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Change detection of heterogeneous remote sensing images is an important and challenging topic, which
has found a wide range of applications in many fields, especially in the emergency situation resulting
from nature disaster. However, the difference in imaging mechanism of heterogeneous sensors makes it
difficult to carry out a direct comparison of images. In this paper, we propose a new change detection
method based on similarity measurement between heterogeneous images. The method constructs a graph
for each patch based on the nonlocal patch similarity to establish a connection between heterogeneous
data, and then measures the change level by measuring how much the graph structure of one image still
conforms to that of the other image. The graph structures are compared in the same domain, so it can
avoid the leakage of heterogeneous data and bring more robust change detection results. Experiments
demonstrate the effective performance of the proposed nonlocal patch similarity based heterogeneous

change detection method.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Background

The change detection (CD) of remote sensing images is a pro-
cess of identifying the changes of objects or phenomenon in the
same geographical area at different times by analyzing the differ-
ences between images [1]. CD has been widely used in many real-
world applications, such as land-use and land-cover evaluation [2],
urban growth monitoring [3,4], nature disaster assessment [5,6],
etc.

CD with homogeneous images, i.e. image collected by the same
kind of sensors, e.g., radar or optical sensors, has been of inter-
est for a long time [7]. Researchers have proposed many relatively
mature algorithms for homogeneous CD, such as the change vector
analysis (CVA) [8], compressed change vector analysis (C2VA) [9],
multivariate alteration detection (MAD) [10], iteratively reweighted
MAD (IR-MAD) [11], the generalized Kittler and Illingworth thresh-
olding (GKIT) algorithm [12], reformulated fuzzy local information
C-means clustering algorithm (RFLICM) [13], principal component
analysis with K-means clustering (PCAKM) [14], Gabor wavelets
with two level fuzzy c-means clustering (GaborTLC) [15]. However,
the wide range of different sensors found in remote sensing makes
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the detection of changes in images acquired by heterogeneous sen-
sors a growing interest topic. In particular, the heterogeneous CD
has great practical significance for the immediate evaluation and
emergency disasters. In such scenarios (e.g., earthquake or flood),
the rapid mapping of damages is needed. The pre-event SAR im-
age is sometimes unavailable and the pre-event optical image can
be obtained from the archived data of remote sensing platforms,
whereas maybe only the post-event SAR image can be available
due to adverse atmospheric conditions.

However, heterogeneous CD is very challenging because of the
distinct feature representations of ground object in images ac-
quired by different sensors, especially for these images obtained
from optical and SAR sensors respectively. The optical sensor is
passive, which can measure the intensity of reflected light in vis-
ible and near-infrared spectral bands. Therefore, the optical image
reflects the surface reflection and illumination information of the
object. SAR sensor is active, which can measure the backscatter
characteristics of objects by transmitting radar waves. Therefore,
the SAR image reflects the geometric and dielectric characteristics
of the target. As the images acquired by heterogeneous sensors
show different physical quantities and different statistical behav-
iors, it is difficult to calculate pixelwise difference between hetero-
geneous images. This is different from that in homogeneous im-
ages, which only requires a simple arithmetical operation such as
image differencing (usually for optical images) and image ratio/log-
ratio (usually for SAR images).
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Generally, according to whether the label information is used,
the existing heterogeneous CD methods can be divided into su-
pervised and unsupervised. Meanwhile, it can also be divided into
three categories according to the different methods for generating
the binary change map. The first is the method based on classifica-
tion. These methods first classify the images separately and trans-
form the heterogeneous images into the same category space, then
compare the classification results to detect the changes. Among
them, post-classification comparison (PCC) is the most widely used
method [16,17]. The accuracy of PCC strongly depends on the per-
formance of classification, and the PCC may suffer from the error
propagation or error accumulation [18]. Recently, the PCC based on
multitemporal segmentation and compound classification (MS-CC)
[19] and its extended version based on cooperative multitemporal
segmentation and hierarchical compound classification (CMS-HCC)
[20] have been proposed to overcome the error propagation. How-
ever, as shown in these papers, image segmentation will affect the
accuracy of CD, in particular, it is well known that the SAR image
segmentation is very difficult, which brings a big challenge to its
accurate detection.

The second is the method based on deep learning. Some of
them use the Convolutional Neural-Networks (CNNs) and stacked
denoising autoencoders (SDAEs) to extract the high-level feature
representation and explore the inner relationships of heteroge-
neous images, such as the symmetric convolutional coupling net-
work (SCCN) [21], and logarithmic transformation feature learning
(LTFL) with SDAE [22]. Some of them use the translation network
to translate the two heterogeneous images into homogeneous ones,
between which the difference image can be obtained in a com-
mon observation space, such as the conditional generative adver-
sarial network (cGAN) [23], the X-Net with two fully convolutional
networks and the Adversarial Cyclic Encoders Network (ACE-Net)
with two autoencoders whose code spaces are aligned by adver-
sarial training [24]. Despite their excellent performance on the de-
tection accuracy, deep learning-based method still has two major
flaws: the time-consuming training process and the construction of
large training set, which requires a high cost of manual operation
in practice under the supervision mode or requires a complicated
screening process to select the training samples under the unsu-
pervision mode.

The third is the method based on similarity measure. Such
methods usually define a function to measure the difference be-
tween images by using a sliding or analysis window. Mercier et al.
use the copula theory to model the dependence between un-
changed areas and then employ the Kullkack-Leibler (KL) distance
on local statistical measures to calculate the changes [25]. Prendes
et al. propose a multivariate statistical approach, which models the
objects contained in analysis window by local joint distributions
and then uses the manifold to measure the change indices [26]. In
[27], they further introduce a Bayesian nonparametric framework
to deal with the unknown number of objects in the analysis win-
dow. This kind of method based on parameter estimation requires
an explicit data distribution, a complex parameter estimation and
a large amount of training data. In [28], a series of similarity mea-
sures are employed for automatic CD of optical and SAR images,
such as the distance to independence, mutual information, cluster
reward algorithm [29], Woods criterion [30], robust Woods crite-
rion [31], and correlation ratio [32]. By assuming that the hetero-
geneous images with absence of change have similar local internal
layouts, the distance of sorted histogram (SH) is employed to es-
timate the dissimilarity between the images [33]. The pixels pair
(PP) method assumes that the mapping between the pixel values
of images in the image pair are monotonic, then it computes differ-
ences between pixels in each image separately, and the difference
scores are then compared between images in the pair to generate
the change map [34,35]. Luppino et al. propose the affinity ma-

trices distance (AMD) method to calculate the change possibility
of each pixel, which can be used to generate the CD map directly
by thresholding operation, and can be further used to construct
the pseudo-training data for the unsupervised traditional image
regression based CD [36] or can be treated as the change prior
to guide the deep image translation based heterogeneous CD [24].
The main advantages of these imaging modality-invariant operator
based methods (such as SH, PP and AMD) are intuitive, unsuper-
vised and easy to implement. However, they do not take into ac-
count the different statistical characteristics of the heterogeneous
images when the scene is complex or the noise in the image is
very high (especially the speckle noise of SAR image), these de-
signed operators can not fully represent the similarity (or differ-
ence) between heterogeneous images, resulting in a sharp deterio-
ration in CD performance.

From the above discussion, we can see that the goal of these
heterologous CD methods is to transform the heterogeneous im-
ages to a space where they can be directly compared, such as the
category space of classification based methods, the learned high-
dimensional feature space of deep learning based methods, and the
constructed feature space of similarity measure based methods.
When direct comparison is possible, methods for homogeneous CD
can be used to extract the changes.

1.2. Contribution

In this paper, we propose a nonlocal self-similarity based
method for heterogeneous CD, which belongs to the family of
similarity-based methods. Although the heterogeneous images re-
fer to completely different imaging mechanisms, and hence, there
is no direct relationship between their pixel values, they share im-
portant structure information, which can be used to detect the
changes between images. To exploit this structure information, we
use the nonlocal patch similarity based graph (NPSG) to measure
the structure consistency between heterogeneous images. The pro-
posed CD method mainly consists of two parts. First, the image is
divided into a number of overlapped squared patches. In the for-
ward detection, for each target patch in the pre-event image, its
K-nearest NPSG within the pre-event image is calculated by us-
ing the statistical based similarity measurement, then we map this
K-nearest NPSG to the post-event image, and compare its own K-
nearest NPSG of the post-event image with this mapped K-nearest
NPSG from the pre-event image by calculating the similarity differ-
ence. If changes occur within this patch area, then the graph struc-
ture of this patch will change. Intuitively, the more changes occur
in the patch, the more the two K-nearest NPSGs will diverge. After
that, we also similarly do the backward detection by mapping the
K-nearest NPSG of post-event image to the pre-event image. Then
the forward and backward detections are combined to further im-
prove the robustness of CD with respect to the noise and modality
difference of images. Second, with combined difference image, the
final binary change map (CM) can be treated as an image binary
segmentation problem, which can be solved by the thresholding
methods such as Otsu threshold [37], or clustering methods such
as the PCAKM [14] and GaborTLC [15] for the homogeneous CD.

