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 A B S T R A C T

Heterogeneous change detection (HCD) is crucial for monitoring surface changes using various remote sensing 
data, especially in disaster emergency response and environmental monitoring. To facilitate the comparability 
of heterogeneous images, previous methods are devoted to designing various complex transformation functions 
to transfer heterogeneous images into a common domain for comparison. As a result, the performance of HCD 
is constrained by the accuracy and robustness of these transformation functions. Unlike existing comparison-
based HCD methods that rely on complex transformations and feature alignments between heterogeneous 
images, this paper proposes an unsupervised rules-induced energy model (RIEM) that detects changes by 
independently analyzing intra-image relationships, without explicitly comparing the heterogeneous images. 
This frees HCD from the complicated and challenging transformations and interactions between heterogeneous 
images. Specifically, we first establish the connections between the class relationships (same/different) and 
change labels (changed/unchanged) of pairwise superpixels, and then derive six rules for determining the 
change label of each superpixel, which enables detecting changes by considering only the intra-image 
relationships within each image, without inter-image comparisons. Then, we build an energy-based model 
to release the ability of rules to identify changes, which implements four types of energy loss functions. 
Remarkably, since the rules used in the energy model are derived based on the nature of change detection 
problem, the proposed RIEM is highly robust to imaging conditions. Extensive experiments on seven datasets 
demonstrate the efficacy of RIEM in detecting changes from heterogeneous images. The code is released 
at https://github.com/yulisun/RIEM.
1. Introduction

1.1. Background

Heterogeneous change detection (HCD) refers to the technique of 
extracting land cover change information by analyzing multitemporal 
remote sensing (RS) images captured over the same geographical region 
but under heterogeneous conditions with different sensors (e.g., SAR 
and optical sensors) (Lv et al., 2022b; Mercier et al., 2008). HCD can 
be viewed as an extension of the homogeneous change detection, in 
the latter multitemporal RS images come from the same sensor with 
similar imaging conditions (Wu et al., 2023; Zheng et al., 2024; Chen 
et al., 2023a).

Compared to the conventional homogeneous change detection, HCD 
offers three main advantages: (1) HCD allows for the rapid acquisi-
tion of change information by utilizing any available pre-change and 
post-change images from different sources when obtaining homoge-
neous images is impossible due to imaging constraints such as lighting 

∗ Corresponding author.
E-mail address: sunyuli@mail.ustc.edu.cn (Y. Sun).

and weather conditions (Touati, 2019; Luppino, 2020). (2) With the 
usage of heterogeneous images, HCD can enhance the temporal resolu-
tion of change analysis when obtaining homogeneous images within a 
short time window is infeasible due to satellite revisit limitations (Sun 
et al., 2021b; McGregor et al., 2024). (3) HCD can fully leverage 
early RS image acquired by outdated sensors, thereby expanding the 
temporal horizon for time-series monitoring and analysis (Sun et al., 
2022). Based on these advantages, HCD has been widely applied in 
various fields, particularly in emergency response scenarios such as 
floods, fires, earthquakes, landslides, explosions (Lv et al., 2022b; Zhao 
et al., 2024). Moreover, with the rapid advancement of space and 
imaging technologies, an increasing variety of new sensors are being 
deployed (Zheng et al., 2023; Hong et al., 2024), while older satellites 
have a limited lifespan and eventually cease operation. Given its ability 
to overcome sensor-specific limitations and adverse imaging conditions, 
HCD is gradually becoming an attractive topic in the field of remote 
sensing (Yu et al., 2023; Shi et al., 2024).
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1.2. Related work

Despite its significant application prospects, HCD also faces substan-
tial challenges compared to homogeneous change detection. Because 
of the different imaging mechanisms, imaging conditions and imaging 
modes among different sensors, heterogeneous images exhibit dra-
matical variations in the representation of the same land features, 
which makes it challenging to identify changes by comparing the 
multitemporal images directly as done in the homogeneous change 
detection (Wu et al., 2024b; Jia et al., 2022b; Chen et al., 2024b). 
So, the primary task of HCD is to establish the imaging-independent 
correlations between heterogeneous images and make them ‘‘compa-
rable’’ (Sun et al., 2021b). To achieve this goal, researchers have 
proposed different methods for HCD and they mostly use the paradigm 
of 𝐷𝐼 = 1(𝑋) ⊖ 2(𝑌 ), where 𝐷𝐼 denotes the difference image 
that measures the change score for each pixel, 1 and 2 denote the 
transformation functions that transform pre-change image 𝑋 and post-
change image 𝑌  into the same domain respectively, and ⊖ denotes the 
pixelwise difference operator (Liu et al., 2018a). Therefore, previous 
HCD methods have worked on exploiting better operators of 1, 2
and ⊖ to improve the detection performance.

Depending on the transformed common domain, these comparison-
based methods further contain methods that compare images within the 
same category domain, within the same feature domain, and within 
the same image domain. For example, (i) the post-classification com-
parison methods first classify the pre- and post-change images into 
a common land cover category, and then compare the classification 
results to extract change information, such as the Bayesian classi-
fication method (Camps-Valls et al., 2008), compound classification 
method (Wan et al., 2019), and evidence reasoning based method (Liu 
et al., 2014). (ii) The feature transformation based methods utilize 
some imaging-invariant assumptions or deep Siamese/pseudo-Siamese 
network to extract shared features from heterogeneous images and 
perform comparisons, such as the nonlocal structure comparison based 
method (Han et al., 2024b; Zhu et al., 2024), combining local and 
non-local structure based method (Chen et al., 2022, 2023b), adaptive 
graph based method (Han et al., 2024c), iterative sample augmentation 
network (Lv et al., 2024), dual-branch training method (Xing et al., 
2024), self-guided autoencoders (Shi et al., 2024), commonality au-
toencoder (Wu et al., 2021), multiscale and enhanced UNet (Lv et al., 
2022a, 2023), and self-supervised learning base method (Chen and 
Bruzzone, 2022). (iii) The image-translation based methods employ tra-
ditional regression functions or generative adversarial networks (GAN) 
to translate an image from one domain to the other, subsequently, 
compare the translated and original images within the target image 
domain to find the changes (Li et al., 2021; Jia et al., 2022a), such 
as image translation by using affinity matrix distance (Luppino et al., 
2019), structure consistency based regression (Sun et al., 2023, 2024b), 
homogeneous pixel transformation (Liu et al., 2018b), fractal project 
base method (Mignotte, 2020), affinity matrix based X-Net and ACE-
Net (Luppino et al., 2022), code-aligned autoencoder (Luppino et al., 
2024), robust fusion GAN based method (Wang et al., 2024), multi-
domain constrained translation network (Wu et al., 2024a), Copula 
mixtures guided translation network (Li et al., 2024), disentangled 
representation network (Dai et al., 2024), and graph convolutional 
network based HCD methods (Florez-Ospina et al., 2023; Han et al., 
2024a).

Therefore, it can be found that for such comparison-based methods 
with 𝐷𝐼 = 1(𝑋)⊖2(𝑌 ), there are two obstacles to be crossed.

• Firstly, how to ensure the accuracy of transformation func-
tions of 1 and 2? On one hand, 1 and 2 will be affected 
by the unknown changed regions (Sun et al., 2021a; Chen et al., 
2023b), that is, it is inherently impossible to establish a one-to-
one correspondence between the multitemporal images due to 
the intrinsic properties of change detection problems. Further, 
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the change influence consists of two aspects: first, during the 
construction or learning of 1 and 2, and second, during 
the completion of the transformations of 1(𝑋) and 2(𝑌 )
when the transformations are not based on individual pixels,
i.e., the changed pixel will affect the surrounding unchanged 
pixels. Therefore, for unsupervised HCD methods, it is difficult to 
eradicate the negative impacts of unknown changing samples in 
the image transformation. For supervised HCD methods, although 
it is possible to establish accurate mapping relationships using 
labeled unchanged samples, this is achieved at the expense of a 
large amount of manual annotation. As is well known, accurately 
annotating changed regions on heterogeneous images requires 
strong expert knowledge (Lv et al., 2022b; Zheng et al., 2021).

• Secondly, how to ensure robustness and generalizability of 
transformation functions of 1 and 2? The comparison-
based methods often rely on the expected imaging-invariant as-
sumptions or need a large number of training samples to establish 
the correlation between heterogeneous images (Sun et al., 2022). 
On one hand, these assumed imaging invariances that hold for 
some simple scenarios may no longer be valid when faced with 
very complex HCD scenarios, such as when the image resolution 
is improved, the number of object classes is increased, the ob-
ject relationships are complex, the image noise is exacerbated, 
etc. On the other hand, these transformation functions learned 
based on training samples also face the problems in carving out 
connections between heterogeneous images when the training 
samples are insufficient or contain erroneous samples. At the 
same time, they also face the generalization challenge, i.e., it 
is often difficult to directly apply the 1 and 2 obtained 
on one dataset to other datasets when imaging conditions such 
as imaging parameters and imaging scenes are different (Chen 
et al., 2024a). Therefore, these comparison-based HCD methods 
that rely on imaging-invariant assumptions or limited training 
samples struggle to transform complex heterogeneous images into 
a common domain for comparison, leading to a degradation in 
detection performance.

1.3. Motivation and contribution

Recently, Touati et al. have proposed some energy model based 
HCD methods (Touati and Mignotte, 2018; Touati et al., 2020). They 
have considered the pairwise relationships between each pixel and 
all other pixels, and established a nonlocal pairwise energy model 
(NLPEM) (Touati and Mignotte, 2018) to characterize the connections 
between pixel pair relationships and pixel pair labels. In their subse-
quent work (Touati et al., 2020), they have proposed another energy 
model (named as M3CD), which uses a metric function to calculate the 
probability that two pixels have different labels (one changed and the 
other unchanged) and those that have identical labels (both changed 
or unchanged). The attractiveness of M3CD lies in its use of pairwise 
constraints to construct an energy model for directly outputting the 
pixel label, i.e., the change map. Motivated by this pairwise relationship 
with pairwise labeling constraints, another energy model based on 
locality preservation (LPEM) is proposed (Sun et al., 2024a), which 
is devoted to constraining the multitemporal images to maintain the 
same local properties in the unchanged region, such as the local feature 
similarity and local spatial continuity. However, these methods still 
do not break away from the use of transformation and inter-image 
comparison in the metric function that measures the difference of pairs 
relationships.

Inspired by the Touati’s energy model based methods (Touati and 
Mignotte, 2018; Touati et al., 2020) and the pairwise relationships 
based image structure used in previous methods (Sun et al., 2021b; 
Luppino et al., 2019), and to address the challenges of unsupervised 
HCD, we propose a simple yet highly effective approach, named rules 
induced energy model (RIEM for short). RIEM leverages the advantages 
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Fig. 1. Performance comparison between the proposed RIEM and representa-
tive existing methods, evaluated by average F1-score on seven datasets and 
typical runtime on images of size 2000 × 2000 × 3.

of energy model and image structure simultaneously, which extends 
the concept that previous methods detect changes by measuring struc-
ture difference with graph mapping (Sun et al., 2021b) or direct 
comparison (Luppino et al., 2019). RIEM incorporates the structural as-
sociations between heterogeneous images as constraints into an energy 
model and extracts change information by solving the energy model. 
Most importantly, the six rules in RIEM used to determine changes 
are established based on the nature of the HCD problem without 
using any assumptions, and these rules provide a solution for detecting 
change without comparing multitemporal images, i.e., the inter-image 
comparison of 1(𝑋) ⊖ 2(𝑌 ) as most previous methods. Therefore, 
RIEM can address the challenges mentioned above and lead to a new 
solution for HCD problem (see Fig.  1).

Specifically, in RIEM, we first divide the multitemporal images into 
superpixels and choose each superpixel as a node. Then, we establish 
the connections between the class relationships (same/different) and 
change labels (changed/unchanged) of pairwise superpixels. And, we 
derive six rules for determining the change label of each superpixel 
from these connections, which can be further quantified as a function 
between the similarity/dissimilarity relationship and the change score 
(or probability) of pairwise superpixels, whereas the similarity and 
dissimilarity relationships between pairwise superpixels are captured 
by a k-nearest neighbor (KNN) graph and k-farthest neighbor (KFN) 
graph, respectively. Based on this, a rules induced energy model is 
built to characterize the connections between the change score of each 
superpixel and the structural and spatial correlations among pairwise 
superpixels, which implements four types of energy loss functions: a 
similarity relationships based loss, a dissimilarity relationships base 
loss, a spatial smoothness based loss, and a prior sparsity based loss. 
Finally, by solving this energy model, the change score and change la-
bel of each superpixel is obtained, then we can obtain both a difference 
image (DI) indicating the change score and a binary change map (CM) 
indicating the changed/unchanged areas.

