimilar between the nonlocal

atch similarity structures of two images. 

The proposed method consists of three steps: 1) construct NPSG

or each target patch; 2) compare the similarity structure and gen-

rate the difference image; 3) generate the binary change map

ith thresholding or clustering method. The framework is illus-

rated in Fig. 2 . 

.1. Nonlocal patch similarity based graph 

Let us consider a square target patch, X ( m,n ) =
 

x ( m + ϑ m 

, n + ϑ n , c ) ; ( ϑ m 

, ϑ n ) ∈ P , 1 ≤ c ≤ C X } with the size 

 s × p s × C X , where ( m, n ) is the position of the anchor pixel (for

xample, the patch center), P indicates the set of square spatial

ffsets with respect to the anchor pixel and its cardinality is

 

P | = p 2 s . 

As the graph model can efficiently capture crucial information

nd local structure of an image, it is an effective tool for image

epresentation and analysis [42,43] , which has also been used in

AR image change detection using a pointwise approach [44] . Here,

e propose to construct a weighted graph G to represent the ge-

metric structure for each target patch. Thus, denoting the graph

 

X ( m,n ) 
= 

{ 
V 

X ( m,n ) 
, E 

X ( m,n ) 
, w 

X 

} 
for each target patch X ( m,n ) , we con-

truct the NPSG within a ξ s × ξ s search window W centered on

his X ( m,n ) as 

 X ( m,n ) 
= 

{
X ( i, j ) ;

(
i + ϑ i , j + ϑ j 

)
∈ W , 

(
ϑ i , ϑ j 

)
∈ P 

}
, 

∣∣∣V X ( m,n ) 

∣∣∣ = ( ξs − p s ) 
2 

 X ( m,n ) 
= 

{ (
X ( m,n ) , X ( i, j ) 

)
; X ( i, j ) ∈ V X ( m,n ) 

} 
 

(
X ( m,n ) , X ( i, j ) 

)
= exp 

(
−λd 

(
X ( m,n ) , X ( i, j ) 

))
, 
(
X ( m,n ) , X ( i, j ) 

)
∈ E X ( m,n ) 

(1) 

here the term d ( X ( m,n ) , X ( i,j ) ) represents a distance measure of

wo vertices X ( m,n ) and X ( i,j ) , and λ > 0 is a parameter control-

ing the bandwidth of the exponential kernel. Within this graph

 

X ( m,n ) 
= 

{ 
V 

X ( m,n ) 
, E 

X ( m,n ) 
, w 

X 

} 
, each patch in the search window

 becomes a vertex, and each vertex X ( i,j ) is connected with the

arget vertex X ( m,n ) by a set of edges E X ( m,n ) 
, and their associate

eights w involving a measure of similarity between each vertex

nd the target X ( m,n ) . In this case, the structure information of the

atch X ( m,n ) can be characterized by this graph. To exploring this

onlocal patch similarity based graph, we need to calculate the

istance d ( X ( m,n ) , X ( i,j ) ) between the target vertex X ( m,n ) and its all

eighbors X ( i,j ) within the search window W . 

For the optical image, assuming the additive white Gaussian

oise (AWGN) model, x = z + u , with z being the true signal value

nd u being a zero mean Gaussian random variable with constant

ariance σ 2 , i.e., u ∼ N 

(
0 , σ 2 

)
. Under this AWGN model, the tradi-

ional Euclidean distance is usually used, which has been proved to

e optimal under most criteria of interest [45] . Here we add a nor-

alized parameter γ σ (described in more detail in Section 2.4 and

n the Appendix) to the Euclidean distance as 

 opt 

(
X ( m,n ) , X ( i, j ) 

)
= 

γσ

C X p 
2 
s 

∥∥X ( m,n ) − X ( i, j ) 

∥∥2 

F 
(2) 

he normalized parameter γ σ can make the expectation of dis-

ance E 
[
d opt 

(
X ( m,n ) , X ( i, j ) 

)]
= 1 when X ( m,n ) and X ( i,j ) are two real-

zations of the same true value (noise-free patch). 

For the SAR image, assuming the usual multiplicative model,

 = zu, with z being the true intensity value and u being a unit-

ean Gamma random variable modeling the speckle. The proba-

ility density function (pdf) of u is given by 

p u ( u ) = 

L L 

�( L ) 
u 

L −1 e −Lu , u ≥ 0 (3) 
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Fig. 1. Illustration of nonlocal patch similarity in heterogeneous images. The target patches 1 and 2 are connected with several similar patches in the SAR image (a). Target 

patch 1 is also similar to the mapped patches in optical image (b), which means that the similarity structure in SAR image is followed by the unchanged target patch 1 and 

its mapped patches in optical image. However, the similarity structure is no longer conformed by the changed target patch 2 and its mapped patches, where they show a 

lot of difference. 

Fig. 2. Framework of the NPSG based heterogeneous change detection method. 
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where �( · ) denotes the Gamma function, and L is the equiv-

alent number of looks (ENL) that describes the degree of av-

eraging applied to the SAR measurements during data forma-

tion and postprocessing. Here we use the following two types of

distances 

d (1) 
SAR 

(
X ( m,n ) , X ( i, j ) 

)
= 

γ ( 1 ) 
L 

C X p 
2 
s 

C X ∑ 

c=1 

∑ 

( ϑ m , ϑ n ) ∈ P 

×log 

[ 

x ( m + ϑ m 

, n + ϑ n , c ) + x ( i + ϑ m 

, j + ϑ n , c ) 

2 

√ 

x ( m + ϑ m 

, n + ϑ n , c ) x ( i + ϑ m 

, j + ϑ n , c ) 

] 

(4)

d ( 
2 ) 

SAR 

(
X ( m,n ) , X ( i, j ) 

)
= 

γ ( 2 ) 
L 

C X p 
2 
s 

C X ∑ 

c=1 

∑ 

( ϑ m , ϑ n ) ∈ P 

[
log 

(
x ( i + ϑ m 

, j + ϑ n , c ) 

x ( m + ϑ m 

, n + ϑ n , c ) 

)]2 

(5)

where γ ( 1 ) 
L 

and γ ( 2 ) 
L 

are normalized parameters similar to γ σ (de-

scribed in more detail in Section 2.4 and in the Appendix). The first
ype distance (4) has also been used in [46] . Intuitively, d ( 
1 ) 

SAR 
can

e regarded as the normalized sum of logarithmic ratio between

rithmetic and geometric means of the signal intensities and d ( 
2 ) 

SAR 
an be regarded as the normalized sum squares of logarithmic ra-

io between signal intensities. 

With these defined patch distances, the edge weight between

 ( m,n ) and X ( i,j ) is generated by using the Gaussian kernel type sim-

larity criterion 

 

(
X ( m,n ) , X ( i, j ) 

)
= exp 

(
−λd 

(
X ( m,n ) , X ( i, j ) 

))
(6)

here d corresponds d opt , d 
( 1 ) 
SAR 

and d ( 
2 ) 

SAR 
according to different sit-

ations, respectively. Then for each patch in the pre-event image

 and the post-event image Y , we can construct its NPSG by this

peration. 

.2. Calculating the difference image 

As the graph G contains rich robust structure information, we

an use this to detect the changes between heterogeneous images,

hich means that we need to compare the difference between the

raph G 

X ( m,n ) 
of the pre-event X ( m,n ) and the graph G 

Y ( m,n ) 
of the

ost-event Y ( m,n ) . A simple and intuitive idea is to directly compare

he weighted graph as follows 

f ( m,n ) = 

∑ 

( i, j ) 

∣∣w 

(
X ( m,n ) , X ( i, j ) 

)
h 

(
X ( m,n ) , X ( i, j ) 

)
−w 

(
Y ( m,n ) , Y ( i, j ) 

)
h 

(
Y ( m,n ) , Y ( i, j ) 

)∣∣ (7)

here h ( X ( m,n ) , X ( i,j ) ) is the function on graph vertices X ( m,n ) and

 ( i,j ) , such as the simplest case h 
(
X ( m,n ) , X ( i, j ) 

)
= 1 . 

Although this difference criterion is simple and easy to under-

tand, just as it directly compares the patch similarities between

ll the neighborhoods, there is a serious risk. The operation of di-

ect similarity (or weighted similarity) subtraction in (7) will cause

onfusion of similarities and leakage of heterogeneous data. The

confusion” means that all the neighbors are used in computation

f structure difference of (7), which may make the measure less

iscriminative. The “leakage” means that the two terms directly

ubtracted in (7) are generated based on different images, that is,

hey come from different domains X and Y, which should not be

irectly compared. 

Through further observation, we can find that the structural in-

ormation of each patch is concentrated on its K -NN ( K most sim-

lar neighbors). Then we construct the K -nearest NPSG G 

K 
X ( m,n ) 

=



Y. Sun, L. Lei and X. Li et al. / Pattern Recognition 109 (2021) 107598 5 

Fig. 3. The process of constructing and mapping K -nearest NPSG. (a) K -nearest NPSG G K X ( m,n ) 
for the target patch X ( m,n ) ; (b) G K X ( m,n ) 

and the mapped G map 
X ( m,n ) 

; (c) K -nearest NPSG 

G K Y ( m,n ) 
for the target patch Y ( m,n ) ; (d) G K Y ( m,n ) 

and the mapped G map 
Y ( m,n ) 

. G map 
X ( m,n ) 

is obtained by mapping the G K Y ( m,n ) 
to the image X , the vertex positions of G map 

X ( m,n ) 
and G K Y ( m,n ) 

are the 

same, but these two graphs are constructed in different domains. The same is true for G map 
Y ( m,n ) 

and G K X ( m,n ) 
. 

{

V∣∣∣
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w
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V∣∣∣
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f  
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t  

k  
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b  

u  

m  

a

F  

(  

c  

w  
 

V K 
X ( m,n ) 

, E K 
X ( m,n ) 

, w 

X 

} 
of each target patch X ( m,n ) as 

 

K 
X ( m,n ) 

= 

{ 
X ( i, j ) ;

(
i + ϑ i , j + ϑ j 

)
∈ W , 

(
ϑ i , ϑ j 

)
∈ P , ( i, j ) ∈ N 

K 
X ( m,n ) 

} 
, 

V K X ( m,n ) 

∣∣∣ = K 

 

K 
X ( m,n ) 

= 

{ (
X ( m,n ) , X ( i, j ) 

)
; X ( i, j ) ∈ V K X ( m,n ) 

} 
 

(
X ( m,n ) , X ( i, j ) 

)
= exp 

(
−λd 

(
X ( m,n ) , X ( i, j ) 

))
, ∀ 

(
X ( m,n ) , X ( i, j ) 

)
∈ E K X ( m,n ) 

(8) 

here N 

K 
X ( m,n ) 

represents the anchor pixel position set of the K -NN

f X ( m,n ) by sorting the distances d ( X ( m,n ) , X ( i,j ) ) and taking out the

 smallest X ( i,j ) . 

Then, instead of directly comparing the similarity (distance)

ectors between the heterogeneous images, we first map the

 

K 
X ( m,n ) 

to the post-event image Y to obtain the mapped graph

 

map 
Y ( m,n ) 

= 

{ 
V 

map 
Y ( m,n ) 

, E 
map 
Y ( m,n ) 

, w 

Y 

} 
as 

 

map 
Y ( m,n ) 

= 

{
Y ( i, j ) ;

(
i + ϑ i , j + ϑ j 

)
∈ W , 

(
ϑ i , ϑ j 

)
∈ P , ( i, j ) ∈ N 

K 
X ( m,n ) 

} 
, 

V map 
X ( m,n ) 

∣∣∣ = K 

 

map 
Y ( m,n ) 

= 

{ (
Y ( m,n ) , X ( i, j ) 

)
; Y ( i, j ) ∈ V map 

Y ( m,n ) 

} 
 

(
Y ( m,n ) , Y ( i, j ) 

)
= exp 

(
−λd 

(
Y ( m,n ) , Y ( i, j ) 

))
, ∀ 

(
Y ( m,n ) , Y ( i, j ) 

)
∈ E map 

Y ( m,n ) 

(9) 

e can easily find that the mapped graph G 

map 
Y ( m,n ) 

is a subgraph of

 

Y ( m,n ) 
. The process of constructing and mapping K -nearest NPSG

s shown Fig. 3 . 