The core idea of the proposed method is that we use the NPSG
to represent the image structure, then the change level depends on
how much one image still conforms to the NPSG from the other
image. Meanwhile, there are two points should be noted. First, to
measure the structure differences of the post-event (pre-event) tar-
get patch, we only use the location information of the mapped
K-nearest NPSG from the pre-event (post-event) images, then the
structure difference calculation is only carried out within this post-
event (pre-event) image by comparing the similarity difference be-
tween the target patch and patches in the two K-nearest NPSG. It is
worth underlining that this operation avoids the leakage of hetero-
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geneous data, which exists in different degrees in other similarity
based heterogeneous CD methods such as SH, PP, and AMD. Sec-
ond, to make the fusion process of forward detection and backward
detection more reasonable and accurate, we calculate the patch
similarity based on the image statistical distribution and analyze
the characteristics of these similarities, and make the expectations
of forward and backward similarity difference balanced. The main
contributions of this work are summarized as follows:

1) We propose a novel CD framework with constructed graph
based on nonlocal patch similarity, which makes the heteroge-
neous data comparable. This method measures the change level
between the pre- and post-event images by measuring how much
the graph structure of one image still conforms to that of the other
image.

2) The proposed method avoids the leakage of heterogeneous
data and reasonably combines the forward and backward detection
results based on the statistical distribution, which can efficiently
reduce the false alarms in CD of heterogeneous images.

3) The proposed heterogeneous CD framework is completely
unsupervised, its parameters are easy to determine, and it exhibits
a good level of usability as shown in the experiments.

1.3. Outline

The overall structure of this study takes the form of four sec-
tions, including this introductory section. Section 2 introduces the
proposed method. Section 3 presents the numerical results. In the
end, we provide our conclusion in Section 4.

2. Nonlocal patch similarity based heterogeneous CD

We consider two co-registered images that represent the
same region acquired by heterogeneous sensors before (time
t1) and after an event (time t2), which are denoted as X =
{x(m,n,c)|]T<m<M,1<n<N,1<c<C} lining in the domain
X and Y={y(m,n,c)]l<m<M,1<n<N,1<c<GC} lining in
the domain ), respectively. Here M and N are the height and the
width of two images, Cx and Gy are the number of channels of
two images. As mentioned in Section 1, the heterogeneous sensors
take completely different imaging mechanisms, it is meaningless to
directly compare their signal values for detecting changes. An in-
tuitive method is to find a relationship between the heterogeneous
data and make them comparable, which makes the unchanged ar-
eas and changed areas show completely different forms.

By exploiting image self-similarity, a small patch in the image
can always find some very similar patches in an extended search
window (or the whole image) based on the patch-wise similar-
ity. This self-similarity is also the basis of the widely used nonlo-
cal SAR image despeckling algorithms, such as probabilistic patch-
based (PPB) algorithm [38], SAR block-matching 3-D (SAR-BM3D)
[39], fast adaptive nonlocal SAR despeckling (FANS) [40], and it
has also been applied to SAR image change detection [41]. On the
other hand, this kind of nonlocal patch similarity also represents
the structural information of the image, which can establish the
relationship between heterogeneous images. As shown in Fig. 1, in
the SAR image X, a small target patch TX is connected with sev-
eral similar patches SX. If the objects (areas) represented by these
patches do not change between t1 and t2, this nonlocal similarity
structure can be followed by the optical image Y. This means that
the patch TY is also very similar to patches SY in the optical image
Y, where the positions of TY and SY in Y are the same as that of
the TX and SX in X. If there is a change in the area represented by
TX, we can find that this nonlocal similarity structure is no longer
conformed and the patch TY is very different from the patches SY
in the image Y, as shown in target patch 2 in Fig. 1. From this il-
lustration, we can find that the change level in the heterogeneous

images can be measured by how dissimilar between the nonlocal
patch similarity structures of two images.

The proposed method consists of three steps: 1) construct NPSG
for each target patch; 2) compare the similarity structure and gen-
erate the difference image; 3) generate the binary change map
with thresholding or clustering method. The framework is illus-
trated in Fig. 2.

2.1. Nonlocal patch similarity based graph

Let us consider a square target patch, X =
{x(m+Om,n+ %, 0); (Om, ) eP,1 <c<C} with the size
ps x ps x Cx, where (m, n) is the position of the anchor pixel (for
example, the patch center), P indicates the set of square spatial
offsets with respect to the anchor pixel and its cardinality is
|P| = p?.

As the graph model can efficiently capture crucial information
and local structure of an image, it is an effective tool for image
representation and analysis [42,43], which has also been used in
SAR image change detection using a pointwise approach [44]. Here,
we propose to construct a weighted graph G to represent the ge-
ometric structure for each target patch. Thus, denoting the graph

—— Vx(m),Ex(m‘n), Wx} for each target patch X, ), we con-

struct the NPSG within a &5 x & search window W centered on
this X(m,n) as

= {X(,gj); (i +9,j+ 19]) eWw, (l?j, 19]) S P}, ‘V

X(m,ny

‘ = (& - ps)z

Vx(m.n)

Ex iy = [(x(m,n), X)) Xiij) € Vi, }
WX Xi.jy) = exp (=Ad (Xanny X jy))s (Xonm Xeijy) € E

X(m,ny
(1

where the term d(X(y, ), X)) represents a distance measure of
two vertices Xy, and X;;), and A > 0 is a parameter control-
ling the bandwidth of the exponential kernel. Within this graph

Gx(m‘n) = {VX(mAn)’EX(m,n)’WX}’ each patch in the search window

W becomes a vertex, and each vertex X(;;) is connected with the
target vertex X,y by a set of edges Ex(m,n)’ and their associate
weights w involving a measure of similarity between each vertex
and the target X, ,). In this case, the structure information of the
patch X, ) can be characterized by this graph. To exploring this
nonlocal patch similarity based graph, we need to calculate the
distance d(X(mn), X(ij)) between the target vertex X,y and its all
neighbors X;;) within the search window W.

For the optical image, assuming the additive white Gaussian
noise (AWGN) model, x = z + u, with z being the true signal value
and u being a zero mean Gaussian random variable with constant
variance o2, ie., u~ N(0, 02). Under this AWGN model, the tradi-
tional Euclidean distance is usually used, which has been proved to
be optimal under most criteria of interest [45]. Here we add a nor-
malized parameter y, (described in more detail in Section 2.4 and
in the Appendix) to the Euclidean distance as

dope (Ximny X)) = &% | Xemm) = X | (2)

 Gp?

The normalized parameter ¥, can make the expectation of dis-
tance E[dopt (X(m.n)- Xijy)] = 1 when X n) and X are two real-
izations of the same true value (noise-free patch).

For the SAR image, assuming the usual multiplicative model,
X = zu, with z being the true intensity value and u being a unit-
mean Gamma random variable modeling the speckle. The proba-
bility density function (pdf) of u is given by

LL
pu(u) = muL”e’“‘, u>0 (3)
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Patch

(b)

Fig. 1. Illustration of nonlocal patch similarity in heterogeneous images. The target patches 1 and 2 are connected with several similar patches in the SAR image (a). Target
patch 1 is also similar to the mapped patches in optical image (b), which means that the similarity structure in SAR image is followed by the unchanged target patch 1 and
its mapped patches in optical image. However, the similarity structure is no longer conformed by the changed target patch 2 and its mapped patches, where they show a

lot of difference.

X image at time ¢, Y image at time ¢,

Divided into
overlapped patches

Yon,n

BB " hiided into
[ ) | overlapped patches

o Construct the nonlocal
patch similarity graph

X(mn)

Construct the nonlocal

b N patch similarity graph

K _ K K
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H N m Ym,n) Yonn)' "~ Y(mn)
Backward
change measure

DI/ change measure

Integrated
difference image
pI1/final |thresholding /

clustering
Binary
changed map

Fig. 2. Framework of the NPSG based heterogeneous change detection method.

where I'( - ) denotes the Gamma function, and L is the equiv-
alent number of looks (ENL) that describes the degree of av-
eraging applied to the SAR measurements during data forma-
tion and postprocessing. Here we use the following two types of
distances

0
Ak (X X jy)
&

2 X

2
Cxps c=1 (O, 0)eP

X(m+ l?ms n+ l?n, C) +X(l+ ﬂm;j‘f‘ l?ns C)
2\/X(m + l?m, n+ l?ns C)X(i+ l?msj‘i‘ l?n, C)

X+ O i+ 900 \ ]
x(M+ Om, n+ Py, )
(5)

where yL(l) and yL(Z) are normalized parameters similar to y, (de-
scribed in more detail in Section 2.4 and in the Appendix). The first

xlog

(2) Cx

&z T

bs c=1 (O, z?,.)sJP

A5 (Xamny Xii ) =

type distance (4) has also been used in [46]. Intuitively, d;q?2 can
be regarded as the normalized sum of logarithmic ratio between
arithmetic and geometric means of the signal intensities and dSAR
can be regarded as the normalized sum squares of logarithmic ra-
tio between signal intensities.

With these defined patch distances, the edge weight between
X(mn and X(;;) is generated by using the Gaussian kernel type sim-

ilarity criterion
W(X(myn), X(i,j)) = exp (—)\,d(X(m’n), X(,J))) (6)

where d corresponds dgpt, dSAl)e and déﬁfa according to different sit-
uations, respectively. Then for each patch in the pre-event image
X and the post-event image Y, we can construct its NPSG by this

operation.

2.2. Calculating the difference image

As the graph G contains rich robust structure information, we
can use this to detect the changes between heterogeneous images,
which means that we need to compare the difference between the
graph Gy of the pre-event X, and the graph Gy of the

(m,n) (m,n)

post-event Y, ;). A simple and intuitive idea is to directly compare
the weighted graph as follows

fonm = D WXy Xy ) h (Xemm- Xii )
(i)

W (Yimny Yai)) H(Yomm- Yiii) | (7)

where h(Xpn), Xij) is the function on graph vertices X, ) and
Xy such as the simplest case h(Xmnn). X(i.j)) = 1.