Since the rules and constrains in the energy model is intuitively 
explainable and universal, the proposed RIEM is insensitive to imaging 
conditions, making it suitable for various HCD scenarios. Moreover, by 
using the rules and fully utilizing the flexibility of energy based model, 
RIEM can directly constrain the superpixel change labels, thereby 
obtaining the change results directly, without the processes of first 
transforming the images to the same domain and then comparing 
them as in the comparison-based methods. In addition, compared to 
the previous image structure base HCD methods that rely solely on 
similarity relationships, RIEM constructs a KFN graph to represent the 
dissimilarity relationships, complementing the similarity relationship 
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based KNN graph, which can more comprehensively capture the image 
structure. The main contributions of this work are as follows.

∙ We establish six rules for determining changes based on the na-
ture of change detection problem without using any assumptions, 
which are intuitively explainable and universal across differ-
ent scenarios. These rules enable detecting changes by consider-
ing only the intra-image relationships within each image with-
out inter-image comparisons, liberating HCD from the compli-
cated and challenging transformations and interactions between 
heterogeneous images.

∙ We convert the HCD to an energy minimization problem to 
release the ability of change determination rules, which charac-
terizes the connections between change score (or change label) of 
each superpixel and relationships of pairwise superpixels.

∙ We fully exploit the relationship between superpixel pairs, in-
cluding similarity relationships, dissimilarity relationships, and 
spatial neighborhood relationships, which enables more accurate 
constraints within the energy model.

∙ We conduct comparative experiments with the state-of-the-art 
methods on seven real datasets, and validate the accuracy and 
efficiency of the proposed HCD method. The code is released 
at https://github.com/yulisun/RIEM.

2. Connections and rules

Given two co-registered images collected at times 𝑡1 (pre-change) 
and 𝑡2 (post-change) by different sensors with different imaging con-
ditions, denoted as 𝐗 ∈ R𝑀×𝑁×𝐵𝑥  and 𝐘 ∈ R𝑀×𝑁×𝐵𝑦  respectively, 
whose pixels are denoted as 𝑥 (𝑚, 𝑛, 𝑏𝑥

) and 𝑦 (𝑚, 𝑛, 𝑏𝑦
) respectively. 

Here, 𝑀 × 𝑁 represents the image spatial size, and 𝐵𝑥 (𝐵𝑦) denotes 
the number of image channels. The goal of HCD is to obtain a binary 
change map that indicates whether each pixel has changed or not.

2.1. Pre-processing

As aforementioned, we have to consider the pairwise relationship 
within the image. Different from previous methods that choose pixel 
as basic unit (Touati and Mignotte, 2018), resulting a quadratic com-
putational complexity of the number of pixels, i.e.,  (

𝑀2𝑁2), we 
choose the superpixel as basic unit, which can effectively reduce com-
plexity while utilizing contextual information and preserving object 
boundaries.

We employ the preprocessing method used in Sun et al. (2023) 
to obtain the co-segmented superpixels, which first concatenates the 
normalized (linear and logarithmic normalization for optical and SAR 
images respectively (Deledalle et al., 2012)) multitemporal images 
along the channel dimension, then uses the Gaussian mixture model 
based superpixel segmentation method (GMMSP) (Ban et al., 2018) 
to segment the concatenated image into 𝑁𝑆 superpixels, resulting in 
a segmentation map 𝛬. Using this 𝛬, we further segment the pre-
change and post-change images into 𝑁𝑆 superpixels 𝐗𝑖 and 𝐘𝑖, 𝑖 ∈ 
respectively, with the same edge contours, which are defined as 
𝐗𝑖 =

{

𝑥
(

𝑚, 𝑛, 𝑏𝑥
)

| (𝑚, 𝑛) ∈ 𝛬𝑖, 𝑏𝑥 = 1,… , 𝐵𝑥
}

𝐘𝑖 =
{

𝑦
(

𝑚, 𝑛, 𝑏𝑦
)

| (𝑚, 𝑛) ∈ 𝛬𝑖, 𝑏𝑦 = 1,… , 𝐵𝑦
} (1)

where index set is  =
{

1,… , 𝑁𝑆
}

. In this case, the 𝑖th superpixels 
𝐗𝑖 and 𝐘𝑖 stand for the same geographical regions, and they are both 
internally homogeneous within themselves (representing the same kind 
of objects), respectively. So the pixels in the 𝐗𝑖 and 𝐘𝑖 share the same 
change label, i.e., all unchanged or changed.

https://github.com/yulisun/RIEM
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2.2. Connections between pairwise relationship and change labels

We use 𝑂𝑡1
𝑖  and 𝑂𝑡2

𝑖  to denote the kinds of ground objects repre-
sented by the 𝑖th superpixels 𝐗𝑖 and 𝐘𝑖 respectively, where 𝑂𝑡1

𝑖 = 𝑂𝑡2
𝑖

and 𝑂𝑡1
𝑖 ≠ 𝑂𝑡2

𝑖  means that 𝐗𝑖 and 𝐘𝑖 represent the same and different 
kinds of objects, respectively. We use 𝐿𝑖 to denote the change label 
of the 𝑖th superpixel (𝐗𝑖 and 𝐘𝑖) located at region 𝛬𝑖, where 𝐿𝑖 = 0
represent the unchanged case and 𝐿𝑖 = 1 represents the changed case. 
Then, we can divide the index set  into changed subset  =

{

𝑖 ∣ 𝐿𝑖 = 1
}

and unchanged subset  =
{

𝑖 ∣ 𝐿𝑖 = 0
}

. Next, we investigate the 
connection between the relationship and change labels of the pairwise 
superpixels.

For the pairwise superpixels of 𝐗𝑖 and 𝐗𝑗 , 𝐘𝑖 and 𝐘𝑗 , 𝑖, 𝑗 ∈ , 
there are 4 combinations of relationships between pairwise superpixels 
within the same image expressed as 
∙ 𝑂𝑡1

𝑖 = 𝑂𝑡1
𝑗 , 𝑂𝑡2

𝑖 = 𝑂𝑡2
𝑗 ;

∙ 𝑂𝑡1
𝑖 = 𝑂𝑡1

𝑗 , 𝑂𝑡2
𝑖 ≠ 𝑂𝑡2

𝑗 ;

∙ 𝑂𝑡1
𝑖 ≠ 𝑂𝑡1

𝑗 , 𝑂𝑡2
𝑖 = 𝑂𝑡2

𝑗 ;

∙ 𝑂𝑡1
𝑖 ≠ 𝑂𝑡1

𝑗 , 𝑂𝑡2
𝑖 ≠ 𝑂𝑡2

𝑗 .

(2)

For the pairwise superpixels of 𝐗𝑖 and 𝐘𝑖, 𝐗𝑗 and 𝐘𝑗 , 𝑖, 𝑗 ∈ , there 
are also 4 combinations of relationships between pairwise superpixels 
across different images, which also respectively equal to the pairwise 
change labels based on the nature of change detection problem: 
∙ 𝑂𝑡1

𝑖 = 𝑂𝑡2
𝑖 , 𝑂𝑡1

𝑗 = 𝑂𝑡2
𝑗 ⇔ 𝐿𝑖 = 0, 𝐿𝑗 = 0;

∙ 𝑂𝑡1
𝑖 = 𝑂𝑡2

𝑖 , 𝑂𝑡1
𝑗 ≠ 𝑂𝑡2

𝑗 ⇔ 𝐿𝑖 = 0, 𝐿𝑗 = 1;

∙ 𝑂𝑡1
𝑖 ≠ 𝑂𝑡2

𝑖 , 𝑂𝑡1
𝑗 = 𝑂𝑡2

𝑗 ⇔ 𝐿𝑖 = 1, 𝐿𝑗 = 0;

∙ 𝑂𝑡1
𝑖 ≠ 𝑂𝑡2

𝑖 , 𝑂𝑡1
𝑗 ≠ 𝑂𝑡2

𝑗 ⇔ 𝐿𝑖 = 1, 𝐿𝑗 = 1.

(3)

Then, we can build the connection between the intra-image pairwise 
relationships and pairwise labels of the superpixels as follows: 
{

𝑂𝑡1
𝑖 = 𝑂𝑡1

𝑗 ;

𝑂𝑡2
𝑖 = 𝑂𝑡2

𝑗 ;
⇒

(

𝐿𝑖, 𝐿𝑗
)

∈ {(0, 0) , (1, 1)} ; (4a)

{

𝑂𝑡1
𝑖 = 𝑂𝑡1

𝑗 ;

𝑂𝑡2
𝑖 ≠ 𝑂𝑡2

𝑗 ;
⇒

(

𝐿𝑖, 𝐿𝑗
)

∈ {(0, 1) , (1, 0) , (1, 1)} ; (4b)

{

𝑂𝑡1
𝑖 ≠ 𝑂𝑡1

𝑗 ;

𝑂𝑡2
𝑖 = 𝑂𝑡2

𝑗 ;
⇒

(

𝐿𝑖, 𝐿𝑗
)

∈ {(0, 1) , (1, 0) , (1, 1)} ; (4c)

{

𝑂𝑡1
𝑖 ≠ 𝑂𝑡1

𝑗 ;

𝑂𝑡2
𝑖 ≠ 𝑂𝑡2

𝑗 ;
⇒

(

𝐿𝑖, 𝐿𝑗
)

∈ {(0, 0) , (0, 1) , (1, 0) , (1, 1)} . (4d)

In the (4a), when 𝐗𝑖 and 𝐗𝑗 represent the same kind of object (e.g. For-
est), and 𝐘𝑖 and 𝐘𝑗 also represent the same kind of object (e.g. Forest
or Water), then the labels of 𝑖th and 𝑗th superpixels can only be both 
unchanged (𝐿𝑖 = 0, 𝐿𝑗 = 0) or changed (𝐿𝑖 = 1, 𝐿𝑗 = 1). In the (4b) 
and (4c), when the superpixel pair represent the same kind of objects 
within one image and represent different kinds of objects within the 
other image, then the labels of 𝑖th and 𝑗th superpixels can never be 
both unchanged (𝐿𝑖 = 0, 𝐿𝑗 = 0).

Although the connection between the pairwise relationships and 
pairwise labels has been considered in previous approaches, they are 
more or less incomplete and not as systematic and concise as (4a)–(4d) 
in this paper. For example, the structure consistency based meth-
ods (Sun et al., 2021b; Chen et al., 2022, 2023b; Florez-Ospina et al., 
2023) are based on the fact that similarity relationships in unchanged 
regions are consistent, which only consider the connection of (4a) with 
‘‘if 𝑂𝑡1

𝑖 = 𝑂𝑡1
𝑗  and 𝐿𝑖 = 𝐿𝑗 = 0, then 𝑂𝑡2

𝑖 = 𝑂𝑡2
𝑗 ’’. The pairwise relation-

ships based energy models (Touati and Mignotte, 2018; Touati et al., 
2020) rely on the constraints expressed as: ‘‘𝑂𝑡1

𝑖 = 𝑂𝑡1
𝑗 , 𝑂

𝑡2
𝑖 = 𝑂𝑡2

𝑗 ⇒ 𝐿𝑖 =
𝐿𝑗 ’’ in the connection of (4a); and ‘‘other three pairwise relationships in 
(4b)–(4d) all lead to 𝐿𝑖 ≠ 𝐿𝑗 ’’, which ignores some possible connections 
and thus affects the accuracy of energy model.
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2.3. From connections to change determination rules

We established the corresponding connections between the rela-
tionships and labels of pairwise superpixels in (4a)–(4d), but none 
of them is a one-to-one mapping connection, i.e., it cannot be used 
directly to determine the change state of superpixels. However, when 
we impose certain restrictions on these relationships, we can derive 
rules for determining the change state, which can be used for the HCD 
problem.

Firstly, by comparing the (4a) and (4b), if we restrict 𝐗𝑖 and 𝐗𝑗
represent the same kind of objects, we can find that: (1) only if 𝐘𝑖 and 
𝐘𝑗 also represent the same kind of object, it is possible to have the 
both unchanged 𝑖, 𝑗 ∈  , that is, if 𝐘𝑖 and 𝐘𝑗 represent different kinds 
of objects, then at least one of the 𝑖th and 𝑗th superpixels changes; (2) 
only if 𝐘𝑖 and 𝐘𝑗 represent different kinds of objects, it is possible to 
have different labels for the 𝑖th and 𝑗th superpixel. Base on these, we 
can obtain the following two Rules. 

