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Abstract— Change detection of heterogeneous multitemporal
satellite images is an important and challenging topic in remote
sensing. Since the imaging mechanisms of heterogeneous sensors
are different, it is not possible to directly compare heteroge-
neous images to detect changes as in the homogeneous images.
To address this challenge, we propose an unsupervised image
regression-based change detection method based on the structure
consistency. The proposed method first adaptively constructs a
similarity graph to represent the structure of a pre-event image,
then uses the graph to translate the pre-event image to the domain
of the post-event image, and then computes the difference image.
Finally, a superpixel-based Markovian segmentation model is
designed to segment the difference image into changed and
unchanged classes. The proposed adaptive structure consistency-
based image regression model can not only alleviate the impact
of noise and changed pixels on the regression process by using
the structure-based transformation, but also easily distinguish
between changed and unchanged classes in the difference image
by using the prior sparse knowledge of changes. Experimental
results on six different datasets demonstrate the effectiveness of
the proposed method by comparing with some state-of-the-art
methods.

Index Terms— Graph, heterogeneous data, image regression,
sparse regularization, structure consistency, unsupervised change
detection.

I. INTRODUCTION

A. Background

CHANGE detection (CD) is a technique to recognize
changes in imagery acquired on the same geographical

location but at different times [1]. CD is a very important topic
in satellite remote sensing (RS), which has been found a wide
range of applications in damage assessment [2], agricultural
surveys [3], and environmental monitoring [4].
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Currently, most of the past CD techniques assume that
the satellite images are homogeneous, that is, images are
acquired from the same sensor, such as CD of SAR images [5],
optical images [6], and hyperspectral images [7]. However,
the assumption of homogeneity does not apply to many
practical examples and applications, especially when differ-
ent sensors are involved. This is a significant limitation in
emergency response to sudden events, such as earthquakes and
floods. In such kind of scenario, the pre-event SAR image is
usually unavailable due to the limited coverage and high cost,
and the high-quality post-event optical image often cannot be
obtained due to the adverse light and weather conditions [2].
Therefore, the CD method based on the heterogeneous images,
that is, images are acquired from different sensors, becomes
particularly important in these scenarios. On the one hand,
heterogeneous CD allows to fully utilize the capabilities of all
available sensors. But, on the other hand, it poses additional
technical challenges that different sensors measure different
physical quantities of the same object, resulting in different
characteristics in the heterogeneous images, which makes it
impossible to directly compare heterogeneous images to detect
changes as in homogeneous CD.

Generally, the existing methods of heterogeneous CD can
be classified into supervised and unsupervised according to
whether labeled data is required or not and also into pixel-
based and object-based according to the basic analysis unit
used in image comparison. Since the heterogeneous images
cannot be directly compared due to the different imaging
mechanisms, the goal of heterogeneous CD method is to
transform the “incomparable” images to a common space
where they are “comparable.” According to the transformed
space, the heterogeneous CD methods can also be roughly
classified into three categories.

1) Classification-Based Method: These methods transform
the heterogeneous images to a common category space by
classifying the images separately and then compare the
classification results to detect the changes, such as the
post-classification comparison method [8], the multitemporal
segmentation, and compound classification method (MS-CC)
[9], [10]. The classification-based method is intuitive and
easy to be implemented, but it has the following two
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weaknesses: first, the CD performance depends on the accu-
racy of image classification, however, precise classification is
difficult, especially for SAR images that are affected by severe
speckle noise; second, the CD granularity depends on the
fineness of image classification, that is, only changes between
categories can be detected, while changes within the same
category and outside all categories cannot be detected.

2) Similarity-Based Method: These methods usually trans-
form the heterogeneous images to a feature space, where
similarity measures with assumed imaging-modality-invariant
properties are used to measure the change level. They can
be further divided into traditional similarity-based and deep
learning-based methods. The former manually constructs the
connection between heterogeneous images, such as the pixel
pair (PP) method [11], sorted histogram distance (SHD) [12],
Kullback–Leibler (KL) distance with copula theory [13], man-
ifold distance of local joint distributions [14], and nonlocal
pixel pairwise energy-based model (NLPEM) [15]. The latter
compares the images in a common latent feature space,
which is learned by using the deep neural networks (DNNs)
with unchanged samples of heterogeneous images, such as
the symmetric convolutional coupling network (SCCN) [16],
anomaly feature learning-based deep sparse residual model
(AFL-DSR) [17], and logarithmic transformation feature learn-
ing network (LT-FL) [18]. For these similarity-based methods,
the modal-invariant features are very important, which directly
affects the CD performance. Therefore, such methods often
face two challenges: first, when the scene is complex or the
noise in the image is severe (especially the speckle noise
of SAR images), the manually constructed connections of
traditional similarity-based methods may no longer applica-
ble; second, when the unchanged samples for training is
not enough or the samples are mixed with wrong samples
(changed samples), the learned features of deep learning-based
methods may no longer characterize the relationship between
heterogeneous images, resulting in a dramatic decrease in the
CD performance.

3) Regression-Based Method: These methods map one
image to the domain of the other image. In [19], homo-
geneous pixel transformation (HPT) uses kernel regression
on a sample of K-nearest neighbor (KNN) pixels to set up
mappings between the input images. The regression process
of HPT is supervised with unchanged training data. To avoid
the requirement of the labeled data, an unsupervised affinity
matrix-based image regression (AM-IR) is proposed [20],
which uses the AMD to identify pixels that are likely to
be unchanged as pseudo-training data and then selects four
regression methods to carry out the transformation: Gaussian
process regression (GPR), support vector regression (SVR),
random forest regression (RFR), and the HPT. In addition,
some researchers also use the neural network to complete
the image translation. In [21], a conditional generative adver-
sarial network (cGAN)-based heterogeneous CD method is
proposed, which constrains a cGAN-based network to translate
the optical image to the SAR image and an approximation
network to transform the original SAR image to the translated
one. A coupling translation network (CPTN) is proposed
in [22], which uses a coupling variational autoencoder (VAE)

to extract a shared-latent space for images and then uses a cou-
pled GAN to translate the heterogeneous images. In [23], two
deep image translation methods with an AMD-based change
prior are proposed: the X-Net with two fully convolutional
networks and the adversarial cyclic encoders network (ACE-
Net) with two autoencoders whose code spaces are aligned by
adversarial training. Note that the regression processes of these
traditional methods or deep translation networks need to be
trained with unchanged pairs of heterogeneous data. Therefore,
these regression-based methods either require labeled training
set under the supervision mode (such as HPT), the pseudo-
training set/change prior to guide the training process (such
as AM-IR, X-Net, ACE-Net), or a complex coarse-to-fine
filtering process to construct the pseudo-training set (such as
cGAN and CPTN).