Although this difference criterion is simple and easy to under-
stand, just as it directly compares the patch similarities between
all the neighborhoods, there is a serious risk. The operation of di-
rect similarity (or weighted similarity) subtraction in (7) will cause
confusion of similarities and leakage of heterogeneous data. The
“confusion” means that all the neighbors are used in computation
of structure difference of (7), which may make the measure less
discriminative. The “leakage” means that the two terms directly
subtracted in (7) are generated based on different images, that is,
they come from different domains X and ), which should not be
directly compared.

Through further observation, we can find that the structural in-
formation of each patch is concentrated on its K-NN (K most sim-
ilar neighbors). Then we construct the K-nearest NPSG Gﬁ(m y =
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(c)

Fig. 3. The process of constructing and mapping K-nearest NPSG. (a) K-nearest NPSG Gﬁm)

G’(  for the target patch Y(mn; (d) GK - X

and the mapped G'””p G'””” is obtained by mapping the 65 .

X(m,n) location
Pk K
@N*e N mmy

TN K
@J0" € Ny,

w (Xmm X %)

w (X(m,n)l X(il,jf)k)

Y(m,ny location
@k eng, .

4Nk e NK
()% € Ny

w (¥onm: ¥ %)

w (y(m,ﬂ)‘ Y(ir.jr)“)

for the target patch Xy, n); (b) Gﬁmm and the mapped Ggf""n); (c) K-nearest NPSG

to the image X, the vertex positions of GQ‘“”) and Gﬁ(mm are the

same but these two graphs are constructed in different domams The same is true for G"’”"M and Gx“,, .

K K
[ X(m.m’EX(m,n)’ Wx] of each target patch X, ) as
V= X 00+ 95) ew. (9195) e 2. Gy e A%, L

‘v,'ém) ‘ =K

EX o = {(X<m,n>’xa‘.j>) Xiij) € Vx(mn)}

WX Xiij) = exp (~2d (X Xi.p)). ¥ (X X)) € EX,
(8)

where V. K( oy TEPTESENLS the anchor pixel position set of the K-NN

of X(mny by sorting the distances d(X;,n), X(ij)) and taking out the
K smallest X; ).

Then, instead of directly comparing the similarity (distance)
vectors between the heterogeneous images, we first map the
Gﬁ(mn) to the post-event image Y to obtain the mapped graph

’WY} as

Y(mn) {Y(, he (l + 19,', ] + 19]) eWw, ('l?,', 19]) eP, (l ]) S x(m")]

‘v;g::ﬁ) ‘ —K

B = { o Xan) Yo <5 |
W(Y(m.n)’ Y(x:j)) = exp (—)»d (Y(m.n)v Y(u‘)))* V(Y“"’“” Ya )) © E;':”P

m.n)

map _ [ymap pmap
Y(mn.n) [ Yanny’ “Yimn)

9)

We can easily find that the mapped graph G?(ap : is a subgraph of
m.n

Gv(m " The process of constructing and mapping K-nearest NPSG

is shown Fig. 3.

Then we compare its own K-nearest graph 65( : (similar to
mn

(8)) with this mapped G?(a” ) within the post-event ilﬁage Y for the

forward detection. We calculate the structure difference by using
the similarity or distance criteria as

1 K
f(Ym,n) = R Z ‘W(Y(myn), Y(i,j)k>h(Y(mv")’ Y(i,j)k)
k=1

—W<Y(m,n), Y(,-r.j/)k)h(Y(m,n), Y(,-,,j,)k) ‘ (10)
fonm = <Y<m m- Y jy >h<Y<m’">’Y<i.j>k>

_d<Y(m,n), Y(i,yj,)k)h<Y(m.n), Y(i’,j’)k> ‘ (11)
where (i, j)k e/\/"f(m . denotes the position of kth nearest patch

Lk .
, and (1’,1’)( e Nf  denotes the position of
n) (m.n)

kth nearest patch to X in V,’{( my’ In this paper, for the sake

of simplicity and to be able to derive the normalized parameters
based on statistical distribution to fuse the difference images, we
uniformly set the function h(Y(pyn), Yij) to be constant 1, which
means that we only use the difference of edge weights. Then (10)
and (11) can be reduced to

i K
to Y(m,n) mn Vy(m

K

= 2 ‘W(Y(myn),y(i’j)k) ~w(Yonn: Y, j,)k)‘ (12)
K

fam = %El ‘d(Ym,n)’Y(i.j)k) - d(Y<m,n)sY(,~,Yj,)k)‘ (13)

From this, we can find that the structure difference criteria (12),
(13) use the position information of the mapped G?("p . and they
mn

calculate the structure difference within the same image domain,
which avoids direct comparison between heterogeneous data such
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as the similarity difference in (7), and other types of difference cri-
teria in SH [33], PP [34,35], and AMD |[36].

After the structure difference z{m.n) is calculated, we assign it
to all the pixels in the patch Y. Then we turn to another tar-
get path Y5 7 and repeat the same operation to obtain the struc-
ture difference f(Yﬁz,ﬁ)' After the operations described above are per-
formed on all the overlapping patches, then for each pixel (i, j),
1 <i<M,1<j<Nin the forward change image, there is a set
F(‘{ i of structure difference corresponding to the patches covering
pixel (i, j). Then the final change level of this pixel can be obtained
by averaging this set as
DI (i, j) = 1 f

D=5, 2 fow (14)
Then we can obtain the forward difference image DI, The back-
ward difference image DI®" to associate the pre-event image X
with the post-event image’s NPSG G{im . can be similarly done as

the generation of the forward DIV

For the integrated difference image, we calculate the DIV and
DI®W by using distance criterion (13), and then fuse them to obtain
the difference image (DI) as

DIfinal — (DI 4 DIPW) /2 (15)

To improve the performance of the proposed method, we in-
troduce two step sizes in the DI generation procedure. First, we
use a search step As > 1 in the construction of K-nearest NPSG,
which makes the distance between adjacent candidate patches in
the search window W greater than the step size. Therefore, the
search space of the candidate patches W can be reduced to 2 by
this Ag, that is, €2 can be regarded as the A times down-sampling

2
of W and its cardinality is |Q2| = L&A;SPSJ with | - | represent-

ing the rounding down operation. Thus, it can not only reduce the
computation of constructing the K-nearest NPSG, but also forces
these patches of K-nearest NPSG away from each other to avoid
local aggregation, so that the corresponding K-nearest NPSG can
contain richer and more stable structure information. Second, we
use a target patch step Ap € [1, ps) in the division of the tar-
get patches, which means that it can approximately reduce the
amount of target patches by a factor A%, thereby speeding up the
DI generation process. The framework of the NPSG based DI gen-
eration is summarized in Table 1, where A is the reduced position
set of the anchor pixels of the target patches, whose cardinality is

|A| = {Aﬂp—‘ ’VA%—‘ with [ - ] representing the rounding up opera-

tion.

Table 1
Implementation steps of generating the NPSG based DI.

Algorithm 1. NPSG based DI generation

Input: Heterogeneous images X, Y, parameters ps, &5, A5, Ap and K.
1. Calculate the nonlocal patch similarity structure difference
for all target patches X n), Y(mn), (M, n) € A do
Compute d(X(mn), Xij)) and d(Ymn), Yiij) Vi, j) € Q.
Compute K-nearest NPSG Gf  ~and Gy .
Compute <"m>") by mapping G{;[M to X.
Compute f, = by mapping GX  toY.

o
Add f¥,, and fY, . to the sets F}; and FY;,

1.,
Vi, j) e {(m+ Om,n+ Vn); (19,,,,(1;:,) e P}, respectively.
end for
2. Compute the forward and backward DIs
for all pixels (i, j), 1 <i<M,1<j<Ndo
Compute the forward DV¥(j, j) and backward DIPY(j, j).
end for
3. Fuse the forward and backward DIs
DIfinal — (DI/W 4 DI™™) /2

2.3. Binary change map generation

Once the DI is obtained, the CD task can be treated as an image
binary segmentation problem, which is similar as that in the ho-
mogeneous CD. The simplest way to obtain the binary change map
CM = {cm(i, j)|1 <i<M,1 < j <N} is using thresholding method
as

. 1, DU jy>T
em@, j) = {0, DIl (i, j) < T (16)
where cm(i, j) =1 indicates a change and vice versa, and T is the
threshold such as the Otsu threshold [37]. However, how to choose
the optimal threshold is a very difficult problem. The clustering
method can also be used in this binary segmentation problem,
which is a process of grouping a set of features into meaningful
clusters. Here, we select the PCAKM algorithm [14] to obtain the
final binary CM for its simplicity and effectiveness, which uses the
component analysis (PCA) method to extract the features and em-
ploys the k-means clustering to feature vectors with k = 2.

2.4. Patch distance calculation

The proposed CD method founds heavily on the patch similar-
ity. Therefore, it is worth investigating in more depth the patch
distance. This mainly includes two aspects. First, how to compare
noisy patches? As there are many ways to measure distance, which
one to choose in different situations needs to be determined, espe-
cially for the SAR image. Second, how to balance these distances of
heterogeneous images? Because we need to fuse forward and back-
ward DI as (15), which are based on their respective distance mea-
surements on the heterogeneous images, therefore, these distance
representation methods on heterogeneous images should be com-
parable, that is, they should be kept at the same level, otherwise
the effect of this fusion will be greatly reduced.