Rule 1: when restricting 𝑂𝑡1
𝑖 = 𝑂𝑡1

𝑗 , if 𝑂𝑡2
𝑖 ≠ 𝑂𝑡2

𝑗  holds, then 
(

𝐿𝑖, 𝐿𝑗
)

= (0, 0) does not hold.
Rule 2: when restricting 𝑂𝑡1

𝑖 = 𝑂𝑡1
𝑗 , if 𝑂𝑡2

𝑖 = 𝑂𝑡2
𝑗  holds, then 

𝐿𝑖 ≠ 𝐿𝑗 does not hold.

Secondly, by comparing (4a) and (4c), we can similarly obtain two 
Rules as follows.

Rule 3: when restricting 𝑂𝑡2
𝑖 = 𝑂𝑡2

𝑗 , if 𝑂𝑡1
𝑖 ≠ 𝑂𝑡1

𝑗  holds, then 
(

𝐿𝑖, 𝐿𝑗
)

= (0, 0) does not hold.
Rule 4: when restricting 𝑂𝑡2

𝑖 = 𝑂𝑡2
𝑗 , if 𝑂𝑡1

𝑖 = 𝑂𝑡1
𝑗  holds, then 

𝐿𝑖 ≠ 𝐿𝑗 does not hold.

Thirdly, by comparing (4c) and (4d), if we restrict 𝐗𝑖 and 𝐗𝑗
represent different kinds of objects, we can find that only if 𝐘𝑖 and 
𝐘𝑗 also represents different kinds of objects, it is possible to have both 
unchanged 𝑖, 𝑗 ∈  , that is, if 𝐘𝑖 and 𝐘𝑗 represent the same kind of 
objects, then at least one of the 𝑖th and 𝑗th superpixels changes. Base 
on this, we can obtain the Rule 5 as 

Rule 5: when restricting 𝑂𝑡1
𝑖 ≠ 𝑂𝑡1

𝑗 , if 𝑂𝑡2
𝑖 = 𝑂𝑡2

𝑗  holds, then 
(

𝐿𝑖, 𝐿𝑗
)

= (0, 0) does not hold.

Fourth, by comparing (4b) and (4d), we can similarly obtain another 
Rule 6 as 

Rule 6: when restricting 𝑂𝑡2
𝑖 ≠ 𝑂𝑡2

𝑗 , if 𝑂𝑡1
𝑖 = 𝑂𝑡1

𝑗  holds, then 
(

𝐿𝑖, 𝐿𝑗
)

= (0, 0) does not hold.

In Table  1, we use simple symbolic examples to visually illustrate 
the connections between pairwise relationships and change labels, and 
demonstrate how these connections are used to derive the rules for 
determining the change state (only Rules 1, 2, and 5 are shown to avoid 
repetition). There are two particularly appealing aspects of these six 
Rules.

∙ First, these Rules are derived based on the nature of change 
detection problem and no other assumptions are used, so they are 
universal across different scenarios, for both homogeneous and 
heterogeneous change detection problems.
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Table 1
The process of Rule derivation from the connections between pairwise relationships and change labels.

 

∙ Second, these Rules provide a nice solution to the HCD problem, 
enabling to detect changes by considering only the intra-image 
relationships within each image, without considering inter-image 
comparisons, which greatly reduces the difficulty of solving the 
HCD problem, since the former avoids the transformations and 
interactions between heterogeneous images.

Nevertheless, how to utilize these Rules to detect changes is to be ad-
dressed, that is, how to impose the restrictions of these Rules and how 
to mathematically implement these inferences for the HCD problem. 
Next, we utilize the energy model to address these challenges, which 
can encode the Rules by building different energy functions.

3. Rules induced energy model

Energy based model (EBM) is a mathematical framework that as-
signs a scalar energy value to each possible configuration of variables 
for capturing their dependencies (LeCun et al., 2006), where lower 
energy corresponds to correct or desirable configurations and higher 
energy corresponds to incorrect or undesirable configurations. The 
advantage of using an EBM lies in its flexibility and expressiveness, as 
the energy can be constructed in a logical manner according to specific 
requirements (Isack and Boykov, 2012; Agoritsas et al., 2023; Delong 
et al., 2012). This characteristic has also been leveraged in the change 
detection problem (Touati and Mignotte, 2018; Touati et al., 2020). In 
this study, we employ an EBM to release the potential benefits of the 
Rules 1–6, as illustrated by Fig.  2.

We define the change vector to be solved as 𝐩 ∈ R𝑁𝑆 , where 
0 ≤ 𝑝𝑖 ≤ 1 denotes the change score of the 𝑖th superpixel, with 𝑝𝑖 = 0
representing ‘‘unchanged’’ and 𝑝𝑖 = 1 representing ‘‘changed’’. Then we 
can obtain the energy model as 
𝐩∗ = argmin

0≤𝑝𝑖≤1
𝐸ℎ (𝐩;𝐗,𝐘) (5)

where the energy function 𝐸ℎ (𝐩;𝐗,𝐘) can be used to measure the 
plausibility of different configurations of values for 𝐗, 𝐘, and 𝐩. It 
assigns a scalar energy value to each configuration, indicating how 
well it aligns with the desired constraints or objectives of the problem. 
By minimizing the energy function, we can identify the most likely 
configuration of 𝐗, 𝐘, and 𝐩 that best satisfies the given constraints and 
achieves the desired outcome in the context of the problem at hand.

3.1. Similarity relationship base energy

3.1.1. KNN graph
In the Rules 1–2, their restrictions are 𝑂𝑡1

𝑖 = 𝑂𝑡1
𝑗 , i.e., 𝐗𝑖 and 𝐗𝑗

refer to the same kind of objects. To meet this restriction, we construct 
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KNN graph 𝐺𝑡1
𝑛 =

{

𝑉 𝑡1
𝑛 , 𝐸𝑡1

𝑛 ,𝐀𝑡1
𝑛
} for the pre-change image to capture 

the similarity relationship within the image 𝐗 as 
𝑉 𝑡1
𝑛 = {𝑖|𝑖 ∈ } ;

𝐸𝑡1
𝑛 =

{

(𝑖, 𝑗) |𝑗 ∈  𝑥
𝑖 , 𝑖 ∈ 

} (6)

where 𝑉 𝑡1
𝑛  is the vertex set, 𝐸𝑡1

𝑛  is the edge set, 𝐀𝑡1
𝑛  denotes the adjacent 

matrix,  𝑥
𝑖  denotes the index of the 𝑘 nearest-neighbor (NN) of 𝐗𝑖. 

Define 𝐃𝑥 as the superpixel feature distance matrix of pre-change 
image, whose element 𝐷𝑥

𝑖,𝑗 denotes the feature distance between the 
𝑖th and 𝑗th superpixels. Then,  𝑥

𝑖  can be constructed by sorting the 
distance vector 𝐃𝑥

𝑖  and taking out the index of first 𝑘 minima other 
than 𝑖. Then, based on the properties of the KNN graph (when an 
appropriate 𝑘 is chosen), it can be assumed that the connected vertices 
(i.e., superpixels) on the graph represent the same kind of objects. 
Similarly, we can also construct a KNN graph 𝐺𝑡2

𝑛 =
{

𝑉 𝑡2
𝑛 , 𝐸𝑡2

𝑛 ,𝐀𝑡2
𝑛
} for 

the post-change image by using the superpixel feature distance matrix 
𝐃𝑦.

The choice of 𝑘 in the KNN graph is important. On one hand, 𝑘
should not be too large to avoid connecting superpixels representing 
different kinds of objects, which would lead to the case that there exists 
an (𝑖, 𝑗) ∈ 𝐸𝑡1

𝑛  such that 𝑂𝑡1
𝑖 ≠ 𝑂𝑡1

𝑗 . On the other hand, 𝑘 should not 
be too small, as a small number of edges in the KNN graph (i.e., |𝐸𝑡1

𝑛 |

is small) would not sufficiently capture the similarity structure of the 
image, resulting in limited contribution for Rule 1.

We first use a small 𝑘 as 𝑘 =
√

𝑁𝑆 (Loftsgaarden and Quesenberry, 
1965; Fukunaga and Hostetler, 1973; Mitra et al., 2002) to construct 
the initial KNN graph, and then employ a neighbor expansion strategy 
based on the well-known balance theory in the social psychology (Hei-
der, 1946; Cartwright and Harary, 1956): which posits that social 
relationships adhere four rules: ‘‘the friend of my friend is my friend’’, ‘‘the 
enemy of my friend is my enemy’’, ‘‘the friend of my enemy is my enemy’’ 
and ‘‘the enemy of my enemy is my friend’’. With the first rule in balance 
theory, we employ ‘‘the nearest-neighbors of nearest-neighbors are 
also considered as nearest-neighbors’’ to obtain a high-order KNN 
graph 𝐺𝑡1

ℎ𝑛 =
{

𝑉 𝑡1
ℎ𝑛 , 𝐸

𝑡1
ℎ𝑛,𝐀

𝑡1
ℎ𝑛
} connecting more pairwise superpixels truly 

representing the same kind of objects. For example, the edge set 𝐸𝑡1
2𝑛 of 

the second-order graph is defined as 
(𝑖, 𝑗) ∈ 𝐸𝑡1

2𝑛; if (𝑖, 𝑗) ∈ 𝐸𝑡1
𝑛

or (𝑖, 𝑡) ∈ 𝐸𝑡1
𝑛 , (𝑡, 𝑗) ∈ 𝐸𝑡1

𝑛
(7)

and the edge set 𝐸𝑡1
3𝑛 of the third-order graph is 

(𝑖, 𝑗) ∈ 𝐸𝑡1
3𝑛; if (𝑖, 𝑗) ∈ 𝐸𝑡1

2𝑛

or (𝑖, 𝑡) ∈ 𝐸𝑡1
2𝑛, (𝑡, 𝑗) ∈ 𝐸𝑡1

𝑛
(8)

Similarly, we can also construct a high-order KNN graph 𝐺𝑡2
ℎ𝑛 =

{

𝑉 𝑡2
ℎ𝑛 , 𝐸

𝑡2
ℎ𝑛,𝐀

𝑡2
ℎ𝑛
} for the post-change image. In the proposed method, we 

utilize the third-order KNN graphs.
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Fig. 2. Illustration of the proposed rules-induced energy model.
3.1.2. Energy functions
For any adjacent vertices on 𝐺𝑡1

ℎ𝑛, i.e., (𝑖, 𝑗) ∈ 𝐸𝑡1
ℎ𝑛, by using Rule 

1, the greater the probability that 𝑂𝑡2
𝑖 ≠ 𝑂𝑡2

𝑗  holds, the less likely 
𝐿𝑖 = 0, 𝐿𝑗 = 0 is to occur, then we can build the following energy 
function for Rule 1 
𝐸1 =

∑

(𝑖,𝑗)∈𝐸𝑡1
ℎ𝑛

(

1 − 𝑝𝑖
) (

1 − 𝑝𝑗
)

𝑓 1
𝑖,𝑗 (9)

with 

𝑓 1
𝑖,𝑗 =

{

𝐷𝑦
𝑖,𝑗 , if (𝑖, 𝑗) ∉ 𝐸𝑡2

ℎ𝑛

0, if (𝑖, 𝑗) ∈ 𝐸𝑡2
ℎ𝑛

(10)

where 𝑓 1
𝑖,𝑗 can be used to measure the energy when the 𝑖th and 𝑗th 

vertices are both unchanged (𝑝𝑖 = 𝑝𝑗 = 0). As can be seen from (9) and 
(10), if the feature difference between 𝐘𝑖 and 𝐘𝑗 is large (i.e., a big 
𝐷𝑦

𝑖,𝑗), which means that 𝐘𝑖 and 𝐘𝑗 most likely belong to different kinds 
of objects, then to decrease the value of 𝐸1, larger values of 𝑝𝑖 or 𝑝𝑗 are 
required, indicating changed labels for 𝑖 or 𝑗 with (𝑖, 𝑗) ∈ 𝐸𝑡1

ℎ𝑛.
For any adjacent vertices on 𝐺𝑡1

ℎ𝑛, i.e., (𝑖, 𝑗) ∈ 𝐸𝑡1
ℎ𝑛, by using Rule 2, 

the greater the probability that 𝑂𝑡2
𝑖 = 𝑂𝑡2

𝑗  holds, the less likely 𝐿𝑖 ≠ 𝐿𝑗
is to occur, then we can build the following energy function for Rule 2 