B. Motivation

Recently, the structure consistency between heterogeneous
images has been explored by researchers and used for het-
erogeneous CD [24]–[28], which is based on the widespread
self-similarity property of the images. With the assumption
that heterogeneous images share the same structure informa-
tion, two similarity-based methods have been proposed: the
nonlocal patch similarity graph-based method (NPSG) [25]
constructs KNN graph for each patch and then compares the
graphs to measure the structure consistency, and the adap-
tive local structure consistency-based method (ALSC) [26]
adaptively constructs graph to represent the local structure
of each patch and calculates the difference image (DI)
by graph projection. Based on the self-similarity property,
two regression-based methods have also been proposed: the
fractal projection and Markovian segmentation-based method
(FPMS) [27] maps the pre-event image to the domain of
the postevent image by fractal projection, which consists a
fractal encoding step of the pre-event image and a fractal
decoding step of the postevent image; the patch similarity
graph matrix-based method (PSGM) [28] first learns a self-
expression matrix for one image and then computes the regres-
sion image by multiplying the other image with this learned
matrix.

These self-similarity-based heterogeneous change detection
methods [25]–[28] have inspired us that the image struc-
ture can be represented by constructing a graph, and this
graph can be further used to complete the image regression
based on structure consistency. In this article, we propose a
sparse-constrained adaptive structure consistency-based image
regression method for heterogeneous CD (named SCASC
for short). Specifically, we first divide the multitemporal
images into superpixels and construct an adaptive probabilistic
graph (APG) to represent the structure information of pre-
event image, which is similar to ALSC. Then, we use the APG
to complete the image regression by solving an optimization
model based on the structure consistency and sparse prior
knowledge of changes. Finally, a Markov random field (MRF)
segmentation model is used to compute the binary change
map (CM), which can improve the detection accuracy by
considering the spatial information of neighbor superpixels.
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The main differences between SCASC and the previ-
ous self-similarity and regression-based methods are as
follows.

1) Different from NPSG [25] and ALSC [26] that construct
the graph one by one for each patch within its local search
window with fixed number of neighbors, this article constructs
the APG for the whole image with adaptive neighbors, which
is more robust. At the same time, different from ALSC and
NPSG that directly compare the graphs to detect the changes,
which may lose some image information such as some small
objects and some areas with blurred edge, the proposed
method uses the APG to compute the regression image and
compares the images in the same domain to reduce information
loss.
2) Different from FPMS [27] that uses the fractal encoding and
fractal projection to complete the structure representation and
image translation, respectively, SCASC constructs the APG to
represent the image structure and then translates the image by
a regression model. Different from PSGM [28] that learns the
self-expression matrix through a complicated iterative solving
process, the APG of SCASC can be learned by a closed-form
solution. More importantly, the image regression models of
PSGM and SCASC are also very different. PSGM is based on
the assumption that the regression image can be self-expressed
through the self-expression matrix of pre-event image, while
SCASC uses the similarity relationship-based graph Laplacian
regularization to compute the regression image.
3) A main challenge in the unsupervised regression-based
heterogeneous CD method is to avoid that noise and changed
pixels affect the regression. Different from the common
translation-based methods which aim to learn a luminance
transformation function to map one image to the domain
of the other image, such as HPT [19] and AM-IR [20],
the proposed SCASC uses the structure consistency between
heterogeneous images to compute the regression image which
is more robust to noise. Moreover, SCASC decomposes the
original image of the target domain into the regression image
and the changed image in the optimization model, which can
reduce the impact of changed pixels on the regression process.
4) Different from other methods that use the individual pix-
els or square patches [24]–[28], the proposed SCASC uses
the superpixels as the basic unit, which brings two main
advantages: first, it can maintain the structure and edge of
the object and contain the context information, because each
superpixel is internally homogeneous (belongs to the same
object); second, it can also reduce the computational complex-
ity, especially for the large-scale very-high-resolution (VHR)
images.

C. Contribution

The main contributions of this work can be summarized as
follows.

1) An unsupervised, object-based, and image regression-
based heterogeneous CD method is proposed based on
the structure consistency, which adaptively constructs a
graph to represent the image structure and then uses the
graph to translate the pre-event image to the domain
of postevent image without requiring any training set
(or pseudo-training set).

Fig. 1. Structure consistency of heterogeneous images. (a) SAR image.
(b) Optical image. The thickness of the connecting line indicates the degree
of similarity between image parts (X̃i and X̃ j , Ỹi and Ỹ j ). The structure is
defined as the similarity relationships between the image parts. In the SAR
image and the optical image, the structure of the unchanged part is consistent,
while the changed part is not.

2) The proposed adaptive structure consistency-based
image regression model can alleviate the impact of
noise and changed pixels on the regression process
by using the structure-based transformation. The sparse
regularization of changes is taken into account in the
regression model to make the translated image more
accurate and make the DI easier to distinguish between
changed and unchanged pixels.

3) A superpixel-based MRF segmentation model is
designed to calculate the final CM, which combines the
change information and spatial context information of
DI to improve the detection accuracy.

4) Experimental results demonstrate the effectiveness of
the proposed method by comparing with some state-
of-the-art (SOTA) methods (source code of the pro-
posed method is made available at https://github.
com/yulisun/SCASC).

The rest of this article is structured as follows. Section II
describes the details of the proposed SCASC for heteroge-
neous CD. Section III presents the experimental results and
some discussions. Finally, Section IV concludes this article.

II. METHODOLOGY

We consider a pair of co-registered heterogeneous RS
images obtained by different sensors before and after an event,
which are denoted as X̃ ∈ R

M×N×CX in domain X and
Ỹ ∈ R

M×N×CY in domain Y , and their pixels are denoted
as x̃(m, n, c) and ỹ(m, n, c), respectively. Here, M , N , and
CX (CY) represent the height, width, and number of bands
of the image X̃ (Ỹ), respectively. Since different imaging
mechanisms result in that heterogeneous images cannot be
directly compared, we need to find the connection between
heterogeneous images to make them comparable.