We consider uncorrelated noise. First, for the patchwise optical-
domain distance, where the AWGN model x =z +u is usually
used, with x e RP being the vectorized patch, and each element
of z being the true signal value and u being a Gaussian random
variable, in this case, the mean squared Euclidean distance is usu-
ally used as

d1 (X1, X2) = [|X1 — X2 |3/ (17)

and its induced similarity criterion g(X;,X;) = exp (—A[x; — x2||§)
is optimal under most criteria of interest [45].

Second, for the SAR-domain distance, where the multiplicative
model X =z@®u is usually used, with each element of z being
the true intensity value and u being a Gamma random variable.
Deledalle et. al [45] have derived three different similarity criteria
by using different evaluation methods:

_"f 1 X1 (i), (i) )L
g(X1,Xp) = EOQX] 0] <(X1 @ + %2(0))°

p? : . L
%) = TT22( X )
800 x) =[] ((X1(i)+xz(i))2

n
g(x1.%;) = exp [ = " (logxy (i) — logx, (i))° (18)

i=1

where «; is a function of L, the first similarity criterion is de-
rived based on the Bayesian joint likelihood with o) = % (or
L2
I (L)2e2l
terion is based on the generalized likelihood ratio (or the mutual

the maximum joint likelihood with o) = ), the second cri-
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Fig. 4. A simple example of the differences between different distance criteria. (a) represents the true optical image with size 200 x 200, which is divided
into four 100 x 100 patches with a; =a4 =0.25 and a; =a3 =0.75; (b) and (c) are images acquired by different optical sensors with different noisy lev-
els, 0y =025 and o, =0.1; (d) represents the true radar image with the transformation d(i, j) =1 —a(i, j)2 for each pixel; (e) and (f) are images acquired
by different SAR sensors with different number of looks as L; =1 and L, =4. Then we can calculate the patch distances by using (17), (19) and (20) as

dy(b1,bs)  d;(bi,by)  dy(ci.ca)  dy(ci,0) 0.1248 03750 0.0200  0.2700
dy(e1.eq)  dy(er,ex)  dy(fi.fa) dy(fi.fo) | =]0.6140 0.7101 0.5311 1.0389 |. From this, we can find that the distance contrast is larger in the im-
dy(eres)  dy(erer)  dy(fi.f)  dy(fi.fo) 32921 3.8740 0.5677  1.1490

age with low noise, which means that it is easier to distinguish the image patches in the low noise image, for example the distance ratio d,(cy,cz)/d,(c1.cq)
is about 4 times of d,(bi,by)/d;(b1,bs). Meanwhile, we can also find that the distances obtained by using these standard criteria are unbalanced, for exam-
ple, d;(ei,eq) is more than 25 times of d, (b1, bs). Therefore, the fusion contrast between the changed and unchanged regions is not obvious, for example, 1| =
[d3(31,32)+d1 (bl,bz)]/[d3(e1,e4)+d1 (bl,b4)] =1244 and 1, = [dz(fl,fz)er1 (cl,cz)]/[dz(fl,ﬁ;)+d1 (cl,c4)] = 2.375. After normalization with (24), the normalized

d,(bi,bs)  dy(bi.by) di(ci.ca)  dy(c1.02) 0.9987  2.9999  1.0000  13.5008
patch distances are | d,(e;.e4) d,(e1.ez) d,(f1. fa) d,(f1. f2) | = | 1.0004 1.1570 1.0002 1.9564 |, and the fusion contrasts between the changed and
dy(er,es)  dyerer)  dy(fi,fa)  dy(fi. fo) 1.0007 11776  1.0002  2.0241
unchanged regions become r; = 2.089 and r, = 7.728, respectively.
information kernel), and the last criterion is based on the vari- 7 T
ance stabilizing transform. However, as the first similarity crite-
rion lacks some important properties such as the Maximal self- 6
similarity, which means that there exists a distinct pair (X, X5)
makes g(xq, Xp) > g(X1, X1), the performance of this similarity cri- 5
terion is not satisfactory compared with the other two criteria (for
more details, please refer to [45]). Therefore, we only refer to the 2
last two similarity criteria, and the corresponding distance expres- g 4
sions are =
72}
1 p? . . A s
2 X1(1) +x2(1
dz(X],XZ) = 722L10g M (19)
ps ‘3 2./%1(1)x2 (1) 2
1 p?
. 12
d3(X1, %) = — ¥ (logx; (i) — logx,(i)) (20) 1
pS i=1
. . 0
Next, we consider how to make these distances for heteroge- 107! 10° 10!

neous data at the same level. We give a simple example to illus-
trate that the distances obtained by using these standard criteria
are unbalanced as shown in Fig. 4, where the ratios of different
criteria are even dozens of times. Therefore, we can not directly
fuse the forward DI and backward DI by using these standard dis-
tance formulations, and we need to normalized them.

We further analyze these patch distance criteria. Suppose pix-
els x; and x; in the image are independent identically distributed
(ii.d.), we want to identify pixels with similar signal components
to the target based on the different measured distances, that is,
X1 = X. Since the observed pixel value is polluted by noise, x; =
Z;+u; or x; = z;u;, the distance also depends on the noise. Let us
consider three limiting cases: 1) noiseless signal, 2) uniform noisy
signal, and 3) non-uniform noisy signal.

In the first case, u; = 0 for the optical signal or u; =1 for the
SAR signal, define the signal difference in optical image as n = x; —
X, and the signal ratio in SAR image as p = x;/x,, and substitute
this into (17), (19) and (20), we have

2Jp
ds(x1, %) = [log (p)* (21)

In Fig. 5, we plot the distances d, and d3 as the func-
tions of signal ratio. We can find that their shapes are symmet-

1
d](X],Xz) =T]2; dz(Xl,Xz)ZZLlog (\/2ﬁ+)’

p

Fig. 5. Plot of the speckle-free distances of d; and ds.

rical. Define p =ef, we have dz(x1,x2)=2Llog(M) and

d3(xq,Xy) = t2. Therefore, in semilog axes, ds is quadratic, d, is al-
most quadratic around the minimum, zero, and begins growing lin-
early for larger/smaller values. Generally, when the difference be-
tween the object and the background in the SAR image is not high,
sharp curve is more suitable, such as the d3, which can accurately
find the similar target patches rather than the background patch
for the target patch. Meanwhile, when the noise level is high, we
should choose a gentle curve, such as the d, with L < 4. This is
because that it is not much discriminative for the samples with
relatively close intensity caused by the noisy, thus it is more ro-
bust.

In the second case, with the uniform signal, z; = z,, by substi-
tuting this in (17), (19) and (20), we have

2«/”]”2
ds(x1,%) = (loguq — logu2)2 (22)

up+u
di (a1 x0) = (U — )™ dz(XLXz):ZLlog( 1 2>;

where u; ~ N (0, 02) is the independent Gaussian distributed ran-
dom variable with zero mean and o2 variance for the optical im-
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Fig. 6. The theoretical pdfs of the pixel distances and empirical pdfs of the patch distances. (a) pdfs of d; under different noise levels o =1, 0.5, and with different signal
intensity differences n = 0, 1;(b) pdfs of d, under different noise levels L = 1,4, 8, and with different signal intensity ratios p = 1,2; (c) pdfs of d; under distance noise
level L = 1,4, 8, and with different signal intensity ratios p = 1, 2; (d) empirical pdfs of the patch distances using d; with different o and 7; (e) empirical pdfs of the patch
distances using d, with different L and p; (f) empirical pdfs of the patch distances using d; with different L and p.

age in dq, and u; ~ Gamma(L, L) is the independent Gamma dis-
tributed random variable with shape parameter L and inverse scale
parameter L (equal to the number of looks) for the SAR image in d,
and ds. In appendix A, we calculate the pdfs and expected values
of these distances as

E[di (x1,%2)]=20%; E[d>(x1,%:)] = ~L[¢(0.1)~(0,L+1/2)];
E[ds(x1.%2)] = 2¢(1.L) (23)

In the proposed heterogeneous CD method, for each target patch,
take Y(;n) (or X py) in the forward (or backward) detection as
an example, if no change occurs in this patch, each patch Y;; (or
Xij)) in its own K-nearest NPSG and mapped K-nearest NPSG is
very similar to the target patch Y(p, )y (or Xy ), ideally, their true

Y _ Y X _7X - K
values are equal Z(i‘j) = Z(m’n) (or Z(i,j) = Z(m,n) ), (i,)) € NY(m,n) u

/\/,’(‘(m n As the patch distance level between heterogeneous images
is very different as (23), we need to normalize these distances to
make the pixel value in the forward and backward DIs balanced for
a better fusion performance. An intuitive and reasonable approach
is to keep their values at the same level in the unchanged areas.
Then, suppose X, ), X(ij) are optical patches with the same true
values, and Yy, ), Y(ij) are SAR patches with the same true values,

_ (1) _
we need to have E[dop[ (x(m?n),x(,-vj))] = E[dSAR (Y(m.n),Y(i.j)>] =

E[dé/zu)a (Y(m_n), Y(,-_j)>], where dopt, dg];2 and dgfzu)? correspond to (2),
(4) and (5), respectively. Therefore, we add normalized parameters

in the distance criteria in dop, dg“)2 and déﬁé with

vo =1/[20%]; ¥V =1/[L(p(0,L+1/2) — 9(0,1))];
v =1/12¢(1, )] (24)