𝐸2 =
∑

(𝑖,𝑗)∈𝐸𝑡1
ℎ𝑛

(

𝑝𝑖 − 𝑝𝑗
)2 𝑓 2

𝑖,𝑗 (11)

with 

𝑓 2
𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

exp
(

−𝐷𝑦
𝑖,𝑗

)

, if (𝑖, 𝑗) ∈ 𝐸𝑡2
ℎ𝑛

0, if (𝑖, 𝑗) ∉ 𝐸𝑡2
ℎ𝑛

(12)

where 𝑓 2
𝑖,𝑗 can be used to measure the energy when the 𝑖th and 𝑗th 

vertices have different change labels (𝑝𝑖 ≠ 𝑝𝑗). As can be seen from (11) 
and (12), if the feature difference between 𝐘𝑖 and 𝐘𝑗 is small (i.e., a big 
𝑓 2
𝑖,𝑗), which means that 𝐘𝑖 and 𝐘𝑗 most likely refer to the same kind of 
object, then to decrease the value of 𝐸2, smaller value of 

(

𝑝𝑖 − 𝑝𝑗
)2 is 

required, indicating the same change label of 𝑖 and 𝑗 with (𝑖, 𝑗) ∈ 𝐸𝑡1 .
ℎ𝑛
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Similarly, in order to utilize the Rule 3 and Rule 4, we consider 
the adjacent vertices on 𝐺𝑡2

ℎ𝑛, i.e., (𝑖, 𝑗) ∈ 𝐸𝑡2
ℎ𝑛, and build the following 

energy functions of 𝐸3 and 𝐸4 for Rule 3 and Rule 4, respectively. 
𝐸3 =

∑

(𝑖,𝑗)∈𝐸𝑡2
ℎ𝑛

(

1 − 𝑝𝑖
) (

1 − 𝑝𝑗
)

𝑓 3
𝑖,𝑗

𝐸4 =
∑

(𝑖,𝑗)∈𝐸𝑡2
ℎ𝑛

(

𝑝𝑖 − 𝑝𝑗
)2 𝑓 4

𝑖,𝑗

(13)

with 

𝑓 3
𝑖,𝑗 =

{

𝐷𝑥
𝑖,𝑗 , if (𝑖, 𝑗) ∉ 𝐸𝑡1

ℎ𝑛
0, if (𝑖, 𝑗) ∈ 𝐸𝑡1

ℎ𝑛

𝑓 4
𝑖,𝑗 =

{

exp
(

−𝐷𝑥
𝑖,𝑗

)

, if (𝑖, 𝑗) ∈ 𝐸𝑡1
ℎ𝑛

0, if (𝑖, 𝑗) ∉ 𝐸𝑡1
ℎ𝑛

(14)

where (𝑖, 𝑗) ∈ 𝐸𝑡2
ℎ𝑛 in (13) is used to satisfy the restriction of 𝑂𝑡2

𝑖 = 𝑂𝑡2
𝑗 , 

𝑓 3
𝑖,𝑗 is used to measure the energy when the 𝑖th and 𝑗th vertices are 
both unchanged (𝑝𝑖 = 𝑝𝑗 = 0), 𝑓 4

𝑖,𝑗 is used to measure the energy when 
the 𝑖th and 𝑗th vertices have different change labels (𝑝𝑖 ≠ 𝑝𝑗).

From the Rules 1 to 4 and the energy functions of 𝐸1 to 𝐸4, we can 
find that they utilize the similarity relationships in the image, specifi-
cally, they require that the similarity structure in one image represented 
by the KNN graph in unchanged regions should be preserved by the 
other image (e.g. 𝐸1 and 𝐸3). By combining these energy functions of 𝐸1
to 𝐸4, we can obtain the similarity relationships based energy function 
𝐸𝑠𝑟 as 

𝐸𝑠𝑟 = 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 (15)

3.2. Dissimilarity relationship base energy

3.2.1. KFN graph
In the Rule 5, its restriction is 𝑂𝑡1

𝑖 ≠ 𝑂𝑡1
𝑗 , i.e., 𝐗𝑖 and 𝐗𝑗 refer to 

different kinds of objects. To meet this restriction, we construct KFN 
graph of 𝑡1 =

{

 𝑡1,  𝑡1,𝑡1
}

 for pre-change image to capture the 
𝑓 𝑓 𝑓 𝑓
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dissimilarity relationships within 𝐗 as 
 𝑡1
𝑓 = {𝑖|𝑖 ∈ } ;

 𝑡1
𝑓 =

{

(𝑖, 𝑗) |𝑗 ∈ 𝑥
𝑖 , 𝑖 ∈ 

} (16)

where 𝑥
𝑖  denotes the index of 𝑘 farthest-neighbor (FN) of 𝐗𝑖, i.e., 

(𝑖, 𝑗) ∈  𝑡1
𝑓  if and only if 𝐷𝑥

𝑖,𝑗 is one of the 𝑘-maxima of feature distance 
vector 𝐃𝑥

𝑖 . Then, based on the properties of the KFN graph (when an 
appropriate 𝑘 is chosen), it can be assumed that connected vertices 
(i.e., superpixels) on the graph represent the different kinds of objects. 
Similarly, we can also construct a KFN graph 𝑡2𝑓 =

{

 𝑡2
𝑓 ,  𝑡2

𝑓 ,𝑡2
𝑓

}

 for 
the post-change image 𝐘.

Different from the KNN graph that captures similarity relationships, 
constructing the KFN graph to represent dissimilarity relationships 
requires paying attention on two aspects.

∙ First, for the selection of 𝑘. It is well known that remote sensing 
images contain a wide range of land cover classes, so the number 
of superpixel pairs representing different kinds of objects in the 
image will be much larger than the number of superpixel pairs 
representing the same kind of objects. Therefore the number of 
edges in KFN graph should be larger than that in KNN graph. 
In the proposed RIEM, we select 𝑘 = 5

√

𝑁𝑆 for the initial KFN 
graph.

∙ Second, for the neighbors expansion. At this time, the strategy 
of ‘‘the neighbors of neighbors are also considered as neighbors’’ 
used in KNN graph is no longer suitable for KFN graph. For 
example, suppose that 𝐗𝑖 represents the object of ‘‘grass’’ and 
it connects 𝐗𝑗 and 𝐗𝑡 which both represent the ‘‘water ’’ in the 
initial KFN graph, by using the neighbor expansion strategy in 
KNN graph, at this point 𝐗𝑗 and 𝐗𝑡 that belong to the same kind 
of object will be connected by the high-order KFN graph. Here, we 
use another strategy for neighbor expansion of KFN graph: ‘‘the 
nearest-neighbor of the farthest-neighbor and the farthest-
neighbor of the nearest-neighbor are also likely to be the 
farthest-neighbor’’, which are similar to the second and third 
rules in balance theory (Heider, 1946; Cartwright and Harary, 
1956).

Then we can construct the KFN graph 𝑡1ℎ𝑓 =
{

 𝑡1
ℎ𝑓 , 

𝑡1
ℎ𝑓 ,

𝑡1
ℎ𝑓

}

 as follows 

(𝑖, 𝑗) ∈  𝑡1
ℎ𝑓 ; if (𝑖, 𝑗) ∈  𝑡1

𝑓

or (𝑖, 𝑡) ∈  𝑡1
𝑓 , (𝑡, 𝑗) ∈ 𝐸𝑡1

ℎ𝑛

or (𝑖, 𝑡) ∈ 𝐸𝑡1
ℎ𝑛, (𝑡, 𝑗) ∈  𝑡1

𝑓

(17)

Similarly, we can also construct a high-order KFN graph 𝑡2ℎ𝑓 =
{

 𝑡2
ℎ𝑓 , 

𝑡2
ℎ𝑓 ,

𝑡2
ℎ𝑓

}

 for the post-change image. With the help of this neigh-
bors expansion strategy, the constructed high-order KFN graphs can 
connect more truly pairwise superpixels representing different kinds of 
objects. Fig.  3 illustrates the neighbor expansion strategy for high-order 
graphs.

3.2.2. Energy functions
For any adjacent vertices on 𝑡1ℎ𝑓 , i.e., (𝑖, 𝑗) ∈  𝑡1

ℎ𝑓 , by using Rule 5, 
the greater the probability that 𝑂𝑡2

𝑖 = 𝑂𝑡2
𝑗  holds, the less likely 𝐿𝑖 = 0, 

𝐿𝑗 = 0 is to occur, then we can obtain the following energy function 
for Rule 5 
𝐸5 =

∑

(𝑖,𝑗)∈ 𝑡1ℎ𝑓

(

1 − 𝑝𝑖
) (

1 − 𝑝𝑗
)

𝑓 2
𝑖,𝑗 (18)

where 𝑓 2
𝑖,𝑗 is defined in (12) and can be used to measure the energy 

when the 𝑖th and 𝑗th vertices are both unchanged (𝑝𝑖 = 𝑝𝑗 = 0) in (18). 
As can be seen from (18), if the 𝐘𝑖 and 𝐘𝑗 are quite similar (i.e., a big 
𝑓 2 ), that is, 𝐘  and 𝐘  are likely to belong to the same kind of objects, 
𝑖,𝑗 𝑖 𝑗
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Fig. 3. Illustration of the neighbor expansion strategy for high-order graphs.

then to decrease the energy loss 𝐸5, smaller value of (1 − 𝑝𝑖)(1 − 𝑝𝑗 ) is 
required, indicating changed labels for 𝑖 or 𝑗 with (𝑖, 𝑗) ∈  𝑡1

ℎ𝑓 .
Similarly, for the Rule 6, we consider the adjacent vertices on 𝑡2ℎ𝑓 ,

i.e., (𝑖, 𝑗) ∈  𝑡2
ℎ𝑓 , we can build the following energy function 

𝐸6 =
∑

(𝑖,𝑗)∈ 𝑡2ℎ𝑓

(

1 − 𝑝𝑖
) (

1 − 𝑝𝑗
)

𝑓 4
𝑖,𝑗 (19)

where (𝑖, 𝑗) ∈  𝑡2
ℎ𝑓  is used to satisfy the restriction of 𝑂𝑡2

𝑖 ≠ 𝑂𝑡2
𝑗  in Rule 

6, and 𝑓 4
𝑖,𝑗 is defined in (14) to measure the energy when the 𝑖th and 

𝑗th vertices are both unchanged (𝑝𝑖 = 𝑝𝑗 = 0) in (19).
From the Rules 5–6 and the energy functions of 𝐸5 and 𝐸6, we 

can find that they utilize the dissimilarity relationships in the image, 
specifically, they require that the dissimilarity structure in one image 
represented by the KFN graph in unchanged regions should be pre-
served by the other image. By combining the energy functions of 𝐸5 and 
𝐸6, we can obtain the dissimilarity relationships based energy function 
𝐸𝑑𝑟 as 

𝐸𝑑𝑟 = 𝐸5 + 𝐸6 (20)

3.3. Spatial smoothness based energy

According to the first law of geography, spatially adjacent objects 
are similar and correlated to a certain extent. Therefore, it is reasonable 
to assume that the change states of spatially closed superpixels are 
correlated. This means that if one superpixel undergoes a change, its 
spatially neighboring superpixel are more likely to undergo changes as 
well. This hypothesis is widely applied in change detection to infer and 
predict the propagation and diffusion of changes, which reduces the 
salt-and-pepper noise in change map. In this paper, we use a spatial 
smoothness based energy similar as the discontinuity penalty used 
in Sun et al. (2021a).

Firstly, we construct spatial neighbors for each superpixel by consid-
ering two conditions: if the 𝑖th and 𝑗th superpixel edges are intersecting 
or if the distance between their centroids is smaller than a predefined 
threshold 𝑅, then we consider them to be spatially close neighbors, 
defined as (𝑖, 𝑗) ∈ 𝑅. As the average superpixel size is 𝑀𝑁∕𝑁𝑆 , the 
𝑅 in RIEM is simply set to 2√𝑀𝑁∕𝑁𝑆 .

Secondly, we construct an energy function 𝐸𝑠𝑠 based on spatial 
smoothness, which incorporates both traditional spatial context infor-
mation as well as similarity/dissimilarity relationships in multitempo-
ral images involved in the HCD problem. 