Then we compare its own K -nearest graph G 

K 
Y ( m,n ) 

(similar to

8)) with this mapped G 

map 
Y ( m,n ) 

within the post-event image Y for the
orward detection. We calculate the structure difference by using

he similarity or distance criteria as 

f Y ( m,n ) = 

1 

K 

K ∑ 

k =1 

∣∣∣w 

(
Y ( m,n ) , Y 

( i, j ) 
k 

)
h 

(
Y ( m,n ) , Y 

( i, j ) 
k 

)
−w 

(
Y ( m,n ) , Y 

( i ′ , j ′ ) k 

)
h 

(
Y ( m,n ) , Y 

( i ′ , j ′ ) k 

)∣∣∣ (10) 

f Y ( m,n ) = 

1 

K 

K ∑ 

k =1 

∣∣∣d (Y ( m,n ) , Y 

( i, j ) 
k 

)
h 

(
Y ( m,n ) , Y 

( i, j ) 
k 

)
−d 

(
Y ( m,n ) , Y 

( i ′ , j ′ ) k 

)
h 

(
Y ( m,n ) , Y 

( i ′ , j ′ ) k 

)∣∣∣ (11) 

here ( i, j ) 
k ∈ N 

K 
Y ( m,n ) 

denotes the position of k th nearest patch

o Y ( m,n ) in V K 
Y ( m,n ) 

, and 

(
i ′ , j ′ 

)k ∈ N 

K 
X ( m,n ) 

denotes the position of

 th nearest patch to X ( m,n ) in V K 
X ( m,n ) 

. In this paper, for the sake

f simplicity and to be able to derive the normalized parameters

ased on statistical distribution to fuse the difference images, we

niformly set the function h ( Y ( m,n ) , Y ( i,j ) ) to be constant 1, which

eans that we only use the difference of edge weights. Then (10)

nd (11) can be reduced to 

f Y 
( m,n ) 

= 

1 
K 

K ∑ 

k =1 

∣∣∣w 

(
Y ( m,n ) , Y 

( i, j ) 
k 

)
− w 

(
Y ( m,n ) , Y 

( i ′ , j ′ ) k 

)∣∣∣ (12) 

f Y 
( m,n ) 

= 

1 
K 

K ∑ 

k =1 

∣∣∣d (Y ( m,n ) , Y 

( i, j ) 
k 

)
− d 

(
Y ( m,n ) , Y 

( i ′ , j ′ ) k 

)∣∣∣ (13) 

rom this, we can find that the structure difference criteria (12),

13) use the position information of the mapped G 

map 
Y ( m,n ) 

, and they

alculate the structure difference within the same image domain,

hich avoids direct comparison between heterogeneous data such
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as the similarity difference in (7), and other types of difference cri-

teria in SH [33] , PP [34,35] , and AMD [36] . 

After the structure difference f Y 
( m,n ) 

is calculated, we assign it

to all the pixels in the patch Y ( m,n ) . Then we turn to another tar-

get path Y ( ̃ m , ̃ n ) and repeat the same operation to obtain the struc-

ture difference f Y 
( ̃ m , ̃ n ) 

. After the operations described above are per-

formed on all the overlapping patches, then for each pixel ( i, j ),

1 ≤ i ≤ M , 1 ≤ j ≤ N in the forward change image, there is a set

F Y 
( i, j ) 

of structure difference corresponding to the patches covering

pixel ( i, j ). Then the final change level of this pixel can be obtained

by averaging this set as 

D I fw ( i , j ) = 

1 ∣∣∣F Y ( i , j ) ∣∣∣
∑ 

f Y 
( m , n ) 

∈ F Y 
( i , j ) 

f Y 
( m , n ) (14)

Then we can obtain the forward difference image DI fw . The back-

ward difference image DI bw to associate the pre-event image X

with the post-event image’s NPSG G 

K 
Y ( m,n ) 

can be similarly done as

the generation of the forward DI fw . 

For the integrated difference image, we calculate the DI fw and

DI bw by using distance criterion (13), and then fuse them to obtain

the difference image (DI) as 

D I final = 

(
D I fw + D I bw 

)
/ 2 (15)

To improve the performance of the proposed method, we in-

troduce two step sizes in the DI generation procedure. First, we

use a search step �s > 1 in the construction of K -nearest NPSG,

which makes the distance between adjacent candidate patches in

the search window W greater than the step size. Therefore, the

search space of the candidate patches W can be reduced to 	 by

this �s , that is, 	 can be regarded as the �s times down-sampling

of W and its cardinality is | 	| = 

⌊ 
ξs −p s 
�s 

⌋ 2 
with 	 · 
 represent-

ing the rounding down operation. Thus, it can not only reduce the

computation of constructing the K -nearest NPSG, but also forces

these patches of K -nearest NPSG away from each other to avoid

local aggregation, so that the corresponding K -nearest NPSG can

contain richer and more stable structure information. Second, we

use a target patch step �p ∈ [1, p s ) in the division of the tar-

get patches, which means that it can approximately reduce the

amount of target patches by a factor �2 
p , thereby speeding up the

DI generation process. The framework of the NPSG based DI gen-

eration is summarized in Table 1 , where 
 is the reduced position

set of the anchor pixels of the target patches, whose cardinality is

| 
| = 

⌈ 
M 

�p 

⌉ ⌈ 
N 

�p 

⌉ 
with � · � representing the rounding up opera-

tion. 
Table 1 

Implementation steps of generating the NPSG based DI. 

Algorithm 1. NPSG based DI generation 

Input: Heterogeneous images X, Y , parameters p s , ξ s , �s , �p and K . 

1. Calculate the nonlocal patch similarity structure difference 

for all target patches X ( m,n ) , Y ( m,n ) , ( m, n ) ∈ 
 do 

Compute d (X ( m,n ) , X ( i,j ) ) and d (Y ( m,n ) , Y ( i,j ) ), ∀ ( i, j ) ∈ 	. 

Compute K -nearest NPSG G K X ( m,n ) 
and G K Y ( m,n ) 

. 

Compute f X 
( m,n ) 

by mapping G K Y ( m,n ) 
to X . 

Compute f Y 
( m,n ) 

by mapping G K X ( m,n ) 
to Y . 

Add f X 
( m,n ) 

and f Y 
( m,n ) 

to the sets F X 
( i, j ) 

and F Y 
( i, j ) 

, 

∀ ( i, j ) ∈ { ( m + ϑ m , n + ϑ n ) ; ( ϑ m , ϑ n ) ∈ P } , respectively. 

end for 

2. Compute the forward and backward DIs 

for all pixels ( i, j ), 1 ≤ i ≤ M , 1 ≤ j ≤ N do 

Compute the forward DI fw ( i, j ) and backward DI bw ( i, j ). 

end for 

3. Fuse the forward and backward DIs 

D I f inal = 

(
D I f w + D I bw 

)
/ 2 

m  

t  

D  

b

g

g

g  

w  

r  

t  

t  
.3. Binary change map generation 

Once the DI is obtained, the CD task can be treated as an image

inary segmentation problem, which is similar as that in the ho-

ogeneous CD. The simplest way to obtain the binary change map

M = { cm (i, j) | 1 ≤ i ≤ M, 1 ≤ j ≤ N} is using thresholding method

s 

m (i, j) = 

{
1 , D I f inal ( i, j ) ≥ T 

0 , D I f inal ( i, j ) < T 
(16)

here cm (i, j) = 1 indicates a change and vice versa, and T is the

hreshold such as the Otsu threshold [37] . However, how to choose

he optimal threshold is a very difficult problem. The clustering

ethod can also be used in this binary segmentation problem,

hich is a process of grouping a set of features into meaningful

lusters. Here, we select the PCAKM algorithm [14] to obtain the

nal binary CM for its simplicity and effectiveness, which uses the

omponent analysis (PCA) method to extract the features and em-

loys the k -means clustering to feature vectors with k = 2 . 

.4. Patch distance calculation 

The proposed CD method founds heavily on the patch similar-

ty. Therefore, it is worth investigating in more depth the patch

istance. This mainly includes two aspects. First, how to compare

oisy patches? As there are many ways to measure distance, which

ne to choose in different situations needs to be determined, espe-

ially for the SAR image. Second, how to balance these distances of

eterogeneous images? Because we need to fuse forward and back-

ard DI as (15), which are based on their respective distance mea-

urements on the heterogeneous images, therefore, these distance

epresentation methods on heterogeneous images should be com-

arable, that is, they should be kept at the same level, otherwise

he effect of this fusion will be greatly reduced. 

We consider uncorrelated noise. First, for the patchwise optical-

omain distance, where the AWGN model x = z + u is usually

sed, with x ∈ R 

p 2 s being the vectorized patch, and each element

f z being the true signal value and u being a Gaussian random

ariable, in this case, the mean squared Euclidean distance is usu-

lly used as 

 1 ( x 1 , x 2 ) = ‖ 

x 1 − x 2 ‖ 

2 
2 /p 2 s (17)

nd its induced similarity criterion g ( x 1 , x 2 ) = exp 

(
−λ‖ x 1 − x 2 ‖ 2 2 

)
s optimal under most criteria of interest [45] . 

Second, for the SAR-domain distance, where the multiplicative

odel x = z � u is usually used, with each element of z being

he true intensity value and u being a Gamma random variable.

eledalle et. al [45] have derived three different similarity criteria

y using different evaluation methods: 

 ( x 1 , x 2 ) = 

p 2 s ∏ 

i =1 

αL 
1 

x 1 ( i ) x 2 ( i ) 

(
x 1 ( i ) x 2 ( i ) 

( x 1 ( i ) + x 2 ( i ) ) 
2 

)L 

 ( x 1 , x 2 ) = 

p 2 s ∏ 

i =1 

2 

2 L 

(
x 1 ( i ) x 2 ( i ) 

( x 1 ( i ) + x 2 ( i ) ) 
2 

)L 

 ( x 1 , x 2 ) = exp 

( 

−
p 2 s ∑ 

i =1 

( log x 1 ( i ) − log x 2 ( i ) ) 
2 

) 

(18)

here αL is a function of L , the first similarity criterion is de-

ived based on the Bayesian joint likelihood with αL = 

√ 

L �( 2 L ) 

�( L ) 2 
(or

he maximum joint likelihood with αL = 

( 2 L ) 2 L 

�( L ) 2 e 2 L 
), the second cri-

erion is based on the generalized likelihood ratio (or the mutual
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Fig. 4. A simple example of the differences between different distance criteria. (a) represents the true optical image with size 200 × 200, which is divided 

into four 100 × 100 patches with a 1 = a 4 = 0 . 25 and a 2 = a 3 = 0 . 75 ; (b) and (c) are images acquired by different optical sensors with different noisy lev- 

els, σ1 = 0 . 25 and σ2 = 0 . 1 ; (d) represents the true radar image with the transformation d ( i, j ) = 1 − a ( i, j ) 
2 for each pixel; (e) and (f) are images acquired 

by different SAR sensors with different number of looks as L 1 = 1 and L 2 = 4 . Then we can calculate the patch distances by using (17), (19) and (20) as ⎡ 

⎣ 

d 1 ( b 1 , b 4 ) d 1 ( b 1 , b 2 ) d 1 ( c 1 , c 4 ) d 1 ( c 1 , c 2 ) 

d 2 ( e 1 , e 4 ) d 2 ( e 1 , e 2 ) d 2 ( f 1 , f 4 ) d 2 ( f 1 , f 2 ) 

d 3 ( e 1 , e 4 ) d 3 ( e 1 , e 2 ) d 3 ( f 1 , f 4 ) d 3 ( f 1 , f 2 ) 