In the third case, we consider a more common model that
N=21 -2, Uy, uy; ~N(0,02) in the optical image and p = zy/z;,
Uy, Uy ~ Gamma(L, L) in the SAR image. We calculate the pdfs
of the distances (17), (19) and (20) in the Appendix (refer to
equations (A.5), (A.16) and (A.24)). For a more precise analysis, we
plot the pdfs of the distances for several different signal intensity
differences/ratios (1, p) as shown in Fig. 6. For the uniform pixels
Z1 =z, if we set the detection rate to 80% for detecting the uni-

form x; and x,, then the detection thresholds are 1/9 < x;/x; < 9
under the signal-look SAR image, which is obtained by com-
puting the probability P(da(x1,x;) <2log3 [L=1)~08 or

P<d3 (X1,%2) < [log(9)]2 |L= 1) ~ 0.8. However, this detection

thresholds are 1/2.59 < x{/x; < 2.59 and 1/1.93 < x;/x, < 193
for 4-look and 8-look SAR images, respectively. This intuitively
shows the influence of different noise levels on the detection
effect. Meanwhile, from Fig. 6, we can also find that the pdfs
largely overlap for different signal intensity differences or ratios
(n or p) under the high noise level conditions (0 =1 or L=1),
which means that it is difficult to carry out reliable discrimination.
However, in this paper, we use the patchwise distance instead of
the pixelwise distance. For the sake of simplicity, we assume two
patches with constant signal intensity ratio as

zZm+ O, m+09)/z2(+ Om, j+O0) = o, VO, On) € P (25)

Then, the patchwise distance becomes the mean of |P| ii.d. ran-
dom variables, well approximate by a Gaussian distribution with
the Central Limit Theorem. Fig. 6(d)-(f) show the estimated pdfs of
different patch distances when 11 x 11-pixel patches are consid-
ered with the Monte Carlo simulation. By comparing Fig. 6(a)-(c)
with (d)-(f), we can find that the patchwise distance can provide
a much better discrimination than the pixelwise distance, which
is one of the reasons why we choose the robust patchwise based
NPSG for the heterogeneous CD. At the same time, our in-depth
discussion on these distance criteria can also provide a good ref-
erence for other applications, such as the nonlocal based speckle
reduction algorithms.

3. Experimental results and discussion

In this Section, simulations are performed to demonstrate the
proposed conclusions and evaluate the performance of proposed
nonlocal patch similarity based heterogeneous CD method. The ex-
periments are performed on five pairs of heterogeneous remote
sensing images. Detailed descriptions of datasets, quantitative mea-
sures, parameter analysis, and experimental results are provided in
the following.
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Fig. 7. Sardinia and Texas datasets. The top row is the Sardinia dataset: (a) the NIR band image acquired in September 1995; (b) the NIR band image acquired in July 1996;
(c) the optical image acquired in July 1996; (d) the ground truth image representing the changes between (a) and (c). The bottom row is the Texas dataset: (e) the image
acquired by Landsat 5 TM in August 2011; (f) the image acquired by Landsat 5 TM in September 2011; (g) the image acquired by Advanced Land Imager from the Earth
Observing mission in September 2011; (h) the ground truth image representing the changes between (e) and (g).

3.1. Experimental datasets and quantitative measures

Five pairs of heterogeneous datasets are used to assess the ef-
fectiveness of the proposed CD method.

(1) Dataset A: The Sardinia dataset consists of two near-infrared
(NIR) band images and one optical image (Sardinia, Italy), as shown
in Fig. 7(a)-(c). The two NIR band images, with 300 x 412 x 1
pixels, are acquired by Landsat-5 (L5t1 and L5t2), in September
1995 and July 1996, respectively, whereas the optical image, with
300 x 412 x 3 pixels, is obtained from Google Earth (GEt2) with
red, green, and blue bands in July 1996. The dataset represents the
expansion of Lake Mulargia as shown in Fig. 7(d), which is built by
the on-the-spot investigation.

(2) Dataset B: The Texas dataset consists of three multispec-
tral images: a pair of pre-event and first post-event images with
1534 x 808 x 7 pixels from the same sensor, the Landsat 5 TM
(L5t1 and L5t2), in August 2011 and September 2011, as shown in
Fig. 7(e) and (f),! respectively; and the second post-event image
with 1534 x 808 x 10 pixels acquired by the Advanced Land Im-
ager (ALIt2) from the Earth Observing mission in September 2011,
as shown in Fig. 7(g)2. The dataset represents a forest fire in Bas-
trop County, Texas, and the ground truth is provided by Volpi et al.
[47]. As the L5t2 and ALIt2 are acquired within 1 day interval,
there is no apparent change between them. The change between
L5t1 and L5t2 (or ALIt2) is shown in Fig. 7(h), which represents
the fire damage.

(3) Dataset C: The Shuguang dataset consists of one SAR im-
age and one optical satellite image, as shown in Fig. 8(a) and (b),
respectively. The SAR image, with size 593 x 921 x 1, is taken
by the Radarsat-2 with C-band on June 2008, whereas the opti-
cal image, with size 593 x 921 x 3, is acquired from Google Earth
with red, green, and blue bands in September 2012. The dataset
represents the changes of land use in the farmland as shown in

! Distributed by LP DAAC, http://Ipdaac.usgs.gov.

Fig. 8(c), which is generated by manual annotation that combines
expert knowledge and prior information.

(4) Dataset D: The Wuhan dataset is a pair of SAR/optical satel-
lite images (Wuhan City, China), as shown in Fig. 8(d) and (e). The
SAR image, with 495 x 503 x 1 pixels, is taken by the Radarsat-
2 with C-band in June 2008, whereas the optical image, with
495 x 503 x 3 pixels, is acquired from Google Earth with red,
green, and blue bands in November 2011. The dataset represents
the changes of new buildings and roads as shown in Fig. 8(f),
which is generated through the on-the-spot investigation.

(5) Dataset E: the California dataset is a pair of multispec-
tral/SAR images, as shown in Fig. 8(g)? and (h)?. The multispectral
image, with size 875 x 500 x 11, is taken by Landsat 8 on Jan-
uary 5, 2017, with nine channels covering the spectrum from deep
blue to shortwave infrared and two long-wave infrared channels;
whereas the SAR image, with size 875 x 500 x 3, is acquired by
Sentinel-1A recorded in polarisations VV and VH on 18 February
2017 and augmented with the ratio between the two intensities
as the third channel (all these channels are log-transformed). The
ground truth in Fig. 8(i) is provided by Luppino et al. [36], which
represents a flood in Sacramento County, Yuba County, and Sutter
County, California. These images are re-sampled from the original
3500 x 2000 images to reduce the computation time.

The performance of DIs generated by the comparing methods
can be assessed by the empirical receiver operating characteristics
(ROC) curves, which represents the estimated pixel-wise probabil-
ity of detection (PD) as a function of the probability of false alarm
(PFA) by varying of the binary segmentation threshold T in (16).
Moreover, two quantitative criteria derived from the ROC curve can
be computed: (1) the area under the curve (AUC), corresponding
to the integral of the ROC curve; (2) the diagonal distance (Ddist)
between the no detection point (PFA=1, PD=0) and the point at
the interception of the ROC curve with the diagonal line defined

2 Data processed by ESA, http://www.copernicus.eu/.
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Fig. 8. Shuguang, Wuhan and California datasets. The top row is the Shuguang dataset: (a) the SAR image acquired in June 2008; (b) the optical image acquired in September
2012; (c) the ground truth image representing the changes between (a) and (b). The middle row is the Wuhan dataset: (d) the SAR image acquired in June 2008; (e) the
optical image acquired in November 2011; (f) the ground truth image representing the changes between (d) and (e). The bottom row is the California dataset: (g) the
multispectral image acquired in January 2017; (h) the SAR image acquired in February 2017; (i) the ground truth image representing the changes between (g) and (h).

by PFA=1-PD. For these two metrics, the greater the criterion, the
better the detection. In order to measure the binary CM, we se-
lect the widely used quantitative parameters: false positives rate
(FPR), false negatives rate (FNR), the percentage correct classifica-
tion (PCC) and the Kappa coefficient (Kappa).

3.2. Parameter analysis

The main parameters in the proposed NPSG are the patch size
Ds, the search window size &g, the search step size A, the target
patch step size Ap, and the number of the selected most similar
neighbors K. To measure the impact of these parameters, we an-
alyze the influences of them using the above datasets. The AUC
and Ddist of the ROC curve are adopted to evaluate the generated
DI, respectively, which can describe the global performance of the
NPSG.

(1) Influence of the patch size ps. In Fig. 9(a), we vary ps from 3
to 11 with step two and keep other parameters fixed as & = 100,
As = Ap =2 and K = 35. It can be found that the patch size has an
important impact on the CD performance. As the ps increase, the

AUC and Ddist gradually increase first and then decrease, which
is mainly because that a too small ps cannot fully reflect struc-
tural information and is not robust to the noise, whereas a too
large ps makes it very hard to find enough similar patches. Gen-
erally, for high-resolution images, a larger ps can be selected; on
the contrary, for low-resolution images, ps should be appropriately
smaller. From Fig. 9(a), we can see that setting ps = 5 is appropri-
ate for our experiments.