As illustrated in Fig. 1, each image is divided into small
parts with the same segmentation form. For the SAR image,
if X̃i and X̃ j represent the same (or different) kind of objects,
and neither of them changes during the event, then Ỹi and Ỹ j

also represent the same (or different) kind of objects in the
optical image. We use the similarity relationships between the
target part (X̃i ) and other parts (X̃ j ) to represent the structure
of this target part (X̃i ). This nonlocal similarity within the
image itself would eliminate the discrepancy between the
heterogeneous images. Therefore, the structure of X̃i can
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be well preserved by the unchanged Ỹi , as shown by the
unchanged part in Fig. 1. On the contrary, if X̃i has changed
in the event, the structure of X̃i is no longer preserved by
Ỹi , showing that the similarity relationships between Ỹi and
Ỹ j are quite different from that of X̃i and X̃ j , as illustrated
by the changed part in Fig. 1. We can find that the similar-
ity relationship-based structure consistency is quite imaging
modality invariant, and it can be used to measure the change
level by calculating the difference between the structures of
pre-event image X̃ and postevent image Ỹ. Therefore, there
are two main problems to be considered: how to represent the
image structure and how to use the structure consistency to
detect changes.

A. Superpixel Segmentation and Feature Extraction

In the proposed method, image block represented the same
kind of object is chosen as the basic analysis unit rather than
the individual pixel or square patch, which can be obtained
by superpixel segmentation. We select the simple liner iter-
ative clustering (SLIC) method [29] to obtain the segmented
superpixels. For the optical pre-event image X̃ with R, G, and
B bands, the original SLIC is directly employed to generate
superpixels, which first transforms the RGB color images
to the CIELAB color space to compute the Euclidean type
color distance. For the multispectral image X̃ with CX > 3,
we first use the principal component analysis (PCA) method
to reduce its dimensionality so that each pixel contains three
principal components and then SLIC is used to segment the
image without the CIELAB space transformation. For the
SAR images that are usually considered to be contaminated
by multiplicative speckle noise with the gamma distribution,
directly using the Euclidean color distance is not appropriate,
because adaptation to the noise distribution is essential for
robust distance criterion. Inspired by several similarity criteria
proposed in [30], the following color distances can be used to
generate superpixels instead of Euclidean distance:

dc = log

�
x̃i + x̃ j

2
�

x̃i x̃ j

�

dc =
�
log(x̃i)− log

�
x̃ j
��2

(1)

where x̃i and x̃ j are intensity values of two pixels of the SAR
image. Then, the generated superpixels have adaptive sizes and
shapes and adhere well to the edges.

When we divide the image X̃ into NS superpixels X̃i ,
i = 1, . . . , NS by using SLIC, we can obtain the seg-
mentation map � = {�i |i = 1, . . . , NS}, where

�NS
i=1 �i =

{(m, n)|m = 1, . . . , M; n = 1, . . . , N } and �i ∩ � j = ∅ if
i �= j . Then, we map the segmentation map � to image Ỹ to
obtain NS superpixels Ỹi , i = 1, . . . , NS as

Ỹi = {ỹ(m, n, c)|(m, n) ∈ �i; c = 1, . . . , CY}. (2)

Then, the pair of superpixels (such as X̃i and Ỹi ) correspond
to the same area.

Once the superpixel segmentation is completed, different
features representing different information can be extracted
from the superpixel, such as the spectral (intensity)-, textural-,

and spatial information-based features. Denote the feature
extraction operator as F , we can obtain the feature vectors
of Xi = F(X̃i) and Yi = F(Ỹi ). In this article, the mean,
median, and variance of each band are selected as the super-
pixel features for its simplicity. Therefore, we have the feature
matrices of X ∈ R

3CX×NS and Y ∈ R
3CY×NS by stacking the

feature vectors.

B. Adaptive Structure-Based Graph

In order to capture the structure information of the image X̃,
we construct a probabilistic graph SX. For the i th superpixel
X̃i , all the superpixels {X̃1, . . . , X̃NS } can be connected to X̃i

as neighbors with probabilities SX
i, j , j = 1, . . . , NS . Intuitively,

a small distance between X̃i and X̃ j should be assigned a larger
probability SX

i, j [31]. Therefore, we can solve the following
minimization problem to achieve this goal:

min
SX

i, j

NS�
j=1

distXi, j SX
i, j + γi

�
SX

i, j

�2

s.t. 0 ≤ SX
i, j ≤ 1,

NS�
j=1

SX
i, j = 1 (3)

where distXi, j = �Xi − X j�2
2 is the distance between two

superpixels X̃i and X̃ j by using the feature vectors, and γi ≥ 0
is a balance parameter. If we choose γi = 0, problem (1)
has a trivial solution, that is, only the nearest superpixel (the
superpixel X̃ j with the minimum distXi, j ) can be the neighbor
of X̃i with probability 1 and all the other superpixels cannot be
connected with X̃i (SX

i, j = 0 for other X̃ j ). On the other hand,
if we solve problem (1) without the prior distance information
term, that is, we choose γi → 0, the optimal solution of (1)
is that all the superpixels can be the neighbor of X̃i with the
same probability 1/NS .

Denote distXi ∈ R
NS and SX

i ∈ R
NS as the distance vector

and similarity vector, whose j th elements are distX
i, j and SX

i, j ,
respectively. Then, problem (3) can be rewritten as

min
1T

Ns
SX

i =1,0≤SX
i, j≤1

				SX
i +

1

2γi
distXi

				
2

2

(4)

where 1Ns ∈ R
NS is a column vector with all elements being 1.

We use the method of Lagrangian multiplier to change (4) to

L�SX
i , δ, ζ

�
=
				SX

i +
1

2γi
distXi

				
2

2

− δ
�
1T

Ns
SX

i − 1
�− ζ T SX

i (5)

where δ and ζ ∈ R
NS are the Lagrangian multipliers. By using

the Karush-Kuhn–Tucker condition, we can obtain the closed-
form solution for SX

i as

SX
i, j =

�
−distXi, j

2γi
+ δ

�
+
. (6)

From (6), we can find that SX
i is a sparse vector, that

is, only the k nearest neighbors of X̃i could have a con-
nection with X̃i . We rank distXi in ascending order as
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distXi,(1), distXi,(2), . . . , distX
i,(NS ). Suppose that the optimal SX

i has
only ki nonzero elements, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−distXi,(ki )

2γi
+ δ > 0

−distXi,(ki+1)

2γi
+ δ ≤ 0

ki�
h=1

�
−distXi,(h)

2γi
+ δ

�
= 1.