⎤ 

⎦ = 

⎡ 

⎣ 

0 . 1248 0 . 3750 0 . 0200 0 . 2700 

0 . 6140 0 . 7101 0 . 5311 1 . 0389 

3 . 2921 3 . 8740 0 . 5677 1 . 1490 

⎤ 

⎦ . From this, we can find that the distance contrast is larger in the im- 

age with low noise, which means that it is easier to distinguish the image patches in the low noise image, for example the distance ratio d 1 ( c 1 , c 2 ) /d 1 ( c 1 , c 4 ) 

is about 4 times of d 1 ( b 1 , b 2 ) /d 1 ( b 1 , b 4 ) . Meanwhile, we can also find that the distances obtained by using these standard criteria are unbalanced, for exam- 

ple, d 3 ( e 1 , e 4 ) is more than 25 times of d 1 ( b 1 , b 4 ) . Therefore, the fusion contrast between the changed and unchanged regions is not obvious, for example, r 1 = [
d 3 ( e 1 , e 2 ) + d 1 ( b 1 , b 2 ) 

]
/ 
[
d 3 ( e 1 , e 4 ) + d 1 ( b 1 , b 4 ) 

]
= 1 . 244 and r 2 = 

[
d 2 ( f 1 , f 2 ) + d 1 ( c 1 , c 2 ) 

]
/ 
[
d 2 ( f 1 , f 4 ) + d 1 ( c 1 , c 4 ) 

]
= 2 . 375 . After normalization with (24), the normalized 

patch distances are 

⎡ 

⎣ 

d 1 ( b 1 , b 4 ) d 1 ( b 1 , b 2 ) d 1 ( c 1 , c 4 ) d 1 ( c 1 , c 2 ) 

d 2 ( e 1 , e 4 ) d 2 ( e 1 , e 2 ) d 2 ( f 1 , f 4 ) d 2 ( f 1 , f 2 ) 

d 3 ( e 1 , e 4 ) d 3 ( e 1 , e 2 ) d 3 ( f 1 , f 4 ) d 3 ( f 1 , f 2 ) 

⎤ 

⎦ = 

⎡ 

⎣ 

0 . 9987 2 . 9999 1 . 0 0 0 0 13 . 5008 

1 . 0 0 04 1 . 1570 1 . 0 0 02 1 . 9564 

1 . 0 0 07 1 . 1776 1 . 0 0 02 2 . 0241 

⎤ 

⎦ , and the fusion contrasts between the changed and 

unchanged regions become r 1 = 2 . 089 and r 2 = 7 . 728 , respectively. 
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Fig. 5. Plot of the speckle-free distances of d 2 and d 3 . 
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nformation kernel), and the last criterion is based on the vari-

nce stabilizing transform. However, as the first similarity crite-

ion lacks some important properties such as the Maximal self-

imilarity, which means that there exists a distinct pair ( x 1 , x 2 )

akes g ( x 1 , x 2 ) > g ( x 1 , x 1 ), the performance of this similarity cri-

erion is not satisfactory compared with the other two criteria (for

ore details, please refer to [45] ). Therefore, we only refer to the

ast two similarity criteria, and the corresponding distance expres-

ions are 

 2 ( x 1 , x 2 ) = 

1 

p 2 s 

p 2 s ∑ 

i =1 

2 L log 

( 

x 1 ( i ) + x 2 ( i ) 

2 

√ 

x 1 ( i ) x 2 ( i ) 

) 

(19) 

 3 ( x 1 , x 2 ) = 

1 

p 2 s 

p 2 s ∑ 

i =1 

( log x 1 ( i ) − log x 2 ( i ) ) 
2 (20) 

Next, we consider how to make these distances for heteroge-

eous data at the same level. We give a simple example to illus-

rate that the distances obtained by using these standard criteria

re unbalanced as shown in Fig. 4 , where the ratios of different

riteria are even dozens of times. Therefore, we can not directly

use the forward DI and backward DI by using these standard dis-

ance formulations, and we need to normalized them. 

We further analyze these patch distance criteria. Suppose pix-

ls x 1 and x 2 in the image are independent identically distributed

i.i.d.), we want to identify pixels with similar signal components

o the target based on the different measured distances, that is,

 1 � x 2 . Since the observed pixel value is polluted by noise, x i =
 i + u i or x i = z i u i , the distance also depends on the noise. Let us

onsider three limiting cases: 1) noiseless signal, 2) uniform noisy

ignal, and 3) non-uniform noisy signal. 

In the first case, u i = 0 for the optical signal or u i = 1 for the

AR signal, define the signal difference in optical image as η = x 1 −
 2 and the signal ratio in SAR image as ρ = x 1 / x 2 , and substitute

his into (17), (19) and (20), we have 

d 1 ( x 1 , x 2 ) = η2 ; d 2 ( x 1 , x 2 ) = 2 L log 

(√ 

ρ

2 

+ 

1 

2 

√ 

ρ

)
;

d 3 ( x 1 , x 2 ) = [ log ( ρ) ] 
2 

(21) 

In Fig. 5 , we plot the distances d 2 and d 3 as the func-

ions of signal ratio. We can find that their shapes are symmet-
ical. Define ρ = e t , we have d 2 ( x 1 , x 2 ) = 2 L log 

(
e t/ 2 + e −t/ 2 

2 

)
and

 3 ( x 1 , x 2 ) = t 2 . Therefore, in semilog axes, d 3 is quadratic, d 2 is al-

ost quadratic around the minimum, zero, and begins growing lin-

arly for larger/smaller values. Generally, when the difference be-

ween the object and the background in the SAR image is not high,

harp curve is more suitable, such as the d 3 , which can accurately

nd the similar target patches rather than the background patch

or the target patch. Meanwhile, when the noise level is high, we

hould choose a gentle curve, such as the d 2 with L ≤ 4. This is

ecause that it is not much discriminative for the samples with

elatively close intensity caused by the noisy, thus it is more ro-

ust. 

In the second case, with the uniform signal, z 1 = z 2 , by substi-

uting this in (17), (19) and (20), we have 

d 1 ( x 1 , x 2 ) = ( u 1 − u 2 ) 
2 ; d 2 ( x 1 , x 2 ) = 2 L log 

(
u 1 + u 2 

2 

√ 

u 1 u 2 

)
;

d 3 ( x 1 , x 2 ) = ( log u 1 − log u 2 ) 
2 

(22) 

here u 
i 
∼ N 

(
0 , σ 2 

)
is the independent Gaussian distributed ran-

om variable with zero mean and σ 2 variance for the optical im-
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Fig. 6. The theoretical pdfs of the pixel distances and empirical pdfs of the patch distances. (a) pdfs of d 1 under different noise levels σ = 1 , 0 . 5 , and with different signal 

intensity differences η = 0 , 1 ;(b) pdfs of d 2 under different noise levels L = 1 , 4 , 8 , and with different signal intensity ratios ρ = 1 , 2 ; (c) pdfs of d 3 under distance noise 

level L = 1 , 4 , 8 , and with different signal intensity ratios ρ = 1 , 2 ; (d) empirical pdfs of the patch distances using d 1 with different σ and η; (e) empirical pdfs of the patch 

distances using d 2 with different L and ρ; (f) empirical pdfs of the patch distances using d 3 with different L and ρ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

u  

p  

P  

t  

f  

s  

e  

l  

(  

w  

H  

t  

p

z  

T  

d  

t  

d  

e  

w  

a  

i  

N  

d  

e  

r

3

 

p  

n  

p  

s  

s  

t

age in d 1 , and u 
i 
∼ Gamma ( L, L ) is the independent Gamma dis-

tributed random variable with shape parameter L and inverse scale

parameter L (equal to the number of looks) for the SAR image in d 2 
and d 3 . In appendix A, we calculate the pdfs and expected values

of these distances as 

E [ d 1 ( x 1 , x 2 ) ] =2 σ 2 ; E [ d 2 ( x 1 , x 2 ) ] = −L [ ϕ ( 0 , L ) −ϕ ( 0 , L + 1 / 2 ) ] ;
E [ d 3 ( x 1 , x 2 ) ] = 2 ϕ ( 1 , L ) (23)

In the proposed heterogeneous CD method, for each target patch,

take Y ( m,n ) (or X ( m,n ) ) in the forward (or backward) detection as

an example, if no change occurs in this patch, each patch Y ( i,j ) (or

X ( i,j ) ) in its own K -nearest NPSG and mapped K -nearest NPSG is

very similar to the target patch Y ( m,n ) (or X ( m,n ) ), ideally, their true

values are equal Z 

Y 
( i, j ) 

= Z 

Y 
( m,n ) 

(or Z 

X 
( i, j ) 

= Z 

X 
( m,n ) 

), ( i, j ) ∈ N 

K 
Y ( m,n ) 

∪
N 

K 
X ( m,n ) 

. As the patch distance level between heterogeneous images

is very different as (23), we need to normalize these distances to

make the pixel value in the forward and backward DIs balanced for

a better fusion performance. An intuitive and reasonable approach

is to keep their values at the same level in the unchanged areas.

Then, suppose X ( m,n ) , X ( i,j ) are optical patches with the same true

values, and Y ( m,n ) , Y ( i,j ) are SAR patches with the same true values,

we need to have E 

[ 
d opt 

(
X 

( m,n ) 
, X ( i, j ) 

)] 
= E 

[ 
d ( 

1 ) 
SAR 

(
Y 

( m,n ) 
, Y ( i, j ) 

)] 
=

E 

[ 
d ( 

2 ) 
SAR 

(
Y 

( m,n ) 
, Y ( i, j ) 

)] 
, where d opt , d 

( 1 ) 
SAR 

and d ( 
2 ) 

SAR 
correspond to (2),

(4) and (5), respectively. Therefore, we add normalized parameters

in the distance criteria in d opt , d 
( 1 ) 
SAR 

and d ( 
2 ) 

SAR 
with 

γσ = 1 / 
[
2 σ 2 

]
; γ ( 1 ) 

L 
= 1 / [ L ( ϕ ( 0 , L + 1 / 2 ) − ϕ ( 0 , L ) ) ] ;

γ ( 2 ) 
L 

= 1 / [ 2 ϕ ( 1 , L ) ] (24)

In the third case, we consider a more common model that

η = z 1 − z 2 , u 1 , u 2 ∼ N 

(
0 , σ 2 

)
in the optical image and ρ = z 1 / z 2 ,

u 1 , u 2 ~ Gamma( L, L ) in the SAR image. We calculate the pdfs

of the distances (17), (19) and (20) in the Appendix (refer to

equations (A .5) , (A .16) and (A .24) ). For a more precise analysis, we

plot the pdfs of the distances for several different signal intensity

differences/ratios ( η, ρ) as shown in Fig. 6 . For the uniform pixels

z = z , if we set the detection rate to 80% for detecting the uni-
1 2 
orm x 1 and x 2 , then the detection thresholds are 1/9 < x 1 / x 2 < 9

nder the signal-look SAR image, which is obtained by com-

uting the probability P 
(
d 2 ( x 1 , x 2 ) < 2 log 5 3 | L = 1 

)
≈ 0 . 8 or

 

(
d 3 ( x 1 , x 2 ) < [ log (9) ] 

2 | L = 1 

)
≈ 0 . 8 . However, this detection

hresholds are 1/2.59 < x 1 / x 2 < 2.59 and 1/1.93 < x 1 / x 2 < 1.93

or 4-look and 8-look SAR images, respectively. This intuitively

hows the influence of different noise levels on the detection

ffect. Meanwhile, from Fig. 6 , we can also find that the pdfs

argely overlap for different signal intensity differences or ratios

 η or ρ) under the high noise level conditions ( σ = 1 or L = 1 ),

hich means that it is difficult to carry out reliable discrimination.

owever, in this paper, we use the patchwise distance instead of

he pixelwise distance. For the sake of simplicity, we assume two

atches with constant signal intensity ratio as 

 ( m + ϑ m 

, m + ϑ n ) /z ( i + ϑ m 

, j + ϑ n ) = ρ, ∀ ( ϑ m 

, ϑ n ) ∈ P (25)

hen, the patchwise distance becomes the mean of | P | i.i.d. ran-

om variables, well approximate by a Gaussian distribution with

he Central Limit Theorem. Fig. 6 (d)-(f) show the estimated pdfs of

ifferent patch distances when 11 × 11-pixel patches are consid-

red with the Monte Carlo simulation. By comparing Fig. 6 (a)-(c)

ith (d)-(f), we can find that the patchwise distance can provide

 much better discrimination than the pixelwise distance, which

s one of the reasons why we choose the robust patchwise based

PSG for the heterogeneous CD. At the same time, our in-depth

iscussion on these distance criteria can also provide a good ref-

rence for other applications, such as the nonlocal based speckle

eduction algorithms. 