(2) Influence of the search window size &;. We vary the &;
from 50 to 150 with step 25 and keep other parameters fixed as
ps =5, As=Ap =2 and K = 35. From Fig. 9(b), we can find that
the datasets of Shuguang, Wuhan and Texas are not as sensitive to
&g as the datasets of Sardinia and California. For the Sardinia and
California datasets, a larger search window can bring better results,
which is mainly due to that a larger & can bring more similar
patches. However, a very large &5 will increase the search space 2

2
of the candidate patches (|2| = FZTPSJ ), and bring high comput-

ing cost. In addition, the value of & is also affected by ps. When
ps increases, &5 should also increase. According to our experience,
it is suggested to set the window size to & = 20ps.
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Fig. 9. Influences of parameters on the NPSG performance: (a) influence of the patch size ps; (b) influence of the search window size &;; (c) influence of the search step
size Ag; (d) influence of the target patch step size Ay; (e) influence of the number of the most similar neighbors K.

(3) Influence of the search step size Ag. In Fig. 9(c), we vary
A from 1 to 5 with step one and keep other parameters fixed as
ps =5, & =100, Ap =2 and K = 35. We can see that the Shuguang
and Texas datasets are more robust to Ag than other datasets. As
the large step size can reduce the search space to accelerate the
algorithm, and avoid local aggregation of similar patches, we sug-
gest setting the search step size to |ps/2] < As < ps. In our exper-
iments, we fix this parameter to As =2 in a comprehensive con-
sideration.

(4) Influence of the target patch step size Ap. We vary A, from
1 to 5 with step one and keep other parameters fixed as ps =5,
& =100, As =2 and K = 35. From Fig. 9(d), we can find that as
the value of A, increases, the performance of NPSG will gradu-
ally decrease. It starts to slow down, and then it drops quickly. Al-
though the Ap can speed up the DI generation process by nearly
Af, times, at the same time it will smooth the DI as can be seen
from (14). The value range of A, is 2 < Ap < ps, and we suggest
to set Ap to 2 or 3 as a compromise choice.

(5) Influence of the number of the selected most similar neigh-
bors K. In Fig. 9(e), we vary K from 15 to 55 with step 10 and
keep other parameters fixed as ps =5, §& =100 and Ag = A, = 2.
It can be found that the detection performance is not very sensi-
tive to the value of K. Of course, an extra small K is not recom-
mended, such as K less than 10. This is because that a very small
K-nearest NPSG is not robust enough. At the same time, a very big

2
K is also not recommended, such as K > 0.2 % |2| = 0.2 % ESA’—S”SJ .

There are two main reasons: first, a large K will lead to confusion,
that is, there may be no K really similar patches in the search win-
dow, and some patches that do not really represent the same ob-
ject as the target patch will also be introduced into the K-nearest
NPSG; second, a large K will increases the computational com-
plexity. Therefore, we empirically suggest to set this parameter

2
20 < K < min {75, 0.05 x L&X—SI’SJ } by considering the CD perfor-

mance and the computational cost. In our experiments, we fix this
parameter to K = 35.

(6) Meanwhile, the performance of the final CD is also influ-
enced by clustering process when we select the PCAKM algorithm
to obtain the binary CM. The main parameters of PCAKM are the
feature vector (principal components) size s and the image block
size h. In [14], these two parameters are analyzed in detail. Gener-
ally, setting s € {3, 5, 7} can meet most of the requirements. The
parameter h defines the local neighborhood size, which affects the
contribution of spatial contextual information on the feature ex-
traction. A large h will smoothen the effect of noise and reduce
the false detections, but it will bring more miss detections, and
vice versa. In this paper, we set s equal to h for convenience in
PCA feature extraction. We try different sizes of h (3 < h < 7), and
then choose the best result for each method.

3.3. Experimental results

We apply four methods for comparison: SH [33], PP [34,35],
AMD [36] and Markov Model for Multimodal Change Detection
method (M3CD) [48], which is relying on an observation field built
up from a pixel pairwise modeling on heterogeneous image pair.
Among them, M3CD does not generate DI, but directly generates
binary CM. For the SH, PP, AMD and the proposed NPSG based CD
method (called NPSG for short), we adopt the Otsu thresholding
method [37] and PCAKM [14] to generate the final CM after ob-
taining the DI. For each DI, we try different feature vector sizes
and image block sizes for the PCAKM, and then choose the best
result for each method.

3.3.1. Experiments on Sardinia and Texas datasets

In the first experiment, we show that the NPSG can establish
a connection between heterogeneous images, which means that
NPSG can be consistent in the unchanged area, but no longer con-
sistent in the changed area. Then, we test each similarity-based
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0]

Fig. 10. DIs and binary CMs on Sardinia dataset. The top row is the DI; between L5t2 and GEt2: (a) SH; (b) PP; (c) AMD; (d) NPSG. The bottom row is the DI, between L5t1

and GEt2: (e) SH; (f) PP; (g) AMD; (h) NPSG.

Table 2
Quantitative measures (AUC and Ddist) on Sardinia and
Texas datasets.

Methods  Sardinia dataset Texas dataset
AUC Ddist AUC Ddist
SH 0.8840 1.1390 0.5578  0.7655
PP 0.7445  0.9489 03718  0.5633
AMD 0.3645 0.5549  0.8810  1.1403
NPSG 09129 1.2006 09528 1.2983

method by comparing the performances on the heterogeneous im-
ages acquired at the same time and different times, respectively.

Using the Sardinia dataset, we assume that the noise on this
dataset is the AWGN. Then, by selecting some uniform regions
in the images, we estimate the noise standard deviations of NIR
and optical images to be 1.08e-3 and 9.71e-3, respectively. Fig. 10
shows the difference maps between heterogeneous image pairs of
L5t2 and GEt2, L5t1 and GEt2. Obviously, since L5t2 and GEt2 are
obtained at similar times, there is no obvious changes between
them. Ideally, there should be no obvious structural features in the
DI; between L5t2 and GEt2, however, the changing parts should
be highlighted in the DI, between L5t1 and GEt2. From Fig. 10, we
can find that the SH can highlight the changes in DI,, but it also
shows some undesirable structures in DIy; the PP and AMD fail to
detect the changes in DI, as shown in Figs. 10(f) and 10(g); the
NPSG can not only find the changed parts in DI,, but also show
little structural features in DI;.

For the Texas dataset, we assume that the dataset is contami-
nated by AWGN, and estimate the standard deviations to be 1.63e-
2 and 5.65e-3 for L5t1 (L5t2) and ALIt2, respectively. Fig. 11 shows
the difference maps between heterogeneous image pairs of L5t2
and ALIt2, L5t1 and ALIt2. It can be found that the SH and PP can-
not find the changes between the heterogeneous L5t1 and ALIt2, as
shown in Fig. 11(e) and (f). Both AMD and NPSG perform well in
Texas dataset, which show the consistency between L5t2 and ALIt2
and the changed part between L5t1 and ALIt2. In order to further
compare the ability of these methods to detect changes, we also
plot ROC curves in Fig. 12 and list quantitative comparisons of AUC
and Ddist in Table 2. The analysis of these results shows that the
NPSG outperforms these comparing methods in these two datasets.

3.3.2. Experiments on Shuguang, Wuhan and California datasets

In the second experiment, we test the NPSG on three pairs of
SAR/optical (multispectral) images. For the intensity SAR images of
these datasets, the ENL parameter L can be estimated by selecting
some uniform regions in the images as L = (’é—gr’)z [49], where [ty
is the mean value of the selected uniform region and o is the
corresponding standard deviation. In order to fully compare the

(h)

Table 3

Quantitative measures of binary CMs on Shuguang dataset.
Methods FPR(%)  FNR(%) PCC(%) Kappa
M3CD 2.33 1.47 96.20 0.6017
SH-Otsu 54.55 0.40 45.05 0.0517
SH-PCAKM 53.76 0.35 45.89 0.0553
PP-Otsu 14.33 1.95 83.71 0.1862
PP-PCAKM 17.01 0.05 82.94 0.2942
AMD-Otsu 51.50 1.38 47.12 0.0258
AMD-PCAKM 48.55 1.32 50.13 0.0348
NPSG-Otsu 2.66 0.53 96.81 0.7024
NPSG-PCAKM  1.55 0.97 97.48 0.7288

performances of different methods, we not only compare the DI,
but also compare the binary CM. To generate the binary CM, we
employ Otsu thresholding method and PCAKM on the DIs of each
similarity based heterogeneous CD method, respectively.

Figs. 13, 14 and 15 show the DIs, CMs of different methods on
Shuguang, Wuhan and California datasets, respectively. Fig. 16 plots
the ROC curves of SH, PP, AMD and NPSG on these three datasets.
For the Shuguang dataset, we estimate that the ENL of SAR image
is 11 and the noise standard deviation of optical image is 1.12e-
2. Therefore, we choose the second type of distance criterion d;z“)a
in (5) for the SAR image. Form the detection performance, we can
find that the SH and AMD fail to detect the changes as shown in
Fig. 13(a) and (c), thus results in smaller AUC and Ddist, as shown
in Fig. 16(a) and listed in Table 6. From the comparison of CMs, we
can see that the NPSG can obtain the best result whether using the
Otsu thresholding or PCAKM, so it gets Kappa coefficients of 0.7024
and 0.7288 for NPSG-Otsu and NPSG-PCAKM, respectively, followed
by M3CD with Kappa coefficient 0.6017, which outperforms the PP,
SH, and AMD, as listed in Table 3.