𝐸𝑠𝑠 =
∑

(𝑖,𝑗)∈𝑅

𝜙𝑖,𝑗
(

𝑝𝑖 − 𝑝𝑗
)2

𝑑𝑖,𝑗
(21)

where 𝑑𝑖,𝑗 denotes the spatial distance between two superpixels located 
at 𝛬  and 𝛬  (i.e. spatial distance between center pixels), and the 
𝑖 𝑗
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penalty function 𝜙𝑖,𝑗 is defined as 

𝜙𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

1∕2, if 𝐷𝑥
𝑖,𝑗 > 𝜌1, 𝐷𝑦

𝑖,𝑗 > 𝜌2

𝜎

(

2
(

𝐷𝑥
𝑖,𝑗−𝜌1

)(

𝐷𝑦
𝑖,𝑗−𝜌2

)

𝜌1𝜌2

)

,otherwise
(22)

Here 𝜌1 =

⟨

𝐷𝑥
𝑖,𝑗

⟩

(𝑖,𝑗)∈𝐸𝑡1
ℎ𝑛

+
⟨

𝐷𝑥
𝑖,𝑗

⟩

(𝑖,𝑗)∈𝑡1ℎ𝑓
2 , 𝜌2 =

⟨

𝐷𝑦
𝑖,𝑗

⟩

(𝑖,𝑗)∈𝐸𝑡2
ℎ𝑛

+
⟨

𝐷𝑦
𝑖,𝑗

⟩

(𝑖,𝑗)∈𝑡2ℎ𝑓
2

represent the average neighborhood feature distance with ⟨⋅⟩ denoting 
the average operation, and 𝜎 represents the sigmoid function of 𝜎 (𝑧) =
1∕ (1 + 𝑒−𝑧). As can be seen from (21) and (22), the penalty function 𝜙𝑖,𝑗
punishes the non-smoothness of 𝑝𝑖 ≠ 𝑝𝑗 , (𝑖, 𝑗) ∈ 𝑅 with four different 
cases:

(1) When 𝐷𝑥
𝑖,𝑗 ≤ 𝜌1 and 𝐷𝑦

𝑖,𝑗 ≤ 𝜌2, we consider it tends to the situa-
tion of 𝑂𝑡1

𝑖 = 𝑂𝑡1
𝑗  and 𝑂𝑡2

𝑖 = 𝑂𝑡2
𝑗 , based on the pairwise connection of 

(4a), 𝜙𝑖,𝑗 gives a large penalty on the non-smoothness of 𝑝𝑖 ≠ 𝑝𝑗 , and 
as 𝐷𝑥

𝑖,𝑗 and 𝐷
𝑦
𝑖,𝑗 decrease, the non-smoothness penalty is larger.

(2) When 𝐷𝑥
𝑖,𝑗 ≤ 𝜌1 and 𝐷𝑦

𝑖,𝑗 > 𝜌2, we consider it tends to the situa-
tion of 𝑂𝑡1

𝑖 = 𝑂𝑡1
𝑗  and 𝑂𝑡2

𝑖 ≠ 𝑂𝑡2
𝑗 . In this case, the probability that both 

the 𝑖th and 𝑗th superpixels are changing is relatively small. That is, it is 
rare for spatially adjacent superpixels ((𝑖, 𝑗) ∈ 𝑅) that belong to the 
same kind of objects (such as ‘‘grass’’) to change into different kinds of 
objects (such as ‘‘buildings’’ and ‘‘water ’’, respectively) in a single event. 
Therefore, based on the pairwise connection of (4b), 𝜙𝑖,𝑗 gives a small 
penalty on the non-smoothness of 𝑝𝑖 ≠ 𝑝𝑗 , and as 𝐷𝑥

𝑖,𝑗 decrease and 𝐷
𝑦
𝑖,𝑗

increase, the non-smoothness penalty is smaller.
(3) When 𝐷𝑥

𝑖,𝑗 > 𝜌1 and 𝐷𝑦
𝑖,𝑗 ≤ 𝜌2, we consider it tends to the sit-

uation of 𝑂𝑡1
𝑖 ≠ 𝑂𝑡1

𝑗  and 𝑂𝑡2
𝑖 = 𝑂𝑡2

𝑗 . Similar to case 2, 𝜙𝑖,𝑗 gives a 
small penalty on the non-smoothness of 𝑝𝑖 ≠ 𝑝𝑗 based on the pairwise 
connection of (4c).

(4) When 𝐷𝑥
𝑖,𝑗 > 𝜌1 and 𝐷𝑦

𝑖,𝑗 > 𝜌2, we consider it tends to the situ-
ation of 𝑂𝑡1

𝑖 ≠ 𝑂𝑡1
𝑗  and 𝑂𝑡2

𝑖 ≠ 𝑂𝑡2
𝑗 . In this case, the spatially adjacent 

superpixels may be located at the boundary between different kinds of 
objects, which predicts that the two superpixels are not closely related. 
Then, based on the pairwise connection of (4d), 𝜙𝑖,𝑗 gives a median 
penalty of 𝜙𝑖,𝑗 = 1∕2.

3.4. Prior sparsity based energy

In practical change detection problems, we have a prior knowledge 
about the sparsity of changes. In real-world scenarios, only a small 
portion of regions undergo changes, while the majority of regions 
remain unchanged. This sparse prior knowledge is widely applied in 
other change detection methods (Sun et al., 2023; Touati and Mignotte, 
2018; Touati et al., 2020). Theoretically, we can use the 𝓁0-norm-
based ‖𝐩‖0 as a sparse penalty function. However, considering the 
non-convexity of the 𝓁0-norm, we use its convex relaxation of 𝓁1-norm 
penalty. Therefore, we obtain an energy function 𝐸𝑝𝑠 based on the prior 
sparsity knowledge as 
𝐸𝑝𝑠 =

∑

𝑖∈
𝑝𝑖 (23)

which discourages changes.

3.5. Hybrid energy model

By incorporating the energies of 𝐸𝑠𝑟(15), 𝐸𝑑𝑟(20), 𝐸𝑠𝑠 (21) and 𝐸𝑝𝑠
(23), we convert the HCD problem to the following hybrid energy 
function 𝐸ℎ as (see the Eq.  (24) which is given in Box  I). 

We define the matrices of 𝐁(1), 𝐁(2), 𝐖(1) and 𝐖(2), whose elements 
are 
𝐵(1)
𝑖,𝑗 = 𝑓 1

𝑖,𝑗𝛿
(

(𝑖, 𝑗) ∈ 𝐸𝑡1
ℎ𝑛
)

+ 𝑓 3
𝑖,𝑗𝛿

(

(𝑖, 𝑗) ∈ 𝐸𝑡2
ℎ𝑛
)

𝐵(2)
𝑖,𝑗 = 𝑓 2

𝑖,𝑗𝛿
(

(𝑖, 𝑗) ∈  𝑡1
ℎ𝑓

)

+ 𝑓 4
𝑖,𝑗𝛿

(

(𝑖, 𝑗) ∈  𝑡2
ℎ𝑓

)

𝑊 (1)
𝑖,𝑗 = 𝑓 2

𝑖,𝑗𝛿
(

(𝑖, 𝑗) ∈ 𝐸𝑡1
ℎ𝑛
)

+ 𝑓 4
𝑖,𝑗𝛿

(

(𝑖, 𝑗) ∈ 𝐸𝑡2
ℎ𝑛
)

𝑊 (2)
𝑖,𝑗 =

𝜙𝑖,𝑗 𝛿
(

(𝑖, 𝑗) ∈ 𝑅)

(25)
𝑑𝑖,𝑗
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where 𝛿 (⋅) is 1 when the condition in parentheses holds, and 0 other-
wise. Substitute (25) into (24), we have 
𝐸ℎ =

∑

𝑖,𝑗∈

(

1 − 𝑝𝑖
) (

1 − 𝑝𝑗
)

(

𝐵(1)
𝑖,𝑗 + 𝐵(2)

𝑖,𝑗

)

+
∑

𝑖,𝑗∈

(

𝑝𝑖 − 𝑝𝑗
)2

(

𝑊 (1)
𝑖,𝑗 +𝑊 (2)

𝑖,𝑗

)

+
∑

𝑖∈
𝑝𝑖

(26)

In order to maintain a balance between the various energy components 
within 𝐸ℎ, we define the matrices of 𝐁 = 𝐁(1) +

∑𝑁𝑆
𝑖,𝑗=1 𝐵

(1)
𝑖,𝑗

∑𝑁𝑆
𝑖,𝑗=1 𝐵

(2)
𝑖,𝑗

𝐁(2), 𝐖 =

𝐖(1) +
∑𝑁𝑆

𝑖,𝑗=1 𝑊
(1)
𝑖,𝑗

∑𝑁𝑆
𝑖,𝑗=1 𝑊

(2)
𝑖,𝑗

𝐖(2), and define the Laplacian matrix 𝐋𝑤 as 𝐋𝑤 =

𝐃𝑤 − (𝐖 + 𝐖𝑇 )∕2 with 𝐃𝑤 ∈ R𝑁𝑆×𝑁𝑆  being a diagonal matrix whose 
𝑖th diagonal element is ∑𝑁𝑆

𝑗=1 (𝑊𝑖,𝑗 +𝑊𝑗,𝑖)∕2, then we introduce two 
weighting parameters and modify 𝐸ℎ to 𝐸∗

ℎ (𝐩;𝐗,𝐘, 𝛼, 𝛽) as 
𝐸∗
ℎ (𝐩;𝐗,𝐘, 𝛼, 𝛽) =

∑

𝑖,𝑗∈

(

1 − 𝑝𝑖
) (

1 − 𝑝𝑗
)

𝐵𝑖,𝑗

+ 𝛼∕2
∑

𝑖,𝑗∈

(

𝑝𝑖 − 𝑝𝑗
)2 𝑊𝑖,𝑗 + 𝛽

∑

𝑖∈
𝑝𝑖

= (𝟏 − 𝐩)𝑇 𝐁 (𝟏 − 𝐩) + 𝛼𝐩𝑇𝐋𝑤𝐩 + 𝛽𝐩𝑇 𝟏

(27)

where 𝟏 an 𝑁𝑆 -dimensional column vector with all elements equal to 
1. We further set the weighting parameters as 

𝛼 =
𝛼′

∑

𝑖,𝑗 𝐵𝑖,𝑗
∑

𝑖,𝑗 𝑊𝑖,𝑗
; 𝛽 =

𝛽′
∑

𝑖,𝑗 𝐵𝑖,𝑗

𝑁𝑆
(28)

where 𝛼′ and 𝛽′ are easier to adjust. Then, we can obtain the final 
energy model (5) for the HCD problem as 
𝐩∗ = argmin

0≤𝑝𝑖≤1
𝐸∗
ℎ
(

𝐩;𝐗,𝐘, 𝛼′, 𝛽′
)

(29)

In the 𝐸∗
ℎ of (27), when 𝐵𝑖,𝑗 is larger, it indicates that the incon-

sistency of similarity/dissimilarity relationships across multitemporal 
images is greater. To reduce the energy value 𝐸∗

ℎ, it tends to ob-
tain larger values of 𝑝𝑖 or 𝑝𝑗 , i.e., higher change scores for the 𝑖th 
or 𝑗th superpixels. Therefore, the meaning of the energy function 
(𝟏 − 𝐩)𝑇 𝐁 (𝟏 − 𝐩) is that when the image structures represented by 
similarity/dissimilarity relationships are inconsistent, for example, if 
𝐗𝑖 and 𝐗𝑗 are similar but 𝐘𝑖 and 𝐘𝑗 are dissimilar, or if 𝐗𝑖 and 𝐗𝑗 are 
dissimilar but 𝐘𝑖 and 𝐘𝑗 are similar, then the energy loss can be utilized 
to detect the changes. In the 𝐸∗

ℎ, the energy function 𝐩𝑇𝐋𝑤𝐩 indicates 
that the change vector 𝐩 is smooth on the graph 𝐺𝑠 constructed as 
𝑉𝑠 = {𝑖|𝑖 ∈ } ;

𝐸𝑠 = 𝑅 ∪
{

𝐸𝑡1
ℎ𝑛 ∩ 𝐸𝑡2

ℎ𝑛
} (30)

From the 𝐸∗
ℎ of (27), we can also observe that the energy functions 

are antagonistic to each other. The first term tends to obtain a changed 
𝐩, i.e., 𝐩 = 𝟏, the second term tends to obtain a smooth 𝐩, i.e., 𝐩 =
𝑐𝟏 with 𝑐 being a constant, while the last term tends to obtain the 
unchanged 𝐩, i.e., 𝐩 = 𝟎. Additionally, we can see that 𝐸∗

ℎ is directly 
built on the superpixel change states (i.e., solving for 𝐩 directly), which 
is simple in form and has clear physical meaning and interpretability.