. Experimental results and discussion 

In this Section, simulations are performed to demonstrate the

roposed conclusions and evaluate the performance of proposed

onlocal patch similarity based heterogeneous CD method. The ex-

eriments are performed on five pairs of heterogeneous remote

ensing images. Detailed descriptions of datasets, quantitative mea-

ures, parameter analysis, and experimental results are provided in

he following. 
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Fig. 7. Sardinia and Texas datasets. The top row is the Sardinia dataset: (a) the NIR band image acquired in September 1995; (b) the NIR band image acquired in July 1996; 

(c) the optical image acquired in July 1996; (d) the ground truth image representing the changes between (a) and (c). The bottom row is the Texas dataset: (e) the image 

acquired by Landsat 5 TM in August 2011; (f) the image acquired by Landsat 5 TM in September 2011; (g) the image acquired by Advanced Land Imager from the Earth 

Observing mission in September 2011; (h) the ground truth image representing the changes between (e) and (g). 
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.1. Experimental datasets and quantitative measures 

Five pairs of heterogeneous datasets are used to assess the ef-

ectiveness of the proposed CD method. 

(1) Dataset A: The Sardinia dataset consists of two near-infrared

NIR) band images and one optical image (Sardinia, Italy), as shown

n Fig. 7 (a)-(c). The two NIR band images, with 300 × 412 × 1

ixels, are acquired by Landsat-5 (L5t1 and L5t2), in September

995 and July 1996, respectively, whereas the optical image, with

00 × 412 × 3 pixels, is obtained from Google Earth (GEt2) with

ed, green, and blue bands in July 1996. The dataset represents the

xpansion of Lake Mulargia as shown in Fig. 7 (d), which is built by

he on-the-spot investigation. 

(2) Dataset B: The Texas dataset consists of three multispec-

ral images: a pair of pre-event and first post-event images with

534 × 808 × 7 pixels from the same sensor, the Landsat 5 TM

L5t1 and L5t2), in August 2011 and September 2011, as shown in

ig. 7 (e) and (f), 1 respectively; and the second post-event image

ith 1534 × 808 × 10 pixels acquired by the Advanced Land Im-

ger (ALIt2) from the Earth Observing mission in September 2011,

s shown in Fig. 7 (g) 2 . The dataset represents a forest fire in Bas-

rop County, Texas, and the ground truth is provided by Volpi et al.

47] . As the L5t2 and ALIt2 are acquired within 1 day interval,

here is no apparent change between them. The change between

5t1 and L5t2 (or ALIt2) is shown in Fig. 7(h), which represents

he fire damage. 

(3) Dataset C: The Shuguang dataset consists of one SAR im-

ge and one optical satellite image, as shown in Fig. 8 (a) and (b),

espectively. The SAR image, with size 593 × 921 × 1, is taken

y the Radarsat-2 with C-band on June 2008, whereas the opti-

al image, with size 593 × 921 × 3, is acquired from Google Earth

ith red, green, and blue bands in September 2012. The dataset

epresents the changes of land use in the farmland as shown in
1 Distributed by LP DAAC, http://lpdaac.usgs.gov . 
ig. 8 (c), which is generated by manual annotation that combines

xpert knowledge and prior information. 

(4) Dataset D: The Wuhan dataset is a pair of SAR/optical satel-

ite images (Wuhan City, China), as shown in Fig. 8 (d) and (e). The

AR image, with 495 × 503 × 1 pixels, is taken by the Radarsat-

 with C-band in June 2008, whereas the optical image, with

95 × 503 × 3 pixels, is acquired from Google Earth with red,

reen, and blue bands in November 2011. The dataset represents

he changes of new buildings and roads as shown in Fig. 8 (f),

hich is generated through the on-the-spot investigation. 

(5) Dataset E: the California dataset is a pair of multispec-

ral/SAR images, as shown in Fig. 8 (g) 2 and (h) 2 . The multispectral

mage, with size 875 × 500 × 11, is taken by Landsat 8 on Jan-

ary 5, 2017, with nine channels covering the spectrum from deep

lue to shortwave infrared and two long-wave infrared channels;

hereas the SAR image, with size 875 × 500 × 3, is acquired by

entinel-1A recorded in polarisations VV and VH on 18 February

017 and augmented with the ratio between the two intensities

s the third channel (all these channels are log-transformed). The

round truth in Fig. 8 (i) is provided by Luppino et al. [36] , which

epresents a flood in Sacramento County, Yuba County, and Sutter

ounty, California. These images are re-sampled from the original

500 × 2000 images to reduce the computation time. 

The performance of DIs generated by the comparing methods

an be assessed by the empirical receiver operating characteristics

ROC) curves, which represents the estimated pixel-wise probabil-

ty of detection (PD) as a function of the probability of false alarm

PFA) by varying of the binary segmentation threshold T in (16).

oreover, two quantitative criteria derived from the ROC curve can

e computed: (1) the area under the curve (AUC), corresponding

o the integral of the ROC curve; (2) the diagonal distance (Ddist)

etween the no detection point (PFA = 1, PD = 0) and the point at

he interception of the ROC curve with the diagonal line defined
2 Data processed by ESA, http://www.copernicus.eu/ . 

http://lpdaac.usgs.gov
http://www.copernicus.eu/
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Fig. 8. Shuguang, Wuhan and California datasets. The top row is the Shuguang dataset: (a) the SAR image acquired in June 2008; (b) the optical image acquired in September 

2012; (c) the ground truth image representing the changes between (a) and (b). The middle row is the Wuhan dataset: (d) the SAR image acquired in June 2008; (e) the 

optical image acquired in November 2011; (f) the ground truth image representing the changes between (d) and (e). The bottom row is the California dataset: (g) the 

multispectral image acquired in January 2017; (h) the SAR image acquired in February 2017; (i) the ground truth image representing the changes between (g) and (h). 
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by PFA = 1-PD. For these two metrics, the greater the criterion, the

better the detection. In order to measure the binary CM, we se-

lect the widely used quantitative parameters: false positives rate

(FPR), false negatives rate (FNR), the percentage correct classifica-

tion (PCC) and the Kappa coefficient (Kappa). 

3.2. Parameter analysis 

The main parameters in the proposed NPSG are the patch size

p s , the search window size ξ s , the search step size �s , the target

patch step size �p , and the number of the selected most similar

neighbors K . To measure the impact of these parameters, we an-

alyze the influences of them using the above datasets. The AUC

and Ddist of the ROC curve are adopted to evaluate the generated

DI, respectively, which can describe the global performance of the

NPSG. 

(1) Influence of the patch size p s . In Fig. 9 (a), we vary p s from 3

to 11 with step two and keep other parameters fixed as ξs = 100 ,

�s = �p = 2 and K = 35 . It can be found that the patch size has an

important impact on the CD performance. As the p s increase, the
UC and Ddist gradually increase first and then decrease, which

s mainly because that a too small p s cannot fully reflect struc-

ural information and is not robust to the noise, whereas a too

arge p s makes it very hard to find enough similar patches. Gen-

rally, for high-resolution images, a larger p s can be selected; on

he contrary, for low-resolution images, p s should be appropriately

maller. From Fig. 9 (a), we can see that setting p s = 5 is appropri-

te for our experiments. 

(2) Influence of the search window size ξ s . We vary the ξ s 

rom 50 to 150 with step 25 and keep other parameters fixed as

p s = 5 , �s = �p = 2 and K = 35 . From Fig. 9 (b), we can find that

he datasets of Shuguang, Wuhan and Texas are not as sensitive to

s as the datasets of Sardinia and California . For the Sardinia and

alifornia datasets, a larger search window can bring better results,

hich is mainly due to that a larger ξ s can bring more similar

atches. However, a very large ξ s will increase the search space 	

f the candidate patches ( | 	| = 

⌊ 
ξs −p s 
�s 

⌋ 2 
), and bring high comput-

ng cost. In addition, the value of ξ s is also affected by p s . When

 s increases, ξ s should also increase. According to our experience,

t is suggested to set the window size to ξs = 20 p s . 
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Fig. 9. Influences of parameters on the NPSG performance: (a) influence of the patch size p s ; (b) influence of the search window size ξ s ; (c) influence of the search step 

size �s ; (d) influence of the target patch step size �p ; (e) influence of the number of the most similar neighbors K . 
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(3) Influence of the search step size �s . In Fig. 9 (c), we vary

s from 1 to 5 with step one and keep other parameters fixed as

p s = 5 , ξs = 100 , �p = 2 and K = 35 . We can see that the Shuguang

nd Texas datasets are more robust to �s than other datasets. As

he large step size can reduce the search space to accelerate the

lgorithm, and avoid local aggregation of similar patches, we sug-

est setting the search step size to 	 p s /2 
 ≤ �s ≤ p s . In our exper-

ments, we fix this parameter to �s = 2 in a comprehensive con-

ideration. 

(4) Influence of the target patch step size �p . We vary �p from

 to 5 with step one and keep other parameters fixed as p s = 5 ,

s = 100 , �s = 2 and K = 35 . From Fig. 9 (d), we can find that as

he value of �p increases, the performance of NPSG will gradu-

lly decrease. It starts to slow down, and then it drops quickly. Al-

hough the �p can speed up the DI generation process by nearly
2 
p times, at the same time it will smooth the DI as can be seen

rom (14). The value range of �p is 2 ≤ �p ≤ p s , and we suggest

o set �p to 2 or 3 as a compromise choice. 

(5) Influence of the number of the selected most similar neigh-

ors K . In Fig. 9 (e), we vary K from 15 to 55 with step 10 and

eep other parameters fixed as p s = 5 , ξs = 100 and �s = �p = 2 .

t can be found that the detection performance is not very sensi-

ive to the value of K . Of course, an extra small K is not recom-

ended, such as K less than 10. This is because that a very small

 -nearest NPSG is not robust enough. At the same time, a very big

 is also not recommended, such as K ≥ 0 . 2 ∗ | 	| = 0 . 2 ∗
⌊ 

ξs −p s 
�s 

⌋ 2 
.

here are two main reasons: first, a large K will lead to confusion,

hat is, there may be no K really similar patches in the search win-

ow, and some patches that do not really represent the same ob-

ect as the target patch will also be introduced into the K -nearest

PSG; second, a large K will increases the computational com-

lexity. Therefore, we empirically suggest to set this parameter

0 ≤ K ≤ min 

{
75 , 0 . 05 ∗

⌊ 
ξs −p s 
�s 

⌋ 2 }
by considering the CD perfor-
ance and the computational cost. In our experiments, we fix this

arameter to K = 35 . 

(6) Meanwhile, the performance of the final CD is also influ-

nced by clustering process when we select the PCAKM algorithm

o obtain the binary CM. The main parameters of PCAKM are the

eature vector (principal components) size s and the image block

ize h . In [14] , these two parameters are analyzed in detail. Gener-

lly, setting s ∈ {3, 5, 7} can meet most of the requirements. The

arameter h defines the local neighborhood size, which affects the

ontribution of spatial contextual information on the feature ex-

raction. A large h will smoothen the effect of noise and reduce

he false detections, but it will bring more miss detections, and

ice versa. In this paper, we set s equal to h for convenience in

CA feature extraction. We try different sizes of h (3 ≤ h ≤ 7), and

hen choose the best result for each method. 

.3. Experimental results 

We apply four methods for comparison: SH [33] , PP [34,35] ,

MD [36] and Markov Model for Multimodal Change Detection

ethod (M3CD) [48] , which is relying on an observation field built

p from a pixel pairwise modeling on heterogeneous image pair.

mong them, M3CD does not generate DI, but directly generates

inary CM. For the SH, PP, AMD and the proposed NPSG based CD

ethod (called NPSG for short), we adopt the Otsu thresholding

ethod [37] and PCAKM [14] to generate the final CM after ob-

aining the DI. For each DI, we try different f eature vector sizes

nd image block sizes for the PCAKM, and then choose the best

esult for each method. 