(7)

Then, we can obtain the following inequality for γi :⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γi >
ki

2
distXi,(ki )

− 1

2

ki�
h=1

distXi,(h)

γi ≤ ki

2
distXi,(ki+1) −

1

2

ki�
h=1

distXi,(h).

(8)

Then, we can find that the regularization parameter γi can
be replaced by the number of neighbors ki when we set γi to
be

γi = ki

2
distXi,(ki+1) −

1

2

ki�
h=1

distXi,(h). (9)

Then, we can obtain the optimal SX
i as

SX
i,( j) =

⎧⎪⎨
⎪⎩

distXi,(ki+1) − distXi,( j)

ki distXi,(ki+1) −
�ki

h=1 distXi,(h)

, j ≤ ki

0, j > ki .

(10)

Therefore, the tuning of regularization parameter γi

becomes the tuning of the number of neighbors ki , which is
more intuitive (it has explicit meaning) and easier (it is an
integer).

From (3), we can find that the probabilistic graph SX is a
KNN type graph with the probability calculation criteria (10).
The number of neighbors ki plays an important role in the
graph SX. A very small ki is not robust enough for the graph,
whereas a very large ki tends to overconnect the graph and
leads to confusion, that is, there may be no ki really similar
superpixels for X̃i and then some superpixels that do not really
represent the same object as X̃i will also be connected to X̃i .
Therefore, we need to choose a suitable ki for each superpixel
instead of a common neighborhood number k as follows.

Step 1: Set kmax = 
(NS)
1/2� and kmin = 
(NS)

1/2/10�
with 
·� representing the rounding up operation, and find the
k nearest neighbor of each superpixel with k = kmax.

Step 2: Calculate the in-degree di(X̃i ) of each superpixel X̃i ,
that is, the number of times X̃i occurs among the k nearest
neighbor of all superpixels.

Step 3: Set ki = min{kmax, max{di(X̃i), kmin}} for each
superpixel X̃i and construct the graph SX by using (10).

In this strategy, kmax and kmin are sets based on the following
desirable properties: first, kmax should be large enough to
accurately measure the “popularity” of each superpixel in
Steps 1 and 2 and small enough to represent the real structure
of objects with the most superpixels (kmax should be smaller
than the number of superpixels that represent the most dom-
inant object), while kmin should be large enough to preserve

TABLE I

IMPLEMENTATION STEPS OF ALGORITHM 1

the structure of objects with the least superpixels (kmin should
be larger than the number of superpixels that represent the
least dominant object); second, kmax and kmin should be data-
dependent, that is, the value of ki should increase with the size
of the dataset (NS), but at a slower rate than NS itself. With
this strategy of selecting neighbor number, we can choose a
larger ki for superpixel that belongs to high density (with larger
di(X̃i )) and choose a smaller ki for superpixel that belongs to
low density (with smaller di(X̃i)).

The construction of adaptive structure-based graph SX is
listed in Algorithm 1 of Table I, where we can find that SX

is data-dependent in two aspects: adaptive neighbors selection
and adaptive probability calculation.

C. Sparse-Constrained Adaptive Structure Consistency-Based
Image Regression

We define the regression function as M and the regression
image of X̃ in domain Y as Z̃ ∈ R

M×N×CY , that is,
Z̃ = M(X̃). Because we use superpixel as the basic unit,
we need to find the mapping function for feature matrices
X→ Z, where Z ∈ R

3CY×NS is the feature matrix of regression
image Z̃ as Z = F(Z̃).

As illustrated in Fig. 1, the structure consistency between
X̃ and its regression image Z̃ requires that they have the same
similarity relationships between superpixels. Specifically, if X̃i

and X̃ j are very similar (represent the same kind of objects),
Z̃i and Z̃ j are also very similar (with small distance); on the
contrary, if X̃i and X̃ j are very different (represent the different
kinds of objects), Z̃i and Z̃ j are also very different (with
large distance). Since the structure information (similarity
relationships) of X̃ is characterized by the adaptive structure-
based graph SX, then we have the following constraint:

min
Z

NS�
i, j=1

�Zi − Z j�2
2 SX

i, j . (11)

Denote the degree matrix DS ∈ R
NS×NS as a diagonal matrix

with the i th diagonal element being
�NS

j=1 (SX
i, j + SX

j,i)/2, and

the Laplacian matrix LS as LS = DS−((SX + (SX)
T
)/2), then

we have
NS�

i, j=1

�Zi − Z j�2
2 SX

i, j = 2Tr
�
ZLSZT

�
(12)

where Tr(·) denotes the trace of a matrix.
On the other hand, the regression image Z̃ can be regarded

as a part of postevent image Ỹ, that is, image Ỹ can
be decomposed into a regression image Z̃ and a changed
image �̃. Then we have Y = Z − �, where � ∈ R

3CY×NS
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is the changed feature matrix. Based on the fact that most of
the objects are unchanged in the event and only a small part
of objects are changed, then this prior sparsity can be used to
regularize (12) as follows:

min
Z,�

2Tr
�
ZLSZT

�+ λ���2,1 s.t. Y = Z−� (13)

where λ > 0 is a regularization parameter. The �2,1-norm reg-
ularization term ���2,1 is defined as ���2,1 = �NS

i=1 ��i�2,
which is a convex relaxation of the original �2,0-norm
of ���2,0.

By using the alternating direction method of multipliers
(ADMM), the augmented Lagrangian function of (13) can be
written as

L(Z,�, W) = 2Tr
�
ZLSZT

�+ Tr
�
WT (Z− Y−�)

�
+μ

2
�Z− Y−��2

F + λ���2,1 (14)

where W ∈ R
3CY×NS is a Lagrange multiplier, and μ > 0 is a

penalty parameter. Then, the alternating direction method can
be used to solve the minimization problem of (14).

First, given the current points (Zk,�k, Wk) at the kth
iteration, the Z-subproblem can be formulated as

Zk+1= arg min
Z

�
2Tr
�
ZLSZT

�+ Tr
��

Wk
�T

Z
�

+μ

2
�Z− Y−�k�2

F

�
. (15)

It can be solved by taking its first-order derivative to zero,
then we can update Z as

Zk+1 = �μY+ μ�k −Wk
�× �4LS + μINS

�−1
(16)

where INS ∈ R
NS×NS represents an identity matrix.