3.6. Change extraction

Because of the simple form of the objective function 𝐸∗
ℎ (27), the 

energy optimization problem (29) could be approximately solved by the 
gradient descent method. Since the value of 𝐵𝑖,𝑗 can partly reflect the 
likelihood of occurring changes in the 𝑖th and 𝑗th superpixels according 
to (25) and (27), we set the initial change vector 𝐩0 to the normalized 

𝐁𝟏+𝐁𝑇 𝟏
max

(

𝐁𝟏+𝐁𝑇 𝟏
) . Once the solution 𝐩∗ is obtained, we can gain a DI by using 

𝑝∗𝑖  to indicate the change score of each pixel within the 𝑖th superpixel 
as 

∗ (31)
DI (𝑚, 𝑛) = 𝑝𝑖 ; (𝑚, 𝑛) ∈ 𝛬𝑖, 𝑖 = 1,… , 𝑁𝑆
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𝐸ℎ =𝐸𝑠𝑟 + 𝐸𝑑𝑟 + 𝐸𝑠𝑠 + 𝐸𝑝𝑠

=
∑

(𝑖,𝑗)∈𝐸𝑡1
ℎ𝑛

(

1 − 𝑝𝑖
) (

1 − 𝑝𝑗
)

𝑓 1
𝑖,𝑗 +

∑

(𝑖,𝑗)∈𝐸𝑡1
ℎ𝑛

(

𝑝𝑖 − 𝑝𝑗
)2𝑓 2

𝑖,𝑗 +
∑

(𝑖,𝑗)∈𝐸𝑡2
ℎ𝑛

(

1 − 𝑝𝑖
) (

1 − 𝑝𝑗
)

𝑓 3
𝑖,𝑗 +

∑

(𝑖,𝑗)∈𝐸𝑡2
ℎ𝑛

(

𝑝𝑖 − 𝑝𝑗
)2𝑓 4

𝑖,𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐸𝑠𝑟

+
∑

(𝑖,𝑗)∈ 𝑡1ℎ𝑓

(

1 − 𝑝𝑖
) (

1 − 𝑝𝑗
)

𝑓 2
𝑖,𝑗 +

∑

(𝑖,𝑗)∈ 𝑡2ℎ𝑓

(

1 − 𝑝𝑖
) (

1 − 𝑝𝑗
)

𝑓 4
𝑖,𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐸𝑑𝑟

+
∑

(𝑖,𝑗)∈𝑅

𝜙𝑖,𝑗
(

𝑝𝑖 − 𝑝𝑗
)2

𝑑𝑖,𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐸𝑠𝑠

+
∑

𝑖∈
𝑝𝑖

⏟⏟⏟
𝐸𝑝𝑠

(24)

Box I. 
In order to obtain a binary CM, we have two strategies. First, 
we compute CM by dividing 𝐩∗ into ‘‘changed’’ and ‘‘unchanged’’ 
classes with various segmentation methods, such as thresholding (e.g., 
Otsu’s thresholding (Otsu, 1979)), clustering (e.g., fuzzy c-means clus-
tering (Bezdek et al., 1984) or k-means clustering (Hartigan and Wong, 
1979)), and Markov random field (MRF) based methods (Sun et al., 
2021a). In this study, we directly use Otsu’s thresholding (Otsu, 1979) 
to extract the binary CM, and denote this as RIEM-O.

Second, we can replace the variable of change score vector 𝐩 in 
model (27) with the change label vector of 𝑳, and solve the following 
energy model to obtain the final change label 𝑳∗ as 
𝑳∗ = argmin

𝑳∈{0,1}
𝐸∗
ℎ
(

𝑳;𝐗,𝐘, 𝛼′, 𝛽′
)

(32)

which is an integer quadratic optimization problem. Since the objective 
energy function is non-submodular (Gorelick et al., 2014; Jegelka and 
Bilmes, 2011; Kolmogorov and Rother, 2007), we cannot use traditional 
graph cut methods to solve the problem (32), such as the min-cut/max-
flow method (Boykov and Kolmogorov, 2004). Here, we choose the 
local submodular approximation (LSA) based method (Gorelick et al., 
2014) designed for minimizing non-submodular functions to obtain the 
change label 𝑳∗, which iteratively approximates the energies locally. 
Similarly, we set the initial change label 𝑳0 to the Otsu segmented 
vector 𝐁𝟏 + 𝐁𝑇 𝟏. Then, we compute the final CM as 

CM (𝑚, 𝑛) = 𝐿∗
𝑖 ; (𝑚, 𝑛) ∈ 𝛬𝑖, 𝑖 = 1,… , 𝑁𝑆 (33)

We denote this CM calculation as RIEM-L. The framework of RIEM is 
summarized as in Algorithm 1.

 Algorithm 1: Rules induced energy model for HCD.  
 Input: Heterogeneous images, parameters of 𝑁𝑆 , 𝛼′, 𝛽′.  
 Structure representation:  
   Divide multitemporal images into superpixels.  
   Compute the feature distance matrices of 𝐃𝑥 and 𝐃𝑦.  
   Construct the high-order KNN graphs of 𝐺𝑡1

ℎ𝑛 and 𝐺𝑡2
ℎ𝑛.  

   Construct the high-order KFN graphs of 𝑡1ℎ𝑓  and 𝑡2ℎ𝑓 .  
 Energy model construction:  
   Compute the energy functions of 𝑓 1

𝑖,𝑗 , 𝑓 2
𝑖,𝑗 , 𝑓 3

𝑖,𝑗 , 𝑓 4
𝑖,𝑗 and 𝜙𝑖,𝑗 .  

   Compute the matrices of 𝐁 and 𝐋𝑤.  
   Construct the energy model 𝐸∗

ℎ.  
 Change extraction:  
   Initialize the 𝐩0 and 𝑳0.  
   Solve the energy minimization (29) to obtain 𝐩∗.  
   Solve the energy minimization (32) to obtain 𝑳∗.  
   Compute the DI by using (31) with 𝐩∗.  
   Compute the CM by Otsu thresholding with 𝐩∗ or directly using 

∗
 

𝑳 .
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4. Experiments and discussions

4.1. Experimental setting

4.1.1. Datasets
To evaluate the performance of RIEM, comparative experiments are 

conducted on seven real datasets,1 as shown in Table  2 and Fig.  4. The 
heterogeneous pre-change and post-change images in these datasets 
are sourced from: (i) different optical sensors (i.e., SAR and optical 
sensors), such as Datasets #1-#4; (ii) sensors of different types, such as 
Datasets #5-#7. Additionally, these datasets cover various resolutions 
(30∼0.52 m), image sizes (343 × 291∼4135 × 2325), and different 
change events (e.g., floods, wildfires, land use changes), which can 
comprehensively assess the adaptability and robustness of different 
algorithms.

4.1.2. Evaluation metrics
We employ two categories of metrics to assess the obtained DI and 

CM. (i) Receiver Operating Characteristic (ROC) curves and Precision-
Recall (PR) curves are utilized to assess the DI, with the area under ROC 
curve (AUR) and the area under PR curve (AUP) serving as quantitative 
metrics, respectively. (ii) Various colors are used to label true positive 
(TP), false positive (FP), true negative (TN), and false negative (FN) 
on the CM. Simultaneously, overall accuracy (OA), F1-score, Kappa 
coefficient (𝜅) and intersection over union (IoU) are employed as 
quantitative assessments for the CM.

4.1.3. Experimental settings
For all the experiment results of RIEM, we set the superpixel number 

𝑁𝑆 = 2500 for the employed GMMSP (Ban et al., 2018) (due to GMMSP 
cannot precisely control the number of segmented superpixels, the 
actual 𝑁𝑆 is around 2500). Since the experimental datasets contains 
only SAR, RGB optical, and multispectral images, we chose the mean 
and median values as simple superpixel features to calculate feature 
distances of 𝐃𝑥 and 𝐃𝑦 (this is not exclusive, other features including 
those extracted by deep neural networks are also available). In addition, 
we fix the balancing parameters as 𝛼′ = 15 and 𝛽′ = 2−4 for the energy 
model 𝐸∗

ℎ
(

𝐩;𝐗,𝐘, 𝛼′, 𝛽′
) of (29), and fix them as 𝛼′ = 15 and 𝛽′ = 1 for 

the energy model 𝐸∗
ℎ
(

𝑳;𝐗,𝐘, 𝛼′, 𝛽′
) of (32). These parameters will be 

discussed in Section 4.3.

1 Datasets #1, #3, #4 and #7 (Mignotte, 2020) are available at http:
//www-labs.iro.umontreal.ca/~mignotte; Dataset #2 (Volpi et al., 2015) is 
available at https://zenodo.org/records/8046719; Dataset #5 (Luppino et al., 
2019) is available at https://sites.google.com/view/luppino/data.

http://www-labs.iro.umontreal.ca/~mignotte
http://www-labs.iro.umontreal.ca/~mignotte
https://zenodo.org/records/8046719
https://sites.google.com/view/luppino/data
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Fig. 4. Difference images on different datasets. From top to bottom, they are corresponding to Datasets #1 to #7, respectively. (a) pre-change image; (b) post-event 
image; from (c) to (j) are the difference images generated by (c) HPT, (d) AMDIR, (e) IRG-McS, (f) SDA, (g) X-Net, (h) ACE-Net, (i) CAAE, and (j) RIEM; (k) 
ground truth.
Table 2
Description of the heterogeneous datasets.
 Dataset Sensor (or modality) Image size (pixels) Date Location Spatial resolution Change event  
 #1 Landsat-5 300 × 412 × 1 Sept. 1995 Sardinia, Italy 30 m Lake expansion  
 Google Earth 300 × 412 × 3 July 1996  
 #2 Landsat-5 1534 × 808 × 7 Aug. 2011 Texas, USA 30 m Forest fire  
 EO-1 ALI 1534 × 808 × 10 Sept. 2011  
 #3 Pleiades 2000 × 2000 × 3 May 2012 Toulouse, France 0.52 m Construction  
 WorldView2 2000 × 2000 × 3 July 2013  
 #4 NDVI 990 × 554 × 3 1999 Gloucester, England ≈25 m Flooding  
 SPOT 990 × 554 × 1 2000  
 #5 Landsat-8 3500 × 2000 × 11 Jan. 2017 Sutter County, USA ≈15 m Flooding  
 Sentinel-1A 3500 × 2000 × 3 Feb. 2017  
 #6 Radarsat-2 343 × 291 × 1 June 2008 Yellow River, China 8 m Embankment change  Google Earth 343 × 291 × 3 Sept. 2010  
 #7 QuickBird-2 4135 × 2325 × 3 July 2006 Gloucester, England 0.65 m Flooding  
 TerraSAR-X 4135 × 2325 × 1 July 2007  
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Fig. 5. ROC curves (top) and PR curves (bottom) of different methods. From (a) to (g) are the curves obtained from Datasets #1 to #7, respectively.
Table 3
AUR and AUP on different heterogeneous datasets. The highest scores are marked in bold.
 Methods Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5 Dataset #6 Dataset #7 Average

 AUR AUP AUR AUP AUR AUP AUR AUP AUR AUP AUR AUP AUR AUP AUR AUP  
 HPT (Liu et al., 2018b) 0.889 0.373 0.989 0.933 0.770 0.355 0.947 0.806 0.928 0.506 0.964 0.602 0.857 0.271 0.906 0.549 
 AMDIR (Luppino et al., 2019) 0.795 0.155 0.986 0.856 0.708 0.264 0.927 0.741 0.867 0.289 0.859 0.216 0.691 0.103 0.833 0.375 
 IRG-McS (Sun et al., 2021a) 0.899 0.520 0.924 0.481 0.805 0.460 0.946 0.711 0.918 0.358 0.981 0.513 0.937 0.656 0.916 0.528 
 SDA (Sun et al., 2022) 0.899 0.531 0.980 0.842 0.837 0.571 0.925 0.648 0.855 0.413 0.949 0.688 0.922 0.771 0.910 0.638 
 X-Net (Luppino et al., 2022) 0.946 0.737 0.984 0.798 0.885 0.520 0.973 0.865 0.918 0.412 0.957 0.465 0.851 0.309 0.931 0.586 
 ACE-Net (Luppino et al., 2022) 0.949 0.731 0.983 0.784 0.832 0.477 0.975 0.885 0.901 0.359 0.932 0.425 0.891 0.441 0.923 0.586 
 CAAE (Luppino et al., 2024) 0.917 0.540 0.992 0.831 0.818 0.468 0.632 0.174 0.921 0.482 0.828 0.278 0.559 0.075 0.809 0.407 
 Proposed RIEM 0.919 0.732 0.986 0.781 0.903 0.685 0.986 0.834 0.912 0.373 0.995 0.809 0.964 0.784 0.952 0.714 
4.2. Experimental results

4.2.1. Difference images
To evaluate the DI of RIEM, we will compare RIEM with the 

following seven HCD methods.2
HPT (Liu et al., 2018b). A homogeneous pixel transformation based 

supervised method that first transforms one image to the other image 
domain by utilizing labeled samples (training set is established with 
40% of unchanged pixels in the experiment), and then compares images 
in the same domain.