.3.1. Experiments on Sardinia and Texas datasets 

In the first experiment, we show that the NPSG can establish

 connection between heterogeneous images, which means that

PSG can be consistent in the unchanged area, but no longer con-

istent in the changed area. Then, we test each similarity-based
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Fig. 10. DIs and binary CMs on Sardinia dataset. The top row is the DI 1 between L5t2 and GEt2: (a) SH; (b) PP; (c) AMD; (d) NPSG. The bottom row is the DI 2 between L5t1 

and GEt2: (e) SH; (f) PP; (g) AMD; (h) NPSG. 

Table 2 

Quantitative measures (AUC and Ddist) on Sardinia and 

Texas datasets. 

Methods Sardinia dataset Texas dataset 

AUC Ddist AUC Ddist 

SH 0.8840 1.1390 0.5578 0.7655 

PP 0.7445 0.9489 0.3718 0.5633 

AMD 0.3645 0.5549 0.8810 1.1403 

NPSG 0.9129 1.2006 0.9528 1.2983 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Quantitative measures of binary CMs on Shuguang dataset. 

Methods FPR(%) FNR(%) PCC(%) Kappa 

M3CD 2.33 1.47 96.20 0.6017 

SH-Otsu 54.55 0.40 45.05 0.0517 

SH-PCAKM 53.76 0.35 45.89 0.0553 

PP-Otsu 14.33 1.95 83.71 0.1862 

PP-PCAKM 17.01 0.05 82.94 0.2942 

AMD-Otsu 51.50 1.38 47.12 0.0258 

AMD-PCAKM 48.55 1.32 50.13 0.0348 

NPSG-Otsu 2.66 0.53 96.81 0.7024 

NPSG-PCAKM 1.55 0.97 97.48 0.7288 
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method by comparing the performances on the heterogeneous im-

ages acquired at the same time and different times, respectively. 

Using the Sardinia dataset, we assume that the noise on this

dataset is the AWGN. Then, by selecting some uniform regions

in the images, we estimate the noise standard deviations of NIR

and optical images to be 1.08e-3 and 9.71e-3, respectively. Fig. 10

shows the difference maps between heterogeneous image pairs of

L5t2 and GEt2, L5t1 and GEt2. Obviously, since L5t2 and GEt2 are

obtained at similar times, there is no obvious changes between

them. Ideally, there should be no obvious structural features in the

DI 1 between L5t2 and GEt2, however, the changing parts should

be highlighted in the DI 2 between L5t1 and GEt2. From Fig. 10 , we

can find that the SH can highlight the changes in DI 2 , but it also

shows some undesirable structures in DI 1 ; the PP and AMD fail to

detect the changes in DI 2 as shown in Figs. 10 (f) and 10(g); the

NPSG can not only find the changed parts in DI 2 , but also show

little structural features in DI 1 . 

For the Texas dataset, we assume that the dataset is contami-

nated by AWGN, and estimate the standard deviations to be 1.63e-

2 and 5.65e-3 for L5t1 (L5t2) and ALIt2, respectively. Fig. 11 shows

the difference maps between heterogeneous image pairs of L5t2

and ALIt2, L5t1 and ALIt2. It can be found that the SH and PP can-

not find the changes between the heterogeneous L5t1 and ALIt2, as

shown in Fig. 11 (e) and (f). Both AMD and NPSG perform well in

Texas dataset, which show the consistency between L5t2 and ALIt2

and the changed part between L5t1 and ALIt2. In order to further

compare the ability of these methods to detect changes, we also

plot ROC curves in Fig. 12 and list quantitative comparisons of AUC

and Ddist in Table 2 . The analysis of these results shows that the

NPSG outperforms these comparing methods in these two datasets.

3.3.2. Experiments on Shuguang, Wuhan and California datasets 

In the second experiment, we test the NPSG on three pairs of

SAR/optical (multispectral) images. For the intensity SAR images of

these datasets, the ENL parameter L can be estimated by selecting

some uniform regions in the images as L = 

(
μur 
σur 

)2 
[49] , where μur 

is the mean value of the selected uniform region and σ ur is the

corresponding standard deviation. In order to fully compare the
erformances of different methods, we not only compare the DI,

ut also compare the binary CM. To generate the binary CM, we

mploy Otsu thresholding method and PCAKM on the DIs of each

imilarity based heterogeneous CD method, respectively. 

Figs. 13 , 14 and 15 show the DIs, CMs of different methods on

huguang, Wuhan and California datasets, respectively. Fig. 16 plots

he ROC curves of SH, PP, AMD and NPSG on these three datasets.

or the Shuguang dataset, we estimate that the ENL of SAR image

s 11 and the noise standard deviation of optical image is 1.12e-

. Therefore, we choose the second type of distance criterion d ( 
2 ) 

SAR 
n (5) for the SAR image. Form the detection performance, we can

nd that the SH and AMD fail to detect the changes as shown in

ig. 13 (a) and (c), thus results in smaller AUC and Ddist, as shown

n Fig. 16 (a) and listed in Table 6 . From the comparison of CMs, we

an see that the NPSG can obtain the best result whether using the

tsu thresholding or PCAKM, so it gets Kappa coefficients of 0.7024

nd 0.7288 for NPSG-Otsu and NPSG-PCAKM, respectively, followed

y M3CD with Kappa coefficient 0.6017, which outperforms the PP,

H, and AMD, as listed in Table 3 . 

For the Wuhan dataset, the estimated ENL of SAR image is 4,

nd the noise standard deviation of optical image is 3.59e-2. There-

ore, we choose the first type of distance criterion d ( 
1 ) 

SAR 
in (4) for

he SAR image. From Fig. 14 (c), we can see that the AMD can-

ot highlight the changes in the generated DI, which leads to a

oor performance on the corresponding ROC curve as shown in

ig. 16 (b). The PP performs better than SH on Wuhan dataset with

 higher AUC and Ddist as listed in Table 6 . Visually, the DI gen-

rated by NPSG is cleaner than other DIs as shown in Fig. 14 (a)-

d), that is, it is more sensitive to real changes and more robust to

he false changes caused by noise, which is further confirmed in

ig. 16 (b) and Table 6 . Meanwhile, by comparing the CMs of dif-

erent methods in Fig. 14 (e)-(g) and Table 4 , the NPSG obtain the

est CM with highest Kappa coefficient and PCC, followed by PP-

CAKM, M3CD and PP-Otsu, which outperform other methods. 

For the last California dataset, as the SAR image has been de-

peckled, the estimated ENL is 23.47, thus we choose the d ( 
2 ) 

SAR 
in
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Fig. 11. DIs and binary CMs on Texas dataset. The top row is the DI 1 between L5t2 and ALIt2: (a) SH; (b) PP; (c) AMD; (d) NPSG. The bottom row is the DI 2 between L5t1 

and ALIt2: (e) SH; (f) PP; (g) AMD; (h) NPSG. 

Fig. 12. ROC curves derived by varying of the threshold T in (16) on DIs generated by different methods on the heterogeneous datasets: (a) Sardinia ; (b) Texas . 
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5) as the distance criterion, at the same time, the estimated noise

tandard deviation of multispectral image is 3.02e-2. Because of

he low speckle level in SAR image, the DIs of these comparing

ethods can detect the changes between heterogeneous SAR and

ultispectral images with different degrees, as shown in Fig. 15 (a)-

d). The corresponding ROC curves are shown in Fig. 16 (c), and the

uantitative criteria of AUC and Ddist are listed in Table 6 . Due

o poor performance of M3CD with low PCC and Kappa coefficient

n this dataset as listed in Table 5 , we show the CM of PP-Otsu

ith higher value instead of M3CD in Fig. 15 (e). By comparing the

Ms of different methods in Fig. 15 (e)-(g) and Table 5 , we can find

hat the proposed NPSG gain the highest PCC (94.07% of NPSG-

tsu) and Kappa coefficient (0.4185 of NPSG-Otsu), which is a lot
head of the second PP method on this dataset with PCC 73.47% t  
PP-Otsu) and Kappa coefficient 0.1486 (PP-Otsu). The analysis of

hese results shows that the NPSG generated DI and CMs outper-

orm other DIs and CMs both in terms of qualitative vision and

uantitative measurement, which means that the proposed non-

ocal patches similarity based graph can establish a more robust

onnection between the heterogeneous images. 

In addition, we can find that the similarity-based SH, PP and

MD don’t always detect changes between heterogeneous images.

or example, SH fails in the Texas and Shuguang datasets, PP fails

n the Sardinia and Texas datasets, and AMD fails in the Sardinia,

huguang and Wuhan datasets. However, only the NPSG method

an succeed on all datasets. This may be due to two reasons: first,

he imaging modality-invariant assumptions they use are no longer

rue in some complicated cases; second, these methods all have
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Fig. 13. DIs and binary CMs on Shuguang dataset. (a) DI of SH; (b) DI of PP; (c) DI of AMD; (d) DI of NPSG; (e) binary CM of M3CD; (f) binary CM of NPSG-Otsu; (g) binary 

CM of NPSG-PCAKM; (h) the reference image. 

Fig. 14. DIs and binary CMs on Wuhan dataset. (a) DI of SH; (b) DI of PP; (c) DI of AMD; (d) DI of NPSG; (e) binary CM of M3CD; (f) binary CM of NPSG-Otsu; (g) binary 

CM of NPSG-PCAKM; (h) the reference image. 

Table 4 

Quantitative measures of binary CMs on Wuhan dataset. 

Methods FPR(%) FNR(%) PCC(%) Kappa 

M3CD 3.53 3.09 93.38 0.4758 

SH-Otsu 18.15 2.29 79.55 0.2147 

SH-PCAKM 18.07 1.92 80.01 0.2397 

PP-Otsu 8.28 2.25 89.47 0.3985 

PP-PCAKM 6.98 1.26 91.76 0.5220 

AMD-Otsu 59.64 1.68 38.68 0.0206 

AMD-PCAKM 56.19 1.65 42.15 0.0301 

NPSG-Otsu 1.49 3.19 95.32 0.5662 

NPSG-PCAKM 2.00 2.20 95.80 0.6525 

Table 5 

Quantitative measures of binary CMs on California dataset. 

Methods FPR(%) FNR(%) PCC(%) Kappa 

M3CD 40.41 2.05 57.53 0.0208 

SH-Otsu 44.53 0.91 54.56 0.0565 

SH-PCAKM 44.57 0.83 54.60 0.0595 

PP-Otsu 25.75 0.78 73.47 0.1486 

PP-PCAKM 34.62 0.24 65.16 0.1229 

AMD-Otsu 56.28 0.68 43.04 0.0363 

AMD-PCAKM 53.78 0.72 45.51 0.0403 

NPSG-Otsu 3.97 1.96 94.07 0.4185 

NPSG-PCAKM 4.08 1.93 93.99 0.4178 

Table 6 

Quantitative measures (AUC and Ddist) on Shuguang, Wuhan and California 

datasets. 

Methods Shuguang dataset Wuhan dataset California dataset 

AUC Ddist AUC Ddist AUC Ddist 

SH 0.7496 0.9719 0.8049 1.0607 0.7263 0.9548 

PP 0.8549 1.0835 0.8662 1.1316 0.8362 1.0807 

AMD 0.6195 0.8322 0.5780 0.7871 0.7572 0.9983 

NPSG 0.9890 1.3562 0.9591 1.2694 0.9111 1.1709 

s  

t  

g  

a

3

 

m  

s  

T  
ome problems of mixing heterogeneous data when they generate

he difference images. However, the proposed NPSG based hetero-

eneous CD method can overcome these shortcomings, so it can

chieve more robust and better results. 