Second, with the fixed points (Zk+1,�k, Wk), the
�-subproblem can be formulated as

�k+1 = arg min
�

�
λ���2,1 − Tr

��
Wk
�T

�
�

+μ

2
�Zk+1 − Y−��2

F

�
(17)

which can be solved by the proximal operator as

�k+1 = prox λ
μ
�·�2,1

�
Qk+1

�
(18)

where Qk+1 = Zk+1−Y+(Wk/μ), and the proximal operator
is defined as

proxα f (b) = arg min
x

f (x)+ 1

2α
�x − b�2

F . (19)

The closed-form solution of (18) can obtained as in [32]

�k+1
i = max

�
�Qk+1

i �2 −
λ

μ

�
Qk+1

i

�Qk+1
i �2

(20)

where we follow the convention 0 · (0/0) = 0.
Third, with the fixed points (Zk+1,�k+1, Wk),

the Lagrangian multiplier can be updated as

Wk+1 =Wk + μ
�
Zk+1 − Y−�k+1

�
. (21)

The ADMM framework for the minimization problem of
(13) is summarized in Algorithm 2 of Table II, where Niter is
the maximum number of iterations, ξ k is the relative difference

TABLE II

MAIN IMPLEMENTATION STEPS OF SCASC-BASED IMAGE REGRESSION

between two iterative results. The exit criterion ξ k < ξ0 means
that there is no longer any appreciate changes in the iteration
and the algorithm runs into convergence.

Once the regression feature matrix Z is solved, we can use
it to obtain the regression image Z̃ by extracting the mean
features in Z

z̃(m, n, c) = zc,i ; (m, n) ∈ �i , c = 1, . . . , CY, i = 1, . . . , NS

(22)

where z̃(m, n, c) is the pixel value of Z̃, and zc,i is the mean
feature of each band in Z.

D. DI Generation and Binary CM Calculation

By using the SCASC image regression model (13), we can
obtain the changed feature matrix �. Then, we can obtain the
DI as follows:

DI(m, n) = ��i�2; (m, n) ∈ �i , i = 1, . . . , NS . (23)

Then, the thresholding method or clustering method can be
used to obtain the final CM. For example, the Otsu threshold
method [33], K-means clustering [34], or fuzzy c-means
(FCM) clustering [35] is widely used to segment the DI. In this
article, we employ the MRF model to compute the binary
CM, which can incorporate the change and spatial contextual
information of DI.

The binary segmentation problem of CM calculation can
be regarded as a superpixel-labeling problem. Suppose L =
{Li |i = 1, . . . , NS} represents the label set of superpixels,
in which Li = 0 means that the region of �i has not
changed and Li = 1 means that it has changed. In accordance
with the MRF approach, the superpixel-labeling is equivalent
to minimizing an energy function E(L), which is the log
likelihood of the posterior distribution of MRF [36]

L = arg min
L
{E(L) = αEc(L)+ (1− α)Es(L)} (24)

where Ec(L) is the change energy term, Es(L) is the spatial
energy term, and α ∈ (0, 1) is a balanced parameter.

The R-adjacency neighbor system is constructed for Es(L),
that is, if two superpixels (located in �i and �i ) intersect or
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the distance between their center points is less than R, these
two superpixels are marked as the R-adjacency neighbors of
each other and denoted as i ∈ N R

j (or j ∈ N R
i ). As the size of

each superpixel generated by SLIC is around MN/NS , we set
R = 2(MN/NS)

1/2 for the R-adjacency neighbor system.
Then, the spatial energy term Es(L) of MRF is defined as

Es(L) =
NS�

i=1

�
j∈N R

i

εs
�

Li , L j
�

εs
�

Li , L j
� = exp

�
−��i−� j�2

2
2σ 2

�
d
�
�i ,� j

� δ
�

Li − L j
�

(25)

where σ 2 = ((
�NS

i=1

�
j∈N R

i
��i −� j�2

2)/(
�NS

i=1 |N R
i |)) is

a normalization parameter representing the average feature
distance, d(�i ,� j ) is the Euclidean spatial distance between
the centers of two superpixels, and δ(·) is the function defined
as δ(x) = 1 if x �= 0 and δ(x) = 0 if x = 0.

The change energy term Ec(L) is defined as

Ec(L) =
NS�

i=1

εc(Li )

εc(Li ) =
�

max
�− log

���i�2
2/2T

�
, 0
�; if Li = 1

min
�− log

�
1− ��i�2

2/2T
�
, ω
�; if Li = 0

(26)

where T is the Otsu thresholding parameter on the vector
{��i�2

2|i = 1, . . . , NS}, and ω is set to be slightly larger than
the maximal sum of the spatial energy term for each superpixel
as

ω = log 2+ max
i=1,...,NS

�
j∈N R

i

εc

�
Li , L j

�
. (27)

From (26), we can find that when ��i�2
2 < T , εc(Li)|Li=1

is larger than εc(Li )|Li=0, which makes the i th superpixel
tend to be labeled as unchanged class; when ��i�2

2 > T ,
εc(Li)|Li=1 is smaller than εc(Li )|Li=0, which makes the i th
superpixel tend to be labeled as changed class. At the same
time, the maximum and minimum in (26) are used to make
εc(Li) have nonnegative and upper bound constraints when
��i�2

2 > 2T . In addition, this type of εc(Li ) can be regarded
as derived from the assumption that ��i�2

2 obeys a uniform
distribution between 0 and 2T .

With these defined energy functions, the energy minimiza-
tion problem of (24) can be implemented via the min-cut/max-
flow algorithm [37]. Once the optimal L is solved, we can
obtain the binary CM as

CM(m, n) = Li , if (m, n) ∈ �i . (28)

III. EXPERIMENTAL ANALYSIS AND DISCUSSION

In this section, experiments are conducted on different het-
erogeneous datasets to verify the effectiveness of the proposed
SCASC.1

1SCASC is available at https://github.com/yulisun/SCASC.

Fig. 2. Convergence performance of Algorithm 1.