AMDIR (Luppino et al., 2019). A image regression based method 
that uses the affinity matrices distance (AMD) between heterogeneous 
images to pick possible unchanged pixels as a pseudo training set.

IRG-McS (Sun et al., 2021a). An unsupervised image structure com-
parison based method that first extract the structure feature of image 
by using a iterative robust graph, then compares the graphs and extract 
the changes by using an MRF based co-segmentation method.

SDA (Sun et al., 2022). An graph signal processing based method 
that transforms the pre-change image to the post-change image domain 
by utilizing a signal decomposition model based on the graph spectral 
domain analysis.

X-Net (Luppino et al., 2022). A deep translation network made up of 
two fully convolutional networks, which trains the network using the 
AMD-based change prior.

ACE-Net (Luppino et al., 2022). An adversarial cyclic encoder net-
work that translates and compares the images, which also uses the 
AMD-based change prior.

CAAE (Luppino et al., 2024). A code-aligned autoencoders based 
method that aligns the latent code spaces of two autoencoders on 
affinity information extracted from heterogeneous images.

Fig.  4 shows the DIs obtained by RIEM and other comparison 
methods. Three facets can be noted: first, although most methods yield 

2 HPT and AMDIR (under the ‘‘Image-Regression’’ subdirectory), X-Net and 
ACE-Net (under the ‘‘Deep-Image-Translation’’ subdirectory), and CAAE (un-
der the ‘‘Code-Aligned-Autoencoders’’ subdirectory) are available at https://
github.com/llu025/Heterogeneous_CD; IRG-McS is available at https://github.
com/yulisun/IRG-McS; SDA is available at https://github.com/yulisun/HCD-
GSP.
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DIs that can reflect certain change information, some methods are 
still not robust enough. For example, the DIs generated by AMDIR on 
Datasets #1 and #7, IRG-McS on Dataset #2, and CAAE on Datasets 
#4 and #7 are difficult to assess the change score of pixels. Second, the 
proposed RIEM consistently produces high-quality DIs across different 
datasets, where the discriminative ability between changed and un-
changed regions is notable, validating the effectiveness and robustness 
of the rules induced energy model in HCD. Third, it is also observed that 
both RIEM and SDA yield sparse DIs as shown in Fig.  4(j) and (f), which 
is attributed to the incorporation of prior knowledge of change sparsity 
in the energy model and regression model, respectively. In this context, 
simple thresholding or clustering methods can effectively segment the 
changed and unchanged regions in the DIs generated by RIEM.

Fig.  5 plots the ROC and PR curves of the DI obtained by the differ-
ent methods in Fig.  4, and the corresponding quantitative evaluation 
indicators of AUR and AUP are presented in Table  3. From Fig.  5 
and Table  3, it can be seen that the DIs obtained by RIEM can well 
discriminate between changed and unchanged. RIEM obtains average 
AUR and AUP values of 0.952 and 0.714 respectively, which are 2.1% 
and 7.6% higher than those of the second-ranked (X-Net and SDA) 
respectively.

4.2.2. Change maps
To evaluate the CM of RIEM, we compare the proposed RIEM with 

the thirteen comparison methods, including not only the seven methods 
in Fig.  4 and Table  3, but also the following six methods.3

M3CD (Touati et al., 2020). An MRF based energy model that 
measures two pixels whether have identical labels or have different 
labels and employs the iterative conditional estimation in the energy 
minimization.

FPMS (Mignotte, 2020). An image translation based method that 
translate the pre-change image to the post-change image domain by 
utilizing the fractal encoding and fractal projection.

3 M3CD, FPMS and CICM are available at http://www-labs.iro.umontreal.
ca/~mignotte/ResearchMaterial; GSGM is available at https://github.com/
rshante0426/GSGM; AOSG is available at https://github.com/rshante0426/
AOSG; USSD is available at https://github.com/zhuzhu94854693/USSD.

https://github.com/llu025/Heterogeneous_CD
https://github.com/llu025/Heterogeneous_CD
https://github.com/yulisun/IRG-McS
https://github.com/yulisun/IRG-McS
https://github.com/yulisun/HCD-GSP
https://github.com/yulisun/HCD-GSP
http://www-labs.iro.umontreal.ca/~mignotte/ResearchMaterial
http://www-labs.iro.umontreal.ca/~mignotte/ResearchMaterial
https://github.com/rshante0426/GSGM
https://github.com/rshante0426/GSGM
https://github.com/rshante0426/AOSG
https://github.com/rshante0426/AOSG
https://github.com/zhuzhu94854693/USSD
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Fig. 6. Change maps generated by different methods. From top to bottom, they are corresponding to Datasets #1 to #7, respectively. From (a) to (o) are the 
change maps generated by (a) M3CD, (b) FPMS, (c) CICM, (d) HPT, (e) AMDIR, (f) IRG-McS, (g) SDA, (h) X-Net, (i) ACE-Net, (j) GSGM, (k) AOSG, (l) USSD, 
(m) CAAE, (n) RIEM-O, and (o) RIEM-L. In the change map, white, red, black, and cyan mark true positives (TP), false positives (FP), true negatives (TN), and 
false negatives (FN), respectively.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
CICM (Touati, 2019). A circular invariant convolution model based 
method that projects one image to the other image domain and then 
compares images by pixel differencing.

GSGM (Han et al., 2024b). A graph mapping method that constructs 
and compares the image structures represented by global structure 
graphs.

AOSG (Han et al., 2024c). An adaptive structured graph based 
method that cross-maps image structure features to the same domain 
to extract changes.

USSD (Zhu et al., 2024). An unsupervised spatial self-similarity 
difference based method that utilizes the image spatial relationships to 
detect changes.

The qualitative CMs obtained by different methods are presented 
in Fig.  6 and the corresponding quantitative evaluation indicators are 
presented in Table  4. From these results, it can be observed that HPT, 
AMDIR, AOSG and USSD have relatively more false positives, e.g., in 
Datasets #1, #3 and #7, while M3CD, FPMS, IRG-McS and GSGM 
have more false negatives in Dataset #2, resulting in smaller kappa 
coefficients. In Dataset #4, CAAE fails to detect the changes, causing 
a smaller F1-score of 0.239. The proposed RIEM outperforms other 
comparison methods on most datasets. For example, RIEM-L gains the 
highest F1-score on Datasets #1-#4, and RIEM-O gains the highest 
F1-score on Dataset #6. In terms of average scores (OA, 𝜅, F1, IoU), 
RIEM-L and RIEM-O are ranked first and second respectively, and 
show significant improvement over the other methods, e.g., the average 
kappa coefficient of RIEM-L is 5.4% higher than the third-ranked SDA. 
This outstanding performance can be attributed to the following two 
aspects: first, RIEM is based on the universal six rules, which are 
derived from the nature of change detection problem without using 
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any assumptions, so RIEM is robust to different HCD scenarios and 
consistently achieves good performance with different datasets; second, 
RIEM takes full advantage of the flexibility of energy model, which not 
only takes into account the similarity and dissimilarity relationships of 
images, but also the spatial continuity and change sparsity, enabling 
the proposed model to more accurately portray the HCD problem. 
In addition, it can be observed that CMs of RIEM still contain some 
isolated false detections, especially in the RIEM-O. This is mainly due 
to the use of a simple thresholding strategy to generate binary CM, 
without incorporating any additional post-processing techniques such 
as morphological filtering (Chen et al., 2022). This also suggests that 
there is still room for further improvement in RIEM’s performance 
through post-detection refinement.

4.3. Discussions

4.3.1. Parameter analysis
The main parameters used in RIEM are the superpixel number of 

𝑁𝑆 , the weighting parameters of 𝛼′ and 𝛽′ in the energy model.
In general, the superpixel number, 𝑁𝑆 , should be determined ac-

cording to the spatial resolution of the dataset and the timeliness 
requirement of the HCD task. A larger 𝑁𝑆 can result in smaller seg-
mented superpixel areas, thereby improving the granularity of change 
detection. Fig.  7 shows the DIs and CMs generated by RIEM on Datasets 
#3 and #5 with different 𝑁𝑆 , where we mark some details with the 
elliptical regions. It can be found that more details can be detected as 
𝑁𝑆 increases. However, when we choose a larger 𝑁𝑆 , the computa-
tional complexity of the algorithm also rises, as discussed later in this 
subsection. Conversely, reducing the 𝑁  can enhance computational 
𝑆
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Table 4
OA, 𝜅, F1 and IoU of CMs. The best and second best scores are marked in red and blue, respectively.

Methods
Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5 Dataset #6 Dataset #7 Average

OA 𝜅 F1 IoU OA 𝜅 F1 IoU OA 𝜅 F1 IoU OA 𝜅 F1 IoU OA 𝜅 F1 IoU OA 𝜅 F1 IoU OA 𝜅 F1 IoU OA 𝜅 F1 IoU

M3CD (Touati et al., 2020) 0.956 0.633 0.656 0.488 0.884 0.044 0.075 0.039 0.863 0.406 0.482 0.318 0.915 0.588 0.636 0.466 0.575 0.021 0.077 0.040 0.856 0.158 0.204 0.113 0.952 0.618 0.643 0.474 0.857 0.352 0.396 0.277
FPMS (Mignotte, 2020) 0.938 0.593 0.625 0.454 0.830 0.019 0.112 0.059 0.827 0.269 0.368 0.226 0.962 0.816 0.837 0.720 0.947 0.329 0.356 0.217 0.979 0.544 0.553 0.382 0.970 0.770 0.786 0.648 0.922 0.477 0.520 0.387
CICM (Touati, 2019) 0.943 0.451 0.481 0.317 0.983 0.909 0.918 0.849 0.867 0.270 0.321 0.191 0.884 0.507 0.573 0.401 0.899 0.081 0.131 0.070 0.789 0.024 0.080 0.042 0.896 0.371 0.423 0.268 0.894 0.373 0.418 0.305

HPT (Liu et al., 2018b) 0.912 0.504 0.546 0.376 0.987 0.930 0.937 0.881 0.815 0.415 0.523 0.354 0.918 0.671 0.717 0.558 0.932 0.488 0.518 0.350 0.927 0.447 0.476 0.312 0.860 0.397 0.455 0.294 0.907 0.550 0.596 0.447
AMDIR (Luppino et al., 2019) 0.799 0.255 0.328 0.196 0.982 0.904 0.914 0.842 0.724 0.259 0.411 0.258 0.898 0.607 0.664 0.497 0.822 0.236 0.291 0.170 0.686 0.116 0.170 0.093 0.782 0.171 0.254 0.145 0.813 0.364 0.433 0.315
IRG-McS (Sun et al., 2021a) 0.971 0.739 0.754 0.605 0.912 0.448 0.493 0.327 0.882 0.420 0.478 0.314 0.939 0.714 0.749 0.599 0.959 0.490 0.512 0.344 0.976 0.690 0.702 0.541 0.971 0.740 0.755 0.606 0.944 0.606 0.635 0.477
SDA (Sun et al., 2022) 0.958 0.654 0.676 0.511 0.973 0.856 0.871 0.771 0.902 0.523 0.572 0.400 0.947 0.768 0.798 0.664 0.954 0.433 0.457 0.296 0.981 0.728 0.738 0.585 0.979 0.806 0.817 0.690 0.956 0.681 0.704 0.560