.4. Comparison of computational time 

The main space and time complexity of the NPSG based CD

ethod is concentrating on the calculation of the nonlocal patch

imilarity structure difference (step 1 of Algorithm 1 listed in

able 1 ). As can be seen from Table 1 , the structure difference

f X 
( m,n ) 

(or f Y 
( m,n ) 

) is calculated on a patch by patch basis. 
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Fig. 15. DIs and binary CMs on California dataset. (a) DI of SH; (b) DI of PP; (c) DI of AMD; (d) DI of NPSG; (e) binary CM of PP-Otsu; (f) binary CM of NPSG-Otsu; (g) binary 

CM of NPSG-PCAKM; (h) the reference image. 
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Fig. 16. ROC curves derived by varying of the threshold T in (16) on DIs generated by different methods on the heterogeneous datasets: (a) Shuguang ; (b) Wuhan ; (c) 

California . 
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1) For the space complexity, storing the distance set of

 (X (m,n ) , X (i, j) ) (or d (Y (m,n ) , Y (i, j) ) ) for all ( i, j ) ∈ 	 requires

 

(
ξ2 

s 

�2 
s 

)
, and storing the structure difference set of F X (or F Y ) for

ll pixels requires O 

(
p 2 s MN 

�2 
p 

)
. Therefore, the space complexity of the

roposed algorithm is very low. 

2) For the time complexity, calculating the distance between

atches d(X (m,n ) , X (i, j) ) (or d(Y (m,n ) , Y (i, j) ) ) for all ( m, n ) ∈ 


nd ( i, j ) ∈ 	 requires O 

(
p 2 s C X 

MN 

�2 
p 

ξ2 
s 

�2 
s 

)
, and constructing the K -

earest NPSG NPSG G 

K 
X ( m,n ) 

(or G 

K 
Y ( m,n ) 

) for all ( m, n ) ∈ 
 requires
 

(
MN 

�2 
p 

ξ2 
s 

�2 
s 

log 

(
ξ2 

s 

�2 
s 

))
by using some accelerated sorting algorithms, 

orting algorithms, such as the Block sort or Tree sort. 

The time complexity of the proposed algorithm is relatively

igh in the abovementioned theoretical analysis, which requires

 

((
p 2 s C X + log 

(
ξ2 

s 

�2 
s 

))
MN 

�2 
p 

ξ2 
s 

�2 
s 

)
. Table 7 reports the CPU times of

ifferent methods on Sardinia, Wuhan and Shuguang datasets. The

arameters of NPSG are set as p s = 5 , ξs = 100 and K = 35 . The al-

orithms, excluding M3CD, were performed in MATLAB 2016a run-

ing on a Windows laptop with Intel(R) Core(TM) i7-8550U CPU

nd 8 GB of RAM. The C++ code of M3CD algorithm was executed
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Table 7 

Computational time (seconds) of different methods. 

Datasets Image size M3CD SH PP AMD NPSG with different �s and �p 

�s = �p = 2 �s = �p = 3 �s = �p = 4 

Sardinia 300 × 412 × 1(3) 2206.64 1083.31 205.72 76.97 652.89 130.23 42.73 

Wuhan 495 × 503 × 1(3) 2616.22 2286.94 429.48 169.97 1360.54 287.27 98.64 

Shuguang 593 × 921 × 1(3) 4691.82 7957.84 979.46 304.50 2948.06 602.38 196.62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

n  

S  

s  

(  

n  

t  

c  

t  

a  

d  

l

D

 

w  

e  

o  

c  

r  

h

A

 

F  

t  

i  

t

A

 

o  

s  

z  

a  

a

A

 

r  

v

 (
E  

L

N  

i  

n

 

in a Linux computer with Intel(R) Xeon(R) Silver 4110 CPU and 31

GB of RAM. 

From Table 7 , we can find that the two most time-consuming

methods are M3CD and SH, followed by NPSG, PP and AMD. In ad-

dition, we can also find that the speed of the NPSG can be signifi-

cantly improved by using the search step �s and target patch step

�p as analyzed in Section 2.2 and Section 3.2 . Meanwhile, from the

above complexity analysis and Table 7 , it can be found that several

strategies can be considered in NPSG to avoid a large amount of

computational time: 

1) Using the patch-wisely parallel solution. Due to the target

patch-wise independence property of the structure difference cal-

culation (step 1 in Algorithm 1), NPSG can be easily accelerated by

the parallel solution. 

2) Using large search step and target patch step to reduce the

search space of similar patches and the amount of target patches,

seeking the balance between computation time and change detec-

tion accuracy. 

3) Using the superpixel as the basic unit instead of the square

patch. Compared with the square image patch, the superpixel has

two main advantages: it can maintain the structure and edge

of the object, and the interior of each superpixel is homoge-

neous (representing the same kind of object); it can greatly re-

duce the computational complexity, especially for large-scale high-

resolution images. However, we have two problems to solve when

using the superpixel as the basic unit: one is the accurate super-

pixel segmentation (especially for SAR images), and the other is to

find a suitable criterion to measure the similarity (or distance) of

superpixels, which is also our future work. 

4. Conclusion 

This paper mainly focuses on the change detection for hetero-

geneous remote sensing images. Since the heterogeneous images

refer to distinct feature representations of ground object by differ-

ent imaging mechanisms, it is difficult to measure the changes be-

tween heterogeneous images by direct comparison. We present an

unsupervised change detection method to make the heterogeneous

data comparable, which is based on the structure consistency be-

tween images. To exploit the structure information, we construct

the NPSG for each image based on the nonlocal self-similarity.

Therefore, the change level can be measured by how much the

graph structure of one image still conforms to that of the other im-

age. Then, the NPSG based CD method can be implemented in two

steps. It first constructs the K -nearest NPSG for each input image,

then map the K -nearest NPSG of one image to the other image,

and compare the difference between the graph and mapped graph

to obtain the DI. Secondly, it uses the thresholding or clustering

method to obtain the binary CM with the combined DI. In the pro-

cess of obtaining the combined DI, the proposed method can avoid

the leakage of heterogeneous data by comparing the graph differ-

ence on the same domain, and reasonably fuse the forward and

backward detection results based on the statistical distribution. In

this way, it can achieve robust and effective performance in the

difficult heterogeneous CD task. 
In this paper, we only consider two commonly used noise dis-

ribution models (AWGN and multiplicative Gamma distribution

oise models) to measure the distances for the optical image and

AR image, but there are some other noise models not considered,

uch as the complex Wishart distribution based polarimetric SAR

PolSAR) data. Therefore, how to apply this model to PolSAR is our

ext research work. Moreover, as the NPSG represents the struc-

ure information of patches, it is also applicable to the land cover

lassification of remote sensing images, especially to the classifica-

ion based on fusion of heterogeneous data. In the future, we will

lso evaluate the NPSG model on other complex heterogeneous

ata and plan to extend the NPSG model to the classification prob-

em. 
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ppendix A. Statistical characteristics of the distance criteria 

In this appendix, we compute distribution, mean, and variance

f the random variables (17), (19) and (20). We denote two ob-

erved signals x, y and their corresponding true constant signals

 x , z y , and their correlation noise u x , u y , respectively. Next, we an-

lyze the statistical characteristics of the distance criteria (17), (19)

nd (20) under different models. 

1. The additive noise model of optical image 

We have x = z x + u x and y = z y + u y , where u x and u y are i.i.d.

andom variables that u x , u y ∼ N 

(
0 , σ 2 

)
. We analyze the random

ariable of distance criterion d = ( x − y ) 2 . 

1. Fist case, with the uniform signal, z x = z y , then we have d =
u x − u y 

)2 
. Easily, we have the expected value of d as 

 ( d ) = 2 σ 2 (A.1)

et A = u x − u y , we have A obeys the Gaussian distribution A ∼
 

(
0 , 2 σ 2 

)
. Let B = 

(
A √ 

2 σ

)2 

, we have that B is distributed accord-

ng to the chi-square distribution with 1 degrees of freedom, de-

oted as B ~ χ2 (1). The pdf of the chi-square distribution is 

p B ( b; 1 ) = 

b −1 / 2 e −b/ 2 

2 1 / 2 �( 1 / 2 ) 
1 ( b ) (A.2)

https://doi.org/10.13039/501100001809
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ith 1 ( b ) the unit-step function. As d = 2 σ 2 B, then we have the

df of random variable d is 

p d ( d ) = p B 
(

d 
2 σ 2 ; 1 

)
1 

2 σ 2 = 

d −1 / 2 

2 σ�( 1 / 2 ) 
e −

d 

4 σ2 1 ( d ) (A.3) 

2. Second case, the true signals with different values z x =
1 and z y = ν2 , then the x and y are i.i.d. random variables

ith different means that x ∼ N 

(
ν1 , σ

2 
)

and y ∼ N 

(
ν2 , σ

2 
)
. Let

= ν1 − ν2 and A = 

x −y −η√ 

2 σ
, then we have A ∼ N ( 0 , 1 ) . As d =

 σ 2 
(

A + 

η√ 

2 σ

)2 

, then the cumulative distribution function (cdf) of

 can be written as 

 ( d ) = 

∫ √ 
d −η√ 
2 σ

−
√ 

d + η√ 
2 σ

φ( x ) dx (A.4) 

here φ( · ) is the standard normal density. Then we have the pdf

f random variable d as 

p d ( d ) = 

1 

2 

√ 

2 d σ

[
φ

(√ 

d − η√ 

2 σ

)
+ φ

(√ 

d + η√ 

2 σ

)]
1 ( d ) 

= 

1 

4 

√ 

πd σ

[
e −

( 
√ 

d −η) 
2 

4 σ2 + e −
( 
√ 

d + η) 2 

4 σ2 

]
1 ( d ) (A.5) 

2. The multivariate noise model of SAR image 

We have x = z x u x and y = z y u y , where u x and u y are i.i.d.

amma distributed random variables with shape parameter L and

nverse scale parameter L as u x , u y ~ Gamma( L, L ). 

2.1. The distance criterion of d = 2 L log 

(
x + y 

2 
√ 

xy 

)
1. First case, with the uniform signal, z x = z y , we have 

 = 2 L log 

(
u x + u y 

2 
√ 

u x u y 

)
(A.6) 

et A = log 

(
u x + u y 

2 
√ 

u x u y 

)
, then we calculate the expected value and pdf

f A by directly using the conclusion in [46] 

 ( A ) = − 1 
2 [ ϕ ( 0 , L ) − ϕ ( 0 , L + 1 / 2 ) ] (A.7) 

p A ( A ) = 

1 
2 2 L −2 B ( L,L ) 

e −2 LA √ 

1 −e −2 A 
1 ( A ) (A.8) 

here ϕ( m, x ) is the m -order Polygamma function defined as

he ( m + 1 ) th derivative of the Digamma function ϕ ( m, x ) =
d m +1 log ( �( x ) ) 

d x m +1 , and B ( · , · ) is a Beta function with B ( a, b ) =
�( a ) �( b ) 
�( a + b ) . Therefore, we have the expected value and pdf of d = 2 LA

s 

 ( d ) = −L [ ϕ ( 0 , L ) − ϕ ( 0 , L + 1 / 2 ) ] (A.9) 

p d ( d ) = p A ( d/ 2 L ) 1 2 L 
= 

1 
2 2 L −1 LB ( L,L ) 

e −d √ 

1 −e −d/L 
1 ( d ) (A.10) 

2. Second case, the true signals with different values z x = ν1 

nd z y = ν2 . Let ρ = z x / z y and A = u x / u y , then we have that the

istance criterion becomes 

 = 2 L log 

(
x + y 

2 
√ 

xy 

)
= 2 L log 1+ ρA 

2 
√ 

ρA 
(A.11) 

s A = u x / u y and u x , u y ~ Gamma( L, L ), then A is beta-distributed

s A ~ Beta( L, L ), and the pdf of A is 

p A ( A ) = 

A L −1 ( 1+ A ) −2 L 

B ( L,L ) 
1 ( A ) (A.12) 

efine w = 

1+ ρA 

2 
√ 

ρA 
, then we have A = 

1 
ρ

(
w + 

√ 

w 

2 −1 

w −
√ 

w 

2 −1 

)
or A =

1 
ρ

(
w −

√ 

w 

2 −1 

w + 
√ 

w 

2 −1 

)
. The cdf of w can be written as 

 ( w ) = 

∫ α
ρ
1 

ρα

p A ( A ) dA (A.13) 
here α = 

w + 
√ 

w 

2 −1 

w −
√ 

w 

2 −1 
. Then the pdf of w can be computed as 

p w 

( w ) = p A 

(
1 

ρ

(
w + 

√ 

w 

2 − 1 

w − √ 

w 

2 − 1 

))
2 

ρ
√ 

w 

2 − 1 

(
w + 

√ 

w 

2 − 1 

w − √ 

w 

2 − 1 

)