A. Heterogeneous Datasets and Quantitative Measures

To validate the proposed heterogeneous CD method, six real
heterogeneous datasets are employed, as listed in Table III.
These datasets reflect different types of heterogeneity: mul-
tisensor optical images (same sensor type but with different
sensors, e.g., #3 and #4); and multisource images (different
sensor types, e.g., #5 and #6). These datasets cover different
resolutions (varying from 0.52 to 30 m), different image
sizes (varying from 300 to 2000 pixels in width or length),
and different types of events (such as flooding, fire, and
construction), which can evaluate the robustness of SCASC
in different CD tasks.

To evaluate the performance of SCASC, two types of quan-
titative measures are employed. First, the DI can be evaluated
by the receiver-operating characteristics (ROC) curve and the
precision-recall (PR) curve, which are plotted by using the
true positive (TP) rate (TPR) versus the false positive (FP) rate
(FPR) and the precision rate versus the recall rate, respectively.
The TPR (also known as the recall rate), FPR, and precision
rate are computed as TPR = TP/(TP + FN), FPR = FP/
(TN + FP), and Precision = TP/(TP + FP) respectively, where
TP, TN, FN, and FP represent the TPs, true negatives (TNs),
false negative (FNs), and FPs, respectively. Second, the final
CM can be evaluated by the percentage of correct classification
(PCC), the F1 score, and the Kappa coefficient (KC) are
computed as PCC = (TP + TN)/(TP+ TN + FP + FN), F1 =
(2 × Precision × Recall)/(Precision + Recall), and KC =
(PCC - PRE)/(1 - PRE) with

PRE = (TP + FN)(TP + FP)+ (TN + FP)(TN+ FN)

(TP+ TN + FP + FN)2 .

(29)

B. Parameter Analysis

The main parameters of SCASC are: the number of super-
pixels NS in the superpixel segmentation process, the regu-
larization parameter λ, maximum iterations Niter, and relative
difference of termination ξ0 in the ADMM framework of
regression process; the balance parameter α in the MRF
segmentation process.
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TABLE III

DESCRIPTION OF THE SIX HETEROGENEOUS DATASETS

Fig. 3. Influences of parameter α on the SCASC performance. (a) PCC. (b) F1. (c) KC.

Generally, NS has two effects on the algorithm: first,
it affects the detection granularity of the algorithm; second,
it determines the complexity of the algorithm as ana-
lyzed in Section III-E2. Large NS brings small superpixels
and improves the detection granularity, but also increases
the computational complexity (as reported in Table VII in
Section III-E2). In this article, we simply set NS = 104 as
a compromise choice.

To investigate the effect of Niter and ξ0 on the ADMM
framework in Table II, we plot the convergence curves of
Algorithm 2 in Fig. 2, which is measured by relative difference
ξ k versus iteration number k. It is clear that the ADMM
converges quickly, and the exit criterion of Niter = 10 or
ξ0 = 0.01 is enough for the algorithm, while taking into
account the computational time.

For the parameter λ in model (13), it controls the strength
of sparse regularization, which should be selected according to
the proportion of the changed component (i.e., sparsity level).
Generally, if the fewer the regions in the image that has been
changed, the larger we should select the λ. Alternatively, if we
know in prior the size of the changed regions (the prior sparsity
level τ ), we can rewrite the �2,1-norm constraint model (13)
as the �2,0-norm constraint model as

min
Z

2Tr
�
ZLSZT

�
s.t. Y = Z−�, ���2,0 ≤ τ (30)

which can be approximately solved by using Algorithm 2, but
replacing the �-subproblem with the following minimization:

�k+1 = arg min
�

���−Qk+1�2
F

�
s.t. ���2,0 ≤ τ. (31)

It can be solved by the hard thresholding operator as

�k+1
i =

�
Qk+1

i , if i ∈ pτ

0, if i /∈ pτ
(32)

where pτ is the top τ values’ indices vector of
{�Qk+1

i �2|i = 1, . . . , NS} with descending order.
For the parameter α in the MRF model (24), it is used

to balance the change energy term and spatial energy term.
To investigate the effect of α on the MRF segmentation model,
we plot the accuracy curves of segmentation results in Fig. 3,
which is measured by PCC and KC versus α/(1− α) from
10−3 to 103 with the ratio of 10. When α becomes smaller,
the spatial energy term Es(L) takes up a larger proportion in
E(L), making the segmented CM smoother; conversely, when
α becomes larger, the change energy term Ec(L) takes up a
larger proportion in E(L), making the segmented CM more
similar to the image segmented by Otsu thresholding method.
From Fig. 3, it can be seen that the segmentation performance
is better when the value of α/(1− α) is between 10−3 and
10−2, so we set α = 0.05 in this article.

In summary, for all the experiments, we set the NS = 104 for
the superpixel segmentation process, λ = 0.1, Niter = 10, and
ξ0 = 0.01 for the ADMM framework of regression process,
α = 0.05 for the MRF segmentation process.

C. Image Regression Performance of SCASC

In the first experiment, we test SCASC on the Datasets
#1 and #22 to verify the effectiveness of structure consistency-
based image regression. Both Datasets #1 and #2 contain one
pre-event image and two post-event images, where one of
the postevent images is homogeneous to the pre-event image
and the other is heterogeneous, as shown in Fig. 4(a)–(c).
For the Dataset #1, the two near-infrared (NIR) band images
are acquired by Landsat-5 in September 1995 and July 1996,

2Dataset #2 is provided by Volpi et al. [38] and kindly made available at
https://sites.google.com/site/michelevolpiresearch/codes/cross-sensor.
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Fig. 4. Regression images of SCASC on Datasets #1 and #2. (From left to right) (Top row) (a1) pre-event image X̃NIR−t1, (b1) postevent image X̃NIR−t2,
(c1) postevent image Ỹopt−t2, (d1) regression image Z̃NIR−t1, (e1) regression image Z̃NIR−t2, (f1) DI generated by SCASC with X̃NIR−t1 and Ỹopt−t2, (g1) ground
truth of Dataset #1. (From left to right) (Bottom row) (a2) Pre-event image X̃L5−t1, (b2) postevent image X̃L5−t2, (c2) postevent image ỸALI−t2, (d2) regression
image Z̃L5−t1, (e2) regression image Z̃L5−t2, (f2) DI generated by SCASC with X̃L5−t1 and ỸALI−t2, and (g2) ground truth of Dataset #2.

and another postevent optical image is obtained from Google
Earth in July 1996. We denote these images of Datasets
#1 as X̃NIR−t1, X̃NIR−t2 and Ỹopt−t2, respectively. For the
Dataset #2, the first two multispectral images are acquired by
Landsat-5 in August 2011 and September 2011, and another
postevent multispectral image is acquired by the Advanced
Land Imager (ALI) from the Earth Observing (EO-1) mission
in September 2011. Similarly, the pre-event and two postevent
images of Datasets #2 are denoted as X̃L5−t1, X̃L5−t2 and
ỸALI−t2, respectively.