For the Wuhan dataset, the estimated ENL of SAR image is 4,
and the noise standard deviation of optical image is 3.59e-2. There-
fore, we choose the first type of distance criterion dé:u)e in (4) for
the SAR image. From Fig. 14(c), we can see that the AMD can-
not highlight the changes in the generated DI, which leads to a
poor performance on the corresponding ROC curve as shown in
Fig. 16(b). The PP performs better than SH on Wuhan dataset with
a higher AUC and Ddist as listed in Table 6. Visually, the DI gen-
erated by NPSG is cleaner than other DIs as shown in Fig. 14(a)-
(d), that is, it is more sensitive to real changes and more robust to
the false changes caused by noise, which is further confirmed in
Fig. 16(b) and Table 6. Meanwhile, by comparing the CMs of dif-
ferent methods in Fig. 14(e)-(g) and Table 4, the NPSG obtain the
best CM with highest Kappa coefficient and PCC, followed by PP-
PCAKM, M3CD and PP-Otsu, which outperform other methods.

For the last California dataset, as the SAR image has been de-

speckled, the estimated ENL is 23.47, thus we choose the d;z“)z in
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Fig. 11. DIs and binary CMs on Texas dataset. The top row is the DI; between L5t2 and ALIt2: (a) SH; (b) PP; (c) AMD; (d) NPSG. The bottom row is the DI, between L5t1

and ALIt2: (e) SH; (f) PP; (g) AMD; (h) NPSG.
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Fig. 12. ROC curves derived by varying of the threshold T in (16) on DIs generated by different methods on the heterogeneous datasets: (a) Sardinia; (b) Texas.

(5) as the distance criterion, at the same time, the estimated noise
standard deviation of multispectral image is 3.02e-2. Because of
the low speckle level in SAR image, the DIs of these comparing
methods can detect the changes between heterogeneous SAR and
multispectral images with different degrees, as shown in Fig. 15(a)-
(d). The corresponding ROC curves are shown in Fig. 16(c), and the
quantitative criteria of AUC and Ddist are listed in Table 6. Due
to poor performance of M3CD with low PCC and Kappa coefficient
on this dataset as listed in Table 5, we show the CM of PP-Otsu
with higher value instead of M3CD in Fig. 15(e). By comparing the
CMs of different methods in Fig. 15(e)-(g) and Table 5, we can find
that the proposed NPSG gain the highest PCC (94.07% of NPSG-
Otsu) and Kappa coefficient (0.4185 of NPSG-Otsu), which is a lot
ahead of the second PP method on this dataset with PCC 73.47%

(PP-Otsu) and Kappa coefficient 0.1486 (PP-Otsu). The analysis of
these results shows that the NPSG generated DI and CMs outper-
form other DIs and CMs both in terms of qualitative vision and
quantitative measurement, which means that the proposed non-
local patches similarity based graph can establish a more robust
connection between the heterogeneous images.

In addition, we can find that the similarity-based SH, PP and
AMD don’t always detect changes between heterogeneous images.
For example, SH fails in the Texas and Shuguang datasets, PP fails
in the Sardinia and Texas datasets, and AMD fails in the Sardinia,
Shuguang and Wuhan datasets. However, only the NPSG method
can succeed on all datasets. This may be due to two reasons: first,
the imaging modality-invariant assumptions they use are no longer
true in some complicated cases; second, these methods all have
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Fig. 13. DIs and binary CMs on Shuguang dataset. (a) DI of SH; (b) DI of PP; (c) DI of AMD; (d) DI of NPSG; (e) binary CM of M3CD; (f) binary CM of NPSG-Otsu; (g) binary
CM of NPSG-PCAKM; (h) the reference image.

Fig. 14. DIs and binary CMs on Wuhan dataset. (a) DI of SH; (b) DI of PP; (c) DI of AMD; (d) DI of NPSG; (e) binary CM of M3CD; (f) binary CM of NPSG-Otsu; (g) binary
CM of NPSG-PCAKM; (h) the reference image.

Table 4 Table 6
Quantitative measures of binary CMs on Wuhan dataset. Quantitative measures (AUC and Ddist) on Shuguang, Wuhan and California
datasets.
Methods FPR(%) FNR(%) PCC(%) Kappa
Methods  Shuguang dataset Wuhan dataset California dataset
M3CD 3.53 3.09 93.38 0.4758
SH-Otsu 18.15 2.29 79.55 0.2147 AUC Ddist AUC Ddist AUC Ddist
IS)]]—)!_—(])’tCSil\JI(M ;8237 ;gé ggg; gigg; SH 0.7496 09719  0.8049 1.0607 0.7263  0.9548
’ : ’ ’ PP 0.8549 1.0835 0.8662 1.1316  0.8362 1.0807
PP-PCAKM 6.98 1.26 91.76 0.5220
AMD-Otsu 50.64 168 3868 0.0206 AMD 0.6195 0.8322 0.5780  0.7871 0.7572  0.9983
AMD-PCAKM 56.19 1.65 215 0.0301 NPSG 09890 1.3562  0.9591 1.2694 09111 1.1709
NPSG-Otsu 1.49 3.19 95.32 0.5662
NPSG-PCAKM  2.00 2.20 95.80 0.6525

some problems of mixing heterogeneous data when they generate
the difference images. However, the proposed NPSG based hetero-
geneous CD method can overcome these shortcomings, so it can
achieve more robust and better results.

Table 5
Quantitative measures of binary CMs on California dataset.

Methods FPR(%) FNR(%)  PCC(%) Kappa

M3CD 4041  2.05 57.53  0.0208

SH-Otsu 4453 091 5456  0.0565 : . :

SH-PCAKM 4157 083 =460 00595 3.4. Comparison of computational time

PP-Otsu 2575 078 7347  0.1486 ) ) )

PP-PCAKM 3462 024 65.16  0.1229 The main space and time complexity of the NPSG based CD
AMD-Otsu 56.28  0.68 43.04  0.0363 method is concentrating on the calculation of the nonlocal patch
AMD-PCAKM 5378 072 4551 00403 similarity structure difference (step 1 of Algorithm 1 listed in
NPSG-Otsu 3.97 1.96 94.07 04185 Table 1). As can be seen from Table 1, the structure differen
NPSG-PCAKM  4.08 1.93 9399 04178 abie 1) d en from fable 1, ructure ditierence

X Y
(mmy (©OF i ny

) is calculated on a patch by patch basis.
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Fig. 15. DIs and binary CMs on California dataset. (a) DI of SH; (b) DI of PP; (c) DI of AMD; (d) DI of NPSG; (e) binary CM of PP-Otsu; (f) binary CM of NPSG-Otsu; (g) binary

CM of NPSG-PCAKM; (h) the reference image.
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Fig. 16. ROC curves derived by varying of the threshold T in (16) on DIs generated by different methods on the heterogeneous datasets: (a) Shuguang; (b) Wuhan; (c)

California.

1) For the space complexity, storing the distance set of
d(x(m,n)YX(i.j)) (Or d(Y(m,n)’Y(lj))) for all (1, ]) e Q l'equil‘eS

2
(’)(%), and storing the structure difference set of FX (or FY) for
S

all pixels requires O(%). Therefore, the space complexity of the
proposed algorithm is very low.

2) For the time complexity, calculating the distance between
patches d(Xmny. X¢ijy) (OF d(Ygnny, Y jy)) for all (m, n) € A
and (i, j) € Q requires O(p?CX"A”—’g%) and constructing the K-
nearest NPSG NPSG Gﬁ(m,n) (or G$<m,n>) for all (m, n) € A requires

O(’X—%’% log (i—%)) by using some accelerated sorting algorithms,
sorting algorithms, such as the Block sort or Tree sort.
The time complexity of the proposed algorithm is relatively

high in the abovementioned theoretical analysis, which requires

2 £2\\ MN &2 ;
O((pSCX + log (Ai?»?%i?) Table 7 reports the CPU times of
different methods on Sardinia, Wuhan and Shuguang datasets. The
parameters of NPSG are set as ps = 5, & = 100 and K = 35. The al-
gorithms, excluding M3CD, were performed in MATLAB 2016a run-
ning on a Windows laptop with Intel(R) Core(TM) i7-8550U CPU
and 8 GB of RAM. The C++ code of M3CD algorithm was executed
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Table 7
Computational time (seconds) of different methods.

Datasets Image size M3CD SH PP AMD NPSG with different Ay and A,

As=Ap=2 As=Ap=3 A;j=A,=4
Sardinia 300 x 412 x 1(3) 2206.64 1083.31 20572 76.97 652.89 130.23 42.73
Wuhan 495 x 503 x 1(3) 2616.22  2286.94 42948 169.97 1360.54 287.27 98.64
Shuguang 593 x 921 x 1(3) 4691.82  7957.84 979.46 30450 2948.06 602.38 196.62

in a Linux computer with Intel(R) Xeon(R) Silver 4110 CPU and 31
GB of RAM.

From Table 7, we can find that the two most time-consuming
methods are M3CD and SH, followed by NPSG, PP and AMD. In ad-
dition, we can also find that the speed of the NPSG can be signifi-
cantly improved by using the search step As and target patch step
Ap as analyzed in Section 2.2 and Section 3.2. Meanwhile, from the
above complexity analysis and Table 7, it can be found that several
strategies can be considered in NPSG to avoid a large amount of
computational time:

1) Using the patch-wisely parallel solution. Due to the target
patch-wise independence property of the structure difference cal-
culation (step 1 in Algorithm 1), NPSG can be easily accelerated by
the parallel solution.