+ p A 

(
1 

ρ

(
w − √ 

w 

2 − 1 

w + 

√ 

w 

2 − 1 

))
2 

ρ
√ 

w 

2 − 1 

(
w − √ 

w 

2 − 1 

w + 

√ 

w 

2 − 1 

)

= 

2 

B ( L, L ) 
√ 

w 

2 − 1 

((
α

ρ

)L (
1 + 

α

ρ

)−2 L 

+ 

(
1 

ρα

)L (
1 + 

1 

ρα

)−2 L 
)

1 ( w ) 

= 

2 

B ( L, L ) 
√ 

w 

2 − 1 

( (
ρα

( ρ+α) 
2 

)L 

+ 

(
ρα

( ρα+1 ) 
2 

)L 
) 

1 ( w ) 

(A.14) 

y substituting ρα

( ρ+ α) 2 
= 

ρ[ 
( ρ+1 ) w + ( 1 −ρ) 

√ 

w 

2 −1 

] 2 and 

ρα

( ρα+1 ) 2 
= 

ρ[ 
( ρ+1 ) w + ( ρ−1 ) 

√ 

w 

2 −1 

] 2 , (A.14) can be written as 

p w 

( w ) = 

2 ρL 

B ( L, L ) 
√ 

w 

2 − 1 

((
( ρ + 1 ) w + ( 1 − ρ) 

√ 

w 

2 − 1 

)−2 L 

+ 

(
( ρ + 1 ) w + ( ρ − 1 ) 

√ 

w 

2 − 1 

)−2 L 
)

1 ( w ) (A.15) 

s d = 2 L log w, the pdf of d is 

p d ( d ) = p w 

(
e d/ 2 L 

)e d/ 2 L 

2 L 

= 

ρL 

LB ( L, L ) 
√ 

1 − e −d/L 

×
((

( ρ + 1 ) e d/ 2 L + ( 1 − ρ) 
√ 

e d/L − 1 

)−2 L 

+ 

(
( ρ + 1 ) e d/ 2 L + ( ρ − 1 ) 

√ 

e d/L − 1 

)−2 L 
)

1 ( d ) (A.16) 

e can easily find that (A.10) is the special case of (A.16) with

= 1 . 

2.2. The distance criterion of d = 

[
log 
(

x 
y 

)]2 

1. First case, the uniform signal, z x = z y . Let A = x/y, then

 ~ Beta( L, L ), and the pdf of A is given in (A.12). Define w = logA ,

he pdf of w is 

p w 

( w ) = p A ( e 
w ) e w = 

e wL ( 1+ e w ) −2 L 

B ( L,L ) 
1 ( w ) = 

( e −w/ 2 + e w/ 2 ) 
−2 L 

B ( L,L ) 
1 ( w ) 

(A.17) 

s d = w 

2 , the cdf of d is 

 ( d ) = 

∫ √ 

d 

−
√ 

d 
p w 

( w ) dw 

(A.18) 

hen, the pdf of d is 

p d ( d ) = p w 

(√ 

d 
)

1 

2 
√ 

d 
+ p w 

(
−

√ 

d 
)

1 

2 
√ 

d 
= 

(
e −

√ 
d / 2 + e 

√ 
d / 2 

)−2 L 

√ 

d B ( L,L ) 
1 ( d ) 

(A.19) 

eanwhile, the expected value and variance value of Logarithmi-

ally transformed speckle is given in [50] as 

 ( log u x ) = E ( log u y ) = ϕ ( 0 , L ) − log L (A.20) 

 ar ( log u x ) = v ar ( log u y ) = ϕ ( 1 , L ) (A.21) 
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Then the expected value of d is 

E ( d ) = E 
[
( log u x − log u y ) 

2 
]

= 2 ϕ ( 1 , L ) (A.22)

2. Second case, the true signals with different values z x = ν1 

and z y = ν2 . Let ρ = z x / z y and w = log u x u y 
, then we have that the

distance criterion becomes d = ( w + ln ρ) 
2 
. Then, the cdf of d is 

P ( d ) = 

∫ √ 

d −ln ρ

−
√ 

d −ln ρ
p w 

( w ) dw 

(A.23)

where p w 

( w ) is given in (A.17). Then the pdf of d is 

p d ( d ) = p w 

(√ 

d − ln ρ
)

1 

2 

√ 

d 
+ p w 

(
−
√ 

d − ln ρ
)

1 

2 

√ 

d 

= 

(
e 

−
√ 

d + ln ρ
2 + e 

√ 
d −ln ρ

2 

)−2 L 

+ 

(
e 

√ 
d + ln ρ

2 + e 
−

√ 
d −ln ρ
2 

)−2 L 

2 

√ 

d B ( L, L ) 
1 ( d ) 

(A.24)

References 

[1] A. SINGH, Review article digital change detection techniques using remotely-

sensed data, Int. J. Remote Sens. 10 (1989) 989–1003, doi: 10.1080/

01431168908903939 . 
[2] J.L. Gil-Yepes, L.A. Ruiz, J.A. Recio, A. Balaguer-Beser, T. Hermosilla, Description

and validation of a new set of object-based temporal geostatistical features for
land-use/land-cover change detection, ISPRS J. Photogramm. Remote Sens. 121

(2016) 77–91, doi: 10.1016/j.isprsjprs.2016.08.010 . 
[3] H. Taubenbock, T. Esch, A. Felbier, M. Wiesner, A. Roth, S. Dech, Monitoring

urbanization in mega cities from space, Remote Sens. Environ. 117 (2012) 162–
176, doi: 10.1016/j.rse.2011.09.015 . 

[4] Y. Ban, O.A. Yousif, Multitemporal spaceborne SAR data for urban change de-

tection in China, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5 (2012) 1087–
1094, doi: 10.1109/JSTARS.2012.2201135 . 

[5] D. Brunner, G. Lemoine, L. Bruzzone, Earthquake damage assessment of build-
ings using VHR optical and SAR imagery, IEEE Trans. Geosci. Remote Sens. 48

(2010) 2403–2420, doi: 10.1109/TGRS.2009.2038274 . 
[6] M. Zhao, Q. Ling, F. Li, An iterative feedback-based change detection algorithm

for flood mapping in SAR images, IEEE Geosci. Remote Sens. Lett. 16 (2019)

231–235, doi: 10.1109/LGRS.2018.2871849 . 
[7] Y. Ban, O. Yousif, Change detection techniques: a review, Multitemporal Re-

mote Sensing, 2016, doi: 10.1007/978- 3- 319- 47037- 5 _ 2 . 19–43 
[8] E.F. Lambin, A.H. Strahlers, Change-vector analysis in multitemporal space: a

tool to detect and categorize land-cover change processes using high temporal-
resolution satellite data, Remote Sens. Environ. 48 (1994) 231–244, doi: 10.

1016/0034-4257(94)90144-9 . 

[9] F. Bovolo, S. Marchesi, L. Bruzzone, A framework for automatic and unsu-
pervised detection of multiple changes in multitemporal images, IEEE Trans.

Geosci. Remote Sens. 50 (2012) 2196–2212, doi: 10.1109/TGRS.2011.2171493 . 
[10] A .A . Nielsen, K. Conradsen, J.J. Simpson, Multivariate alteration detection

(MAD) and MAF postprocessing in multispectral, bitemporal image data: new
approaches to change detection studies, Remote Sens. Environ. 64 (1998) 1–19,

doi: 10.1016/S0 034-4257(97)0 0162-4 . 

[11] A .A . Nielsen, The regularized iteratively reweighted MAD method for change
detection in multi- and hyperspectral data, IEEE Trans. Image Process. 16

(2007) 463–478, doi: 10.1109/TIP.2006.888195 . 
[12] G. Moser, S.B. Serpico, Generalized minimum-error thresholding for unsuper-

vised change detection from SAR amplitude imagery, IEEE Trans. Geosci. Re-
mote Sens. 44 (2006) 2972–2982, doi: 10.1109/TGRS.2006.876288 . 

[13] M. Gong, Z. Zhou, J. Ma, Change detection in synthetic aperture radar im-

ages based on image fusion and fuzzy clustering, IEEE Trans. Image Process.
21 (2012) 2141–2151, doi: 10.1109/TIP.2011.2170702 . 

[14] T. Celik, Unsupervised change detection in satellite images using principal
component analysis and k -means clustering, IEEE Geosci. Remote Sens. Lett.

6 (2009) 772–776, doi: 10.1109/LGRS.2009.2025059 . 
[15] H.-C. Li, T. Celik, N. Longbotham, W.J. Emery, Gabor feature based unsupervised

change detection of multitemporal SAR images based on two-level clustering,

IEEE Geosci. Remote Sens. Lett. 12 (2015) 2458–2462, doi: 10.1109/LGRS.2015.
2484220 . 

[16] K. Mubea, G. Menz, Monitoring land-use change in Nakuru (Kenya) using
multi-sensor satellite data, Adv. Remote Sens. 01 (2012) 74–84, doi: 10.4236/

ars.2012.13008 . 
[17] W. Zhou, A. Troy, M. Grove, Object-based land cover classification and change

analysis in the baltimore metropolitan area using multitemporal high resolu-
tion remote sensing data, Sensors 8 (2008) 1613–1636, doi: 10.3390/s8031613 . 

[18] M. Volpi, D. Tuia, F. Bovolo, M. Kanevski, L. Bruzzone, Supervised change detec-

tion in VHR images using contextual information and support vector machines,
Int. J. Appl. Earth Obs. Geoinf. 20 (2013) 77–85, doi: 10.1016/j.jag.2011.10.013 . 

[19] L. Wan, Y. Xiang, H. You, A post-classification comparison method for SAR
and optical images change detection, IEEE Geosci. Remote Sens. Lett. 16 (2019)

1026–1030, doi: 10.1109/LGRS.2019.2892432 . 
[20] L. Wan, Y. Xiang, H. You, An object-based hierarchical compound classifica-
tion method for change detection in heterogeneous optical and SAR images,

IEEE Trans. Geosci. Remote Sens. 57 (2019) 9941–9959, doi: 10.1109/TGRS.2019.
2930322 . 

[21] J. Liu, M. Gong, K. Qin, P. Zhang, A deep convolutional coupling net-
work for change detection based on heterogeneous optical and radar

images, IEEE Trans. Neural Netw. Learn. Syst. 29 (2018) 545–559, doi:
10.1109/TNNLS.2016.2636227 . 

[22] T. Zhan, M. Gong, X. Jiang, S. Li, Log-based transformation feature learning for

change detection in heterogeneous images, IEEE Geosci. Remote Sens. Lett. 15
(2018) 1352–1356, doi: 10.1109/LGRS.2018.2843385 . 

[23] X. Niu, M. Gong, T. Zhan, Y. Yang, A conditional adversarial network for change
detection in heterogeneous images, IEEE Geosci. Remote Sens. Lett. 16 (2019)

45–49, doi: 10.1109/LGRS.2018.2868704 . 
[24] L.T. Luppino, M. Kampffmeyer, F.M. Bianchi, G. Moser, S.B. Serpico, R. Jenssen,

S.N. Anfinsen, Deep image translation with an affinity-based change prior for

unsupervised multimodal change detection, ArXiv Preprint arXiv:2001.04271 . 
[25] G. Mercier, G. Moser, S.B. Serpico, Conditional copulas for change detection

in heterogeneous remote sensing images, IEEE Trans. Geosci. Remote Sens. 46
(2008) 1428–1441, doi: 10.1109/TGRS.2008.916476 . 

[26] J. Prendes, M. Chabert, F. Pascal, A. Giros, J.Y. Tourneret, A new multivariate
statistical model for change detection in images acquired by homogeneous and

heterogeneous sensors, IEEE Trans. Image Process. 24 (2015) 799–812, doi: 10.