Fig. 4(d) and (e) shows the regression images of Z̃NIR−t1,
Z̃NIR−t2 and Z̃L5−t1, Z̃L5−t2 by using (22), which are cal-
culated by translating X̃NIR−t1, X̃NIR−t2 and X̃L5−t1, X̃L5−t2

to the domains of Ỹopt−t2 and ỸALI−t2, respectively. From
Fig. 4(d) and (e), it can be found that the structure consistency
can be used to implement the image regression, that is,
to transform the image acquired by one sensor into a similar
image acquired by another sensor. By comparing Z̃NIR−t2 and
Ỹopt−t2, Z̃L5−t2 and ỸALI−t2, we can find that the structures
of X̃NIR−t2 and X̃L5−t2 represented by SX̃NIR−t2 and SX̃L5−t2

can be well conformed by ỸNIR−t2 and ỸL5−t2, respectively.
Meanwhile, by comparing Z̃NIR−t1 and Ỹopt−t2, Z̃L5−t1 and
ỸALI−t2, we can find that the structure consistency is no longer
maintained in the changed areas, which can be used to measure
the change level. Fig. 4(f) shows the DIs generated by SCASC
with the pre-event X̃NIR−t1, X̃L5−t1 and the postevent Ỹopt−t2,
ỸALI−t2, respectively. It can be seen that the DIs can well
distinguish between changed and unchanged areas.

D. Comparing With Some SOTA Methods

In order to evaluate the performance of SCASC, we select
the recently proposed M3CD3 [39], FPMS4 [27], NPSG5 [25],

3M3CD is kindly available at http://www-labs.iro.umontreal.ca/˜mignotte.
4FPMS is kindly available at http://www-labs.iro.umontreal.ca/˜mignotte.
5NPSG is available at https://github.com/yulisun/NPSG.

ALSC [26], and PSGM [28] for comparison. Fig. 5(a) and (b)
shows the heterogeneous pre-event and postevent images of
Datasets #3 to #6, and Fig. 5(c) shows the regression image
of SCASC by transforming the pre-event image into the
domain of postevent image. Fig. 5(d) shows the DI of SCASC
calculated by using (23), and their corresponding ROC and
PR curves are plotted in Fig. 6. From the regression images
of Fig. 5(c) and DIs of Fig. 5(d), we can see that the
proposed SCASC can well establish the connections between
heterogeneous images by using the structure consistency and
project one image to the domain of the other image. In Fig. 6,
the areas under the ROC curves (AUR) of Datasets #3 to #6
are 0.793, 0.936, 0.968, and 0.887, respectively, and the areas
under the PR curves (AUP) of Datasets #3 to #6 are 0.458,
0.636, 0.695, and 0.447, respectively.

Fig. 5(e)–(j) shows the binary CMs generated by different
methods on Datasets #3 to #6. By comparing these CMs
in Fig. 5, we can find that the changed and unchanged
regions are well detected by SCASC with relatively small FPs
and FNs. In addition, we also list the quantitative measures
of these CMs in Table IV, the highest and second-highest
scores are highlighted in bold and underlined, respectively.
As can be seen in Table IV, the proposed method achieves
very good results (optimal or suboptimal), which verifies the
effectiveness of the sparse-constrained structure consistency-
based regression model and MRF-based segmentation method.

In addition, in order to further compare the performance
of the proposed method, some other representative and SOTA
methods other than M3CD, FPMS, NPSG, PSGM, and ALSC
are selected for comparison, such as NLPEM [15], SCCN [16],
AFL-DSR [17], LT-FT [18], HPT [19], AM-IR [20], reliable
mixed-norm (RMN)-based method [40], multidimensional evi-
dential reasoning (MDER)-based method [41], and multidi-
mensional scaling (MDS)-based method [42], as summarized
in Table V (we directly quote the results of the corresponding
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Fig. 5. DI of SCASC and binary CMs of different methods on heterogeneous datasets. From top to bottom, they correspond to Datasets #3 to #6, respectively.
(From left to right) (a) Pre-event image, (b) postevent image, (c) regression image of SCASC, (d) DI of SCASC, (e) binary CM of M3CD, (f) binary CM of
FPMS, (g) binary CM of NPSG, (h) binary CM of ALSC, (i) binary CM of PSGM, (j) binary CM of SCASC, (k) ground truth. In the binary CM, White:
TPs; Red: FPs; Black: TNs; Green: FNs.

TABLE IV

QUANTITATIVE MEASURES OF BINARY CMS ON THE HETEROGENEOUS DATASETS. THE HIGHEST AND

SECOND-HIGHEST SCORES ARE HIGHLIGHTED IN BOLD AND UNDERLINED, RESPECTIVELY

Fig. 6. ROC and PR curves of SCASC generated DIs. (a) ROC curves.
(b) PR curves.

datasets in their original published articles). Among these
comparison methods, SCCN, AFL-DSR, and LT-FT are deep
learning-based methods. From Table V, we can find that the
SCASC is able to achieve higher or competitive accuracy
rates and to obtain consistently good results across different

datasets. The average PCC of SCASC on Datasets #3 to #6 is
about 94.5%.

E. Discussion

1) Effectiveness of Adaptive Probabilistic Graph: We
have constructed an adaptive structure-based graph SX in
Algorithm 1 (Table I) to capture the structure information
of the image X̃. To verify the effectiveness of the proposed
adaptive k-selection strategy-based APG, we compare it with
the widely used k-nearest neighbors graph (KNNG) and the k
fixed APG. Specifically, the KNNG computes the SX as

SX
i, j =

�
exp
�−distXi, j

�
, j ∈ N k

X̃i

0, otherwise
(33)

where N k
Xi

represents the position set of the KNN of X̃i by
sorting all elements in the distance vector distXi and taking out
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TABLE V

ACCURACY RATE OF CMS GENERATED BY DIFFERENT METHODS ON DIFFERENT DATASETS. THE RESULTS OF
THESE COMPARISON METHODS ARE REPORTED BY THEIR ORIGINAL PUBLISHED ARTICLES

Fig. 7. (Top row) DIs and (bottom row) CMs generated by SCASC on Dataset #2 with different graphs. (a) KNNG with fixed k = kmin. (b) KNNG with
fixed k = kmax. (c) KNNG with fixed k = kmean. (d) APG with fixed k = kmin. (e) APG with fixed k = kmax. (f) APG with fixed k = kmean. (g) APG with
adaptive k.