2) Using large search step and target patch step to reduce the
search space of similar patches and the amount of target patches,
seeking the balance between computation time and change detec-
tion accuracy.

3) Using the superpixel as the basic unit instead of the square
patch. Compared with the square image patch, the superpixel has
two main advantages: it can maintain the structure and edge
of the object, and the interior of each superpixel is homoge-
neous (representing the same kind of object); it can greatly re-
duce the computational complexity, especially for large-scale high-
resolution images. However, we have two problems to solve when
using the superpixel as the basic unit: one is the accurate super-
pixel segmentation (especially for SAR images), and the other is to
find a suitable criterion to measure the similarity (or distance) of
superpixels, which is also our future work.

4. Conclusion

This paper mainly focuses on the change detection for hetero-
geneous remote sensing images. Since the heterogeneous images
refer to distinct feature representations of ground object by differ-
ent imaging mechanisms, it is difficult to measure the changes be-
tween heterogeneous images by direct comparison. We present an
unsupervised change detection method to make the heterogeneous
data comparable, which is based on the structure consistency be-
tween images. To exploit the structure information, we construct
the NPSG for each image based on the nonlocal self-similarity.
Therefore, the change level can be measured by how much the
graph structure of one image still conforms to that of the other im-
age. Then, the NPSG based CD method can be implemented in two
steps. It first constructs the K-nearest NPSG for each input image,
then map the K-nearest NPSG of one image to the other image,
and compare the difference between the graph and mapped graph
to obtain the DI. Secondly, it uses the thresholding or clustering
method to obtain the binary CM with the combined DI. In the pro-
cess of obtaining the combined DI, the proposed method can avoid
the leakage of heterogeneous data by comparing the graph differ-
ence on the same domain, and reasonably fuse the forward and
backward detection results based on the statistical distribution. In
this way, it can achieve robust and effective performance in the
difficult heterogeneous CD task.

In this paper, we only consider two commonly used noise dis-
tribution models (AWGN and multiplicative Gamma distribution
noise models) to measure the distances for the optical image and
SAR image, but there are some other noise models not considered,
such as the complex Wishart distribution based polarimetric SAR
(PolSAR) data. Therefore, how to apply this model to PoISAR is our
next research work. Moreover, as the NPSG represents the struc-
ture information of patches, it is also applicable to the land cover
classification of remote sensing images, especially to the classifica-
tion based on fusion of heterogeneous data. In the future, we will
also evaluate the NPSG model on other complex heterogeneous
data and plan to extend the NPSG model to the classification prob-
lem.
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Appendix A. Statistical characteristics of the distance criteria

In this appendix, we compute distribution, mean, and variance
of the random variables (17), (19) and (20). We denote two ob-
served signals x, y and their corresponding true constant signals
Zx, zy, and their correlation noise uy, uy, respectively. Next, we an-
alyze the statistical characteristics of the distance criteria (17), (19)
and (20) under different models.

Al. The additive noise model of optical image

We have x = zy +uyx and y = zy + uy, where uy and uy are i.i.d.
random variables that uy, uy ~N(O,62). We analyze the random
variable of distance criterion d = (x — y)?.

1. Fist case, with the uniform signal, zx = z,, then we have d =

(ux — uy)z. Easily, we have the expected value of d as
E(d) =202 (A1)
Let A=uyx—uy, we have A obeys the Gaussian distribution A ~

2
N(0.202). Let B= (ﬁ) , we have that B is distributed accord-
ing to the chi-square distribution with 1 degrees of freedom, de-
noted as B ~ x2(1). The pdf of the chi-square distribution is

ps(b: 1) = bo2e 21 (b)

21/2]"(]/2) (AZ)
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with 1(b) the unit-step function. As d = 20:2B, then we have the
pdf of random variable d is

pa(d) = Ps(557: 1) 357 = 2(rdr(]f/2)e w2 1(d) (A3
2. Second case, the true signals with different values z, =

vy and zy =v,, then the x and y are iid. random variables
with different means that x ~ N'(vy,02) and y ~ N(v;,02). Let

n=v; —v, and A:":}%;”, then we have A~ AN (0,1). As d=

2
202(A + ﬁ) , then the cumulative distribution function (cdf) of

—

d can be written as

f 77

P(d) = hn ¢ (x)dx (A4)
e

where ¢( - ) is the standard normal density. Then we have the pdf

of random variable d as

1 Vd-n Vd+1n
pa(d) = 7o [¢< oo >+¢( N )]1(61)

(a-n)* (v
zl[e— W e }l(d)

4Vmdo (A->)

A2. The multivariate noise model of SAR image

We have x =zxuy and y=zyuy, where uy and uy, are iid.
Gamma distributed random variables with shape parameter L and
inverse scale parameter L as uy, uy ~ Gamma(L, L).

2/xy
1. First case, with the uniform signal, zy = z,, we have

d =2Llog (2“;:%)

Let A= log( Uxtlly ) then we calculate the expected value and pdf

A2.1. The distance criterion of d = 2L log( Xty >

(A.6)

2,/uxtly
of A by directly using the conclusion in [46]
E(A) = —3[p(0.1) = (0, L +1/2)] (A7)
872LA
pA(A) 22I2B(LL) ZB(LL) m (A) (AS)

where ¢(m, x) is the m-order Polygamma function defined as
the (m+1)th derivative of the Digamma function ¢(m,x) =

%, and B( -, - ) is a Beta function with B(a,b) =

rlf‘(")]iig)’). Therefore, we have the expected value and pdf of d = 2LA
as

E(d)=-L{¢(0,L) —¢(0,L+1/2)] (A9)

1 1
Dd (d) = pA(d/ZL)ﬁ = 221[B(LL) m ( ) (A]O)

2. Second case, the true signals with different values zy = v,
and zy = v,. Let p =2z/z, and A = uy/uy, then we have that the
distance criterion becomes

d=2Llo ("“’>_2Llo 1+pA
g NG

As A =uy/uy and uy, uy ~ Gamma(L, L), then A is beta-distributed
as A ~ Beta(L, L), and the pdf of A is

(A11)

— 2L
Pa(A) = L —1(A) (A12)
_ 14pA wt+/ ) _
Define w= R then we have A= 5 (Wim or A=
1 w=a/w2-1 .
2 (Fm)' The cdf of w can be written as
P(w) = [T pa(A)dA (A13)
&

where o = % V‘”i“ Then the pdf of w can be computed as

w—/we-1
Pu(W) = p w+\/w27 2 w+vw2 -1
" R VAN = povw2 —1\w—vw? -1

1(w-vw?2-1 2 w— w2 -1
+pA(P(w+x/w2—l)>,o\/w2—l <w+«/ﬁ>
L —2L
~ OB L)f/ﬁ((i) (1 * %)
+<p1—a>L(1 + ;a)u)uw)

L L
2 po po
_— 1
" BLLVW (<<p+a) ) +<(poc+1>2) ) “)

(A14)
By substituting 2% = £ ; and —2% —
(p+a) [(p+1>w+(]_p) /rz_]] (po+1)
£ 5, (A14) can be written as
[0+ Dw+(o-1)v/w2T]
2 L
w + w4+ (1 - w2 )
Pw) = 5o L)W((m W (1 p)w2 -1
2L
+<(p+l)w+(p—1)\/m> )1(w) (A15)

As d = 2Llogw, the pdf of d is

d2L ed/ZL
pa(d) = pw(e"?) =
L

T LB(L L)y/1 — et
x (((p +1)et2 4 (1= p)y/edlt — 1)_2

+((,0 +1)e?2 4 (p —1)y/ed/t — l)_2L>1(d) (A16)

We can easily find that (A.10) is the special case of (A.16) with
p=1

A2.2. The distance criterion of d = [log (;)]2

1. First case, the uniform signal, zy =z,. Let A=x/y, then
A ~ Beta(L, L), and the pdf of A is given in (A.12). Define w = logA,
the pdf of w is

Wi w w/2 w/2 -2
Pw(w) = pa(e)e" = 2 L(t;(ﬁ)) 1(w) = = B<+LE,L) 1(w)
(A17)
As d = w?, the cdf of d is
P(d) = [ VJg Pw(w)dw (A18)
Then, the pdf of d is
-2L
pa(d) = pu(vVd) 31= + pu(—Vd) ;1= = (et 1(d)
d w 2Jd w 2/d VdB(L,L)
(A19)

Meanwhile, the expected value and variance value of Logarithmi-
cally transformed speckle is given in [50] as

E(loguyx) = E(loguy) = ¢(0,L) — logL (A.20)

var (loguyx) = var(loguy) = (A.21)

(1.1
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Then the expected value of d is
E(d) = E[ (logux — loguy)z] =2¢p(1,L)

2. Second case, the true signals with different values zy = vq
and zy = v,. Let p =2zx/zy and w = log ﬂ—; then we have that the

(A22)

distance criterion becomes d = (w + In p)z. Then, the cdf of d is
Vd-Inp

P() = J” gy, PwW)dw (A23)
where py(w) is given in (A.17). Then the pdf of d is
1 1
d) = ( d—1In )—+ (— d—1In )7
pa(d) = pu(Vd P)5ia pu(—vd P)57a
( —Vdsinp /H—]np)izl' ( Jd+Inp JE,mp)’Z"
e~z +e 7 +(e—z +e 2
= 1(d
2VdB(L, L) @
(A.24)
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