X-Net (Luppino et al., 2022) 0.967 0.723 0.740 0.587 0.966 0.815 0.834 0.715 0.874 0.471 0.544 0.374 0.947 0.768 0.798 0.664 0.931 0.428 0.461 0.300 0.962 0.526 0.546 0.375 0.878 0.341 0.401 0.251 0.932 0.582 0.618 0.467
ACE-Net (Luppino et al., 2022) 0.958 0.674 0.696 0.534 0.961 0.790 0.811 0.683 0.870 0.397 0.466 0.304 0.952 0.789 0.816 0.690 0.911 0.367 0.406 0.255 0.959 0.490 0.510 0.343 0.901 0.447 0.497 0.330 0.930 0.565 0.600 0.448
GSGM (Han et al., 2024b) 0.958 0.677 0.699 0.538 0.901 0.255 0.294 0.172 0.519 0.074 0.292 0.171 0.935 0.684 0.720 0.563 0.858 0.233 0.286 0.167 0.963 0.575 0.593 0.422 0.851 0.165 0.237 0.134 0.855 0.381 0.446 0.310
AOSG (Han et al., 2024c) 0.874 0.397 0.451 0.291 0.916 0.589 0.636 0.466 0.782 0.216 0.346 0.209 0.842 0.486 0.569 0.397 0.898 0.329 0.372 0.228 0.942 0.502 0.526 0.357 0.910 0.532 0.574 0.402 0.881 0.436 0.496 0.336
USSD (Zhu et al., 2024) 0.965 0.726 0.745 0.593 0.916 0.632 0.678 0.513 0.694 0.214 0.379 0.234 0.878 0.528 0.597 0.425 0.896 0.384 0.425 0.270 0.880 0.152 0.196 0.109 0.578 0.084 0.187 0.103 0.829 0.389 0.458 0.321

CAAE (Luppino et al., 2024) 0.930 0.534 0.569 0.398 0.974 0.861 0.875 0.777 0.867 0.380 0.451 0.291 0.803 0.126 0.239 0.136 0.930 0.456 0.488 0.323 0.933 0.324 0.355 0.215 0.844 0.014 0.069 0.036 0.897 0.385 0.435 0.311

RIEM-O (proposed) 0.971 0.730 0.745 0.594 0.973 0.863 0.878 0.783 0.902 0.577 0.633 0.463 0.947 0.780 0.810 0.681 0.940 0.463 0.492 0.327 0.985 0.796 0.803 0.671 0.974 0.785 0.799 0.665 0.956 0.713 0.737 0.598
RIEM-L (proposed) 0.970 0.744 0.760 0.613 0.987 0.935 0.942 0.890 0.923 0.669 0.713 0.553 0.958 0.817 0.841 0.725 0.954 0.473 0.499 0.332 0.981 0.732 0.742 0.589 0.976 0.779 0.792 0.656 0.963 0.735 0.755 0.623
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Fig. 7. Difference images (top row) and change maps (bottom row) of RIEM on Datasets #3 and #5 with different 𝑁𝑆 . (a)–(c) are the results on Dataset #3 under 
𝑁𝑆 = 1250, 2500, 5000, the corresponding 𝜅 values of CMs are 0.558, 0.577, and 0.580, respectively. (d)–(f) are the results on Dataset #5 under 𝑁𝑆 = 1250, 5000, 
the corresponding 𝜅 values of CMs are 0.443, 0.463, and 0.469, respectively.
Fig. 8. Change maps obtained by RIEM-O with 𝛼′ = 0. From (a) to (g) are the results on Datasets #1 to #7.
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efficiency, but if the 𝑁𝑆 is too small, the segmented superpixel areas 
may become excessively large, potentially causing some superpixels to 
encompass different land cover categories, i.e., disrupting the internal 
homogeneity of superpixels, which may degrade the detection accuracy 
as shown in Fig.  7. As a compromise, this paper simply sets 𝑁𝑆 ≈ 2500.

For the weighting parameters of 𝛼′ and 𝛽′, they are applied to adjust 
the weights of the smooth and sparse constraint terms in the energy 
function (27), respectively. First, we conduct the ablation analysis. 
(1) If the RIEM model focuses only on the similarity/dissimilarity 
relationships consistency term of (𝟏 − 𝐩)𝑇 𝐁 (𝟏 − 𝐩), i.e., set 𝛼′ → 0 and 
𝛽′ → 0, the solution of (27) will be 𝐩∗ = 𝟏 with 𝐸∗

ℎ = 0; and if the 
RIEM model remove this relationships consistency term, the solution 
of (27) will be 𝐩∗ = 𝟎. (2) If the RIEM model focuses only on the 
smooth constraint term of 𝐩𝑇𝐋𝑤𝐩, i.e., set 𝛼′ → ∞, the solution of 
(27) will be 𝐩∗ = 𝑐𝟏 with 𝑐 being a constant. Fig.  8 shows the CMs 
obtained by RIEM-O with 𝛼′ = 0, from which it can be seen that there 
are considerable salt-and-pepper noise in CM when the energy model 
discards the smooth constraint. (3) If the RIEM model focuses only on 
the sparse constraint term, i.e., set 𝛽′ → ∞, the solution of (27) will be 
𝐩∗ = 𝟎; and if the RIEM model remove the sparse constraint term, the 
solution of (27) will be 𝐩∗ = 𝟏.

Second, we show parameters sensitivity of RIEM in Fig.  9. To avoid 
redundancy, we only show the 𝜅 of RIEM-L with different 𝛼′ (from 10 
to 20) and RIEM-O with different 𝛽′ (from 2−6 to 2−1). From Fig.  9 it 
can be seen that RIEM gains favorable performance to a certain range 
of values of 𝛼′ and 𝛽′, which shows the robustness to these weighting 
parameters. In addition, the reason for setting different values of 𝛽′ in 
RIEM-L and RIEM-O is that 𝛽′ is used to balance the first-power and 
second-power functions regarding to 𝑳 and 𝐩, respectively. In the latter, 
𝐩 is taken as a decimal between 0 and 1, causing more attenuation of 
the energy functions with respect to the second-power of 𝐩 (i.e., the 
relationships consistency term and smooth constraint term). Therefore, 
a smaller 𝛽′ is needed in the RIEM-O to reduce the weights of the 
first-power loss functions (i.e., the sparse constraint term).
 s
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Table 5
Ablation study of the four energy functions in RIEM measured by the average 
scores.
 Methods Energy functions in 𝐸ℎ Performance

𝐸𝑠𝑟 𝐸𝑑𝑟 𝐸𝑠𝑠 𝐸𝑝𝑠 OA 𝜅 F1 IoU  

Settings

– ✓ – ✓ 0.899 0.427 0.475 0.319 
– ✓ ✓ ✓ 0.928 0.537 0.574 0.408 
✓ – – ✓ 0.934 0.618 0.653 0.495 
✓ ✓ – ✓ 0.958 0.696 0.719 0.575 
✓ – ✓ ✓ 0.958 0.700 0.724 0.581 

RIEM ✓ ✓ ✓ ✓ 0.963 0.735 0.755 0.623 

.3.2. Ablation study
The hybrid energy function 𝐸ℎ (24) in RIEM consists of four com-

onents: 𝐸𝑠𝑟, 𝐸𝑑𝑟, 𝐸𝑠𝑠, and 𝐸𝑝𝑠. From the expression of 𝐸ℎ, it can be 
bserved that each energy term exhibits a specific tendency: 𝐸𝑠𝑟 and 
𝑑𝑟 both encourage 𝐩 = 𝟏, 𝐸𝑠𝑠 favors 𝐩 = 𝑐𝟏 with 𝑐 being a constant, 
nd 𝐸𝑝𝑠 tends towards 𝐩 = 𝟎. Therefore, using only a subset of the 
nergy terms may lead to trivial solutions. For example, combining 
𝑠𝑟 + 𝐸𝑑𝑟, 𝐸𝑠𝑟 + 𝐸𝑠𝑠, 𝐸𝑑𝑟 + 𝐸𝑠𝑠, 𝐸𝑠𝑟 + 𝐸𝑑𝑟 + 𝐸𝑠𝑠 would result in the 
rivial solution of 𝐩∗ = 𝟏, while 𝐸𝑠𝑠 + 𝐸𝑝𝑠 would yield 𝐩∗ = 𝟎. In 
ddition to these combinations that lead to trivial results, we evaluate 
he performance of the remaining six valid energy combinations, using 
he average OA, 𝜅, F1 and IoU as evaluation metrics. As shown in 
able  5, it is clear that the performance of RIEM degrades when any 
ne of 𝐸𝑠𝑟, 𝐸𝑑𝑟 or 𝐸𝑠𝑠 is removed. Specifically, removing the similarity 
elationships based energy 𝐸𝑠𝑟 (derived from Rules 1–4) leads to the 
argest decrease in F1-score and IoU, highlighting its crucial role in 
xploiting intra-image similarity for change detection. The dissimilarity 
elationships based energy 𝐸𝑑𝑟 (derived from Rules 5–6) and the spatial 
moothness based energy 𝐸  also show significant impact: 𝐸  can 
𝑠𝑠 𝑑𝑟
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Fig. 9. Sensitivity analysis of parameters 𝛼′ (left) and 𝛽′ (right).
Table 6
The computational time (s) of different methods on Dataset #3 with image size 2000 × 2000 × 3.
 Methods M3CD (Touati 

et al., 2020) FPMS 
(Mignotte, 
2020)

CICM (Touati, 
2019)

HPT (Liu 
et al., 2018b) AMDIR 

(Luppino 
et al., 2019)

IRG-McS (Sun 
et al., 2021a) SDA (Sun 

et al., 2022) GSGM (Han 
et al., 2024b) AOSG (Han 

et al., 2024c) USSD (Zhu 
et al., 2024) RIEM-O RIEM-L 

 Time (s) 2611.6 92.4 113.0 78.1 109.6 20.5 10.2 788.8 207.3 795.2 5.5 5.2  
effectively utilize intra-image dissimilarity relationships, while 𝐸𝑠𝑠 can 
mitigate the salt-and-pepper noise in CM by incorporating both spatial 
context and similarity/dissimilarity relationships in multitemporal im-
ages. Overall, these results confirm that all four energy components are 
complementary and jointly contribute to the superior performance of 
the proposed RIEM.

4.3.3. Complexity analysis
The proposed RIEM consists of three processes: preprocessing, con-

structing the energy model and solving the energy model. In the 
preprocessing, the complexity of superpixel segmentation is  (𝑀𝑁)
as illustrated in Ban et al. (2018). In the energy model construc-
tion, computing the feature distance matrices of 𝐃𝑥 and 𝐃𝑦 needs 

((

𝐵𝑥 + 𝐵𝑦
)

𝑁2
𝑆
)

; sorting the feature distance matrix and construct the 
high-order KNN and KFN graphs needs  (

𝑁2
𝑆 log𝑁𝑆

)

; computing the 
matrix 𝐁 needs  (

𝑁2
𝑆
)

; computing the matrix 𝐋𝑤 needs  (

𝑁2
𝑆 +𝑁𝑅

)

with 𝑁𝑅 =
∑

𝑖∈
|

|

|

𝑅
𝑖
|

|

|

. In the energy model solution, for the RIEM-
O with (29), the gradient descent method requires a complexity of 

(

𝑁2
𝑆
) to compute the gradient vector per iteration; for the RIEM-

L with (32), the LSA method is used for this non-submodular energy 
minimization, whose complexity is presented in Gorelick et al. (2014). 
Generally speaking, the complexity of RIEM is relatively low, and it is 
mainly related to the number of superpixel 𝑁𝑆 rather than the number 
of image pixels.

Table  6 lists the running times of the compared traditional al-
gorithms on Dataset #3 with their original open source codes and 
default parameters, where the C++ codes of M3CD, FPMS, and CICM 
are executed in a Linux environment with Intel Xeon Silver 4110 
CPU, HPT, AMDIR, IRG-McS, SDA, GSGM, AOSG, USSD and RIEM are 
implemented in MATLAB and ran on a Windows environment with Intel 
Core i7-8700K CPU. As observed from Table  6, the proposed superpixel-
based RIEM has the least runtime, demonstrating the high efficiency 
and significant practical applicability.

5. Conclusion

This paper proposes a rules-induced unsupervised HCD method. 
Starting from the nature of change detection problem, it first establishes 
a general connection between pairwise relationships and change labels, 
and accordingly derives six universal rules for determining the change 
labels. These labels provide a nice solution for HCD problem: detecting 
changes by considering only the intra-image relationships within each 
image rather than considering the inter-image comparisons, which 
significantly reduces the difficulty of HCD problem. Based on this, it 
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constructs an energy model to portray these rules, and eventually solves 
the rules-induced energy model to directly extract the change informa-
tion. Experimental results on seven datasets, compared with thirteen 
representative methods, demonstrate the effectiveness of the proposed 
approach. RIEM achieves an average improvement of 5.1% in F1-
score while maintaining the lowest runtime. These results confirm the 
feasibility, superiority, and practical potential of RIEM for real-world 
HCD applications. Given the favorable properties of the derived rules, 
we hope they can inspire a rethinking of the change detection problem, 
especially as deep learning based methods are being systematically 
applied.
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