1109/TIP.2014.2387013 . 
[27] J. Prendes, M. Chabert, F. Pascal, A. Giros, J.Y. Tourneret, A Bayesian nonpara-

metric model coupled with a Markov random field for change detection in het-
erogeneous remote sensing images, SIAM J. Imaging Sci. 9 (2016) 1889–1921,

doi: 10.1137/15M1047908 . 
[28] V. Alberga , Similarity measures of remotely sensed multi-sensor images for

change detection applications, Remote Sens. 1 (2009) 122–143 . 

[29] J. Inglada, A. Giros, On the possibility of automatic multisensor image registra-
tion, IEEE Trans. Geosci. Remote Sens. 42 (2004) 2104–2120, doi: 10.1109/TGRS.

2004.835294 . 
[30] R.P. Woods, J.C. Mazziotta, S.R. Cherry, MRI-PET registration with auto-

mated algorithm, J. Comput. Assist. Tomogr. 17 (1993) 536–546, doi: 10.1097/
0 0 0 04728-1993070 0 0-0 0 0 04 . 

[31] C. Nikou , F. Heitz , J.-P. Armspach , I.J. Namer , Mesures de similarite robustes

pour le recalage dimages medicales volumiques multimodales, Traitement Du
Signal 16 (1999) 255–272 . 

[32] G.J. Szekely, M.L. Rizzo, N.K. Bakirov, Measuring and testing dependence
by correlation of distances, Ann. Stat. 35 (2007) 2769–2794, doi: 10.1214/

0 090536070 0 0 0 0 0505 . 
[33] L. Wan, T. Zhang, H.J. You, Multi-sensor remote sensing image change detection

based on sorted histograms, Int. J. Remote Sens. 39 (2018) 3753–3775, doi: 10.

1080/01431161.2018.144 84 81 . 
[34] B. Ayhan, C. Kwan, A new approach to change detection using heterogeneous

images, in: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mo-
bile Communication Conference, (UEMCON), 2019, pp. 0192–0197, doi: 10.1109/

UEMCON47517.2019.8993038 . 
[35] C. Kwan, B. Ayhan, J. Larkin, L. Kwan, S. Bernabe, A. Plaza, Performance

of change detection algorithms using heterogeneous images and extended
multi-attribute profiles (EMAPs), Remote Sens. 11 (2019) 2377, doi: 10.3390/

rs11202377 . 

[36] L.T. Luppino, F.M. Bianchi, G. Moser, S.N. Anfinsen, Unsupervised image regres-
sion for heterogeneous change detection, IEEE Trans. Geosci. Remote Sens. 57

(2019) 9960–9975, doi: 10.1109/TGRS.2019.2930348 . 
[37] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans.

Syst. Man. Cybern. 9 (1979) 62–66, doi: 10.1109/TSMC.1979.4310076 . 
[38] C.-A. Deledalle, L. Denis, F. Tupin, Iterative weighted maximum likelihood de-

noising with probabilistic patch-based weights, IEEE Trans. Image Process. 18

(2009) 2661–2672, doi: 10.1109/TIP.2009.2029593 . 
[39] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-d

transform-domain collaborative filtering, IEEE Trans. Image Process. 16 (2007)
2080–2095, doi: 10.1109/TIP.2007.901238 . 

[40] D. Cozzolino, S. Parrilli, G. Scarpa, G. Poggi, L. Verdoliva, Fast adaptive nonlocal
SAR despeckling, IEEE Geosci. Remote Sens. Lett. 11 (2014) 524–528, doi: 10.

1109/LGRS.2013.2271650 . 

[41] Y. Sun, L. Lei, D. Guan, X. Li, G. Kuang, SAR image change detection based on
nonlocal low–rank model and two-level clustering, IEEE J. Sel. Top. Appl. Earth

Obs. Remote Sens. 13 (2020) 293–306, doi: 10.1109/JSTARS.2019.2960518 . 
[42] A. Sanfeliu, R. Alquezar, J. Andrade, J. Climent, F. Serratosa, J. Verges,

Graph-based representations and techniques for image process-
ing and image analysis, Pattern Recognit. 35 (2002) 639–650, doi:

10.1016/S0031-3203(01)00066-8 . 

[43] C. de Mauro, M. Diligenti, M. Gori, M. Maggini, Similarity learning for graph-
based image representations, Pattern Recognit. Lett. 24 (2003) 1115–1122,

doi: 10.1016/S0167- 8655(02)00258- 1 . 
44] M.-T. Pham, G. Mercier, J. Michel, Change detection between SAR images using

a pointwise approach and graph theory, IEEE Trans. Geosci. Remote Sens. 54
(2016) 2020–2032, doi: 10.1109/TGRS.2015.2493730 . 

[45] C.-A. Deledalle, L. Denis, F. Tupin, How to compare noisy patches? patch sim-

ilarity beyond Gaussian noise, Int. J. Comput. Vis. 99 (2012) 86–102, doi: 10.
1007/s11263-012-0519-6 . 

[46] S. Vitale, D. Cozzolino, G. Scarpa, L. Verdoliva, G. Poggi, Guided patchwise non-
local SAR despeckling, IEEE Trans. Geosci. Remote Sens. 57 (2019) 6484–6498,

doi: 10.1109/TGRS.2019.2906412 . 

https://doi.org/10.1080/01431168908903939
https://doi.org/10.1016/j.isprsjprs.2016.08.010
https://doi.org/10.1016/j.rse.2011.09.015
https://doi.org/10.1109/JSTARS.2012.2201135
https://doi.org/10.1109/TGRS.2009.2038274
https://doi.org/10.1109/LGRS.2018.2871849
https://doi.org/10.1007/978-3-319-47037-5_2
https://doi.org/10.1016/0034-4257(94)90144-9
https://doi.org/10.1109/TGRS.2011.2171493
https://doi.org/10.1016/S0034-4257(97)00162-4
https://doi.org/10.1109/TIP.2006.888195
https://doi.org/10.1109/TGRS.2006.876288
https://doi.org/10.1109/TIP.2011.2170702
https://doi.org/10.1109/LGRS.2009.2025059
https://doi.org/10.1109/LGRS.2015.2484220
https://doi.org/10.4236/ars.2012.13008
https://doi.org/10.3390/s8031613
https://doi.org/10.1016/j.jag.2011.10.013
https://doi.org/10.1109/LGRS.2019.2892432
https://doi.org/10.1109/TGRS.2019.2930322
https://doi.org/penalty -@M 10.1109/TNNLS.2016.2636227
https://doi.org/10.1109/LGRS.2018.2843385
https://doi.org/10.1109/LGRS.2018.2868704
http://arXiv:2001.04271
https://doi.org/10.1109/TGRS.2008.916476
https://doi.org/10.1109/TIP.2014.2387013
https://doi.org/10.1137/15M1047908
http://refhub.elsevier.com/S0031-3203(20)30401-5/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30401-5/sbref0027
https://doi.org/10.1109/TGRS.2004.835294
https://doi.org/10.1097/00004728-199307000-00004
http://refhub.elsevier.com/S0031-3203(20)30401-5/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30401-5/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30401-5/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30401-5/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30401-5/sbref0030
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1080/01431161.2018.1448481
https://doi.org/10.1109/UEMCON47517.2019.8993038
https://doi.org/10.3390/rs11202377
https://doi.org/10.1109/TGRS.2019.2930348
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TIP.2009.2029593
https://doi.org/10.1109/TIP.2007.901238
https://doi.org/10.1109/LGRS.2013.2271650
https://doi.org/10.1109/JSTARS.2019.2960518
https://doi.org/penalty -@M 10.1016/S0031-3203(01)00066-8
https://doi.org/10.1016/S0167-8655(02)00258-1
https://doi.org/10.1109/TGRS.2015.2493730
https://doi.org/10.1007/s11263-012-0519-6
https://doi.org/10.1109/TGRS.2019.2906412


Y. Sun, L. Lei and X. Li et al. / Pattern Recognition 109 (2021) 107598 19 

 

 

 

[  

 

[  

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[47] M. Volpi, G. Camps-Valls, D. Tuia, Spectral alignment of multi-temporal cross-
sensor images with automated kernel canonical correlation analysis, ISPRS J.

Photogramm. Remote Sens. 107 (2015) 50–63, doi: 10.1016/j.isprsjprs.2015.02.
005 . 

48] R. Touati, M. Mignotte, M. Dahmane, Multimodal change detection in remote
sensing images using an unsupervised pixel pairwise based Markov random

field model, IEEE Trans. Image Process. (2019) 1, doi: 10.1109/TIP.2019.2933747 . 
49] H. Feng, B. Hou, M. Gong, SAR Image despeckling based on local homogeneous-

region segmentation by using pixel-relativity measurement, IEEE Trans. Geosci.

Remote Sens. 49 (2011) 2724–2737, doi: 10.1109/TGRS.2011.2107915 . 
50] H. Xie, L.E. Pierce, F.T. Ulaby, Statistical properties of logarithmically trans-

formed speckle, IEEE Trans. Geosci. Remote Sens. 40 (2002) 721–727, doi: 10.
1109/TGRS.2002.1000333 . 

Yuli Sun received the B.S. degree from Xiangtan Uni-
versity, Xiangtan, China, in 2009, and the M.S. degree

from University of Science and Technology of China, Hefei,
China, in 2014. Currently, He is working toward the Ph.D.

degree in information and communication engineering
in the College of Electronic Science, National University

of Defense Technology, since 2019. His research interests

cover machine learning and remote sensing image pro-
cessing. 

Lin Lei received the Ph.D. degree in Information and

Communication Engineering from National University of
Defense Technology, Changsha, China, in 2008. She is cur-

rently an Associate Professor with the school of Electronic
Science, National University of Defense Technology. Her

research interests include computer vision, remote sens-

ing image interpretation and data fusion. 
Xiao Li received the B.S. degree in the electrical engineer-

ing and automation from the University of Jinan, Jinan,
China, in 2015, and the M.S. degrees in control science

and engineering at Xiangtan University, Xiangtan, China,
in 2018. He is currently pursuing the Ph.D. degree in in-

formation and communication engineering from the Na-

tional University of Defense Technology, Changsha, China.
His research interests include image processing and pat-

tern recognition, representation and dictionary learning, 
computational pathology applications. 

Hao Sun received the M.S. degree in information and

communication engineering and the Ph.D. degree in elec-
tronic science and technology from National University of

Defense Technology, Changsha, China, in 2009 and 2011,

respectively. He is currently an Associate Professor in the
College of Electrical Science and Engineering, National

University of Defense Technology. His research interests
include multimodal remote sensing image processing and

machine learning. 

Gangyao Kuang received B.S. and M.S. degrees in geo-
physics from the Central South University of Technol-

ogy, Changsha, China, in 1988 and 1991, and the Ph.D.

degree in communication and information from the Na-
tional University of Defense Technology, Changsha, China,

in 1995. He is currently a Professor at School of Electronic
Science, National University of Defense Technology. His

research interests include remote sensing, SAR image pro-
cessing, change detection, SAR ground moving target indi-

cation, and classification with polarimetric SAR images. 

https://doi.org/10.1016/j.isprsjprs.2015.02.005
https://doi.org/10.1109/TIP.2019.2933747
https://doi.org/10.1109/TGRS.2011.2107915
https://doi.org/10.1109/TGRS.2002.1000333

	Nonlocal patch similarity based heterogeneous remote sensing change detection
	1 Introduction
	1.1 Background
	1.2 Contribution
	1.3 Outline

	2 Nonlocal patch similarity based heterogeneous CD
	2.1 Nonlocal patch similarity based graph
	2.2 Calculating the difference image
	2.3 Binary change map generation
	2.4 Patch distance calculation

	3 Experimental results and discussion
	3.1 Experimental datasets and quantitative measures
	3.2 Parameter analysis
	3.3 Experimental results
	3.3.1 Experiments on Sardinia and Texas datasets
	3.3.2 Experiments on Shuguang, Wuhan and California datasets

	3.4 Comparison of computational time

	4 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Statistical characteristics of the distance criteria
	A1 The additive noise model of optical image
	A2 The multivariate noise model of SAR image
	A2.1 The distance criterion of 
	A2.2 The distance criterion of 


	References