Fig. 8. ROC curves of DI generated by SCASC with different graphs on
Dataset #2.

the k smallest elements. We further normalize the weights as
SX

i, j ← SX
i, j/
�NS

j=1 SX
i, j to make

�NS
j=1 SX

i, j = 1.
Fig. 7 shows the DIs and CMs generated on Dataset #2 (with

X̃L5−t1 and ỸALI−t2) by SCASC with the proposed adaptive

TABLE VI

AUR OF DIS GENERATED BY SCASC WITH DIFFERENT

GRAPHS ON DIFFERENT DATASETS

k-based APG and k fixed KNNG, APG of k = kmin, k =
kmax, k = kmean, where kmean = (1/NS)

�NS
i=1 ki is the mean

value of the adaptive k. Fig. 8 plots the corresponding ROC
curves. Table VI lists the AUR of DIs generated by SCASC
with graphs on Datasets #1 to #6. From Figs. 7 and 8 and
Table VI, we can find that: 1) the APG usually performs better
than the KNNG in SCASC, which is due to the fact that the
constraint of

�NS
j=1 distXi, j SX

i, j in the APG construction process
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TABLE VII

COMPUTATIONAL TIME (SECONDS) OF EACH PROCESS OF SCASC

(3) is consistent with the constraint of
�NS

i, j=1 �Zi − Z j�2
2 SX

i, j
in the image regression model (13); 2) the proposed adaptive
k strategy can improve the performance of APG by selecting
appropriate k for each vertex, resulting in better a DI (a higher
AUR) than the k fixed KNNG and APG whether k takes the
maximum value kmax, the minimum value kmin, or the mean
value kmean, which ultimately improves detection performance
as shown in Fig. 7. This demonstrates the superiority of the
proposed adaptive structure-based graph SX.

2) Complexity Analysis: The main computational complex-
ity of the proposed SCASC is concentrating on the pre-
processing (superpixel segmentation and feature extraction),
constructing the adaptive structure-based graph (Algorithm 1),
solving the image regression model (13) (Algorithm 2)
and the MRF segmentation (24) by using min-cut/max-flow
algorithm [37].

a) Preprocessing: the complexity of the simple linear
iterative clustering (SLIC) method is linear in the number of
pixels in the image O(MN), which is reported in [29]. The
average number of pixels within each superpixel is MN/NS ,
then the complexity of mean and variance feature extraction
is around O((CX + CY)MN), the median feature extraction is
around O((CX + CY)MN log(MN/NS)).

b) Algorithm 1: first, calculating the distances between
all the superpixels requires O(3CX N2

S /2). Second, sorting
the distance vector distXi requires O(NS log NS) by using
some accelerated sorting algorithms, such as the Block
sort or Tree sort. Then calculating the adaptive k requires
O(N2

S log NS). Third, calculating the closed-form similarity
vector SX

i by using (10) requires O(NS). Therefore, construct-
ing the adaptive structure-based graph (Algorithm 1) requires
O(N2

S (3CX/2+ log NS + 1)).
c) Algorithm 2: first, updating Z with (16). The matrix

inversion of (4LS + μINS )
−1 requires O(N3

S ), the matrix
multiplication requires O(3CY N2

S ). Then, updating Z needs
O(N3

S ). Second, updating � with (20). As � can be solved
column-wise by using the closed-form proximal operator, then
it requires O(3CY NS). Third, updating W with (21). It requires
O(3CY NS) to update the Lagrange multiplier.

d) MRF segmentation: first, calculating the spatial energy
term Es(L) and change energy term Ec(L) requires O(NR)
and O(NS), respectively, where NR is the number of edges
in the R-adjacency neighbor system. Second, the theoretical
complexity and empirical complexity of min-cut/max-flow
algorithm has been studied in [37], that is, the theoretical
complexity of the worst case is O(2NR N2

S ). However, its
empirical complexity is relatively low on typical problem
instances in vision, which can also be seen in Table VII.

Although the complexity of the proposed method is very
high in the above-mentioned theoretical analysis, which
requires O(N3

S ) for each iteration in Algorithm 2, it can be
accelerated by two strategies. First, since (4LS + μINS )

−1 is
not updated during the iteration framework, we can calculate
it off-line in advance to reduce the complexity. Obviously, this
still requires a large amount of computation when NS is very
large. Second, since matrix LS is a Laplacian matrix that is
sparse, real, symmetric, and positive definite, the linear system
of Zk+1(4LS + μINS ) = (μY+ μ�k −Wk) can be solved
efficiently by using iterative solvers, such as the conjugate gra-
dient (CG) method. In addition, the preconditioned CG (PCG)
method can also be used to accelerate the CG method by
using some preconditioners [43], such as Jacobi, incomplete
Cholesky (IC), and successive overrelaxation (SOR). In prac-
tice, when NS > 104, we recommend the second strategy of
using the PCG method with the IC preconditioner (IC-PCG).

Table VII reports the computational time of each process of
SCASC with different NS , which are performed in MATLAB
2016a running on a Windows desktop with Intel(R) Core(TM)
i7-8700K CPU and 32GB of RAM. In Table VII, tp1 to
tp4 represent the computational time spent in the superpixel
segmentation and feature extraction, construction of adaptive
structure-based graph (Algorithm 1), SCASC-based image
regression (Algorithm 2), and image segmentation with min-
cut/max-flow algorithm, respectively. t∗p3 represents the com-
putational time of Algorithm 2 by using the IC-PCG for
updating Z, and ttotal and t∗total represent the total computational
time of SCASC without and with IC-PCG, respectively. From
Table VII, we can find that first, the number of superpixels
is the main factor affecting the running time rather than the
image size; second, the IC-PCG can effectively reduce the
running time when NS is very large.

IV. CONCLUSION

In this article, we propose an unsupervised, object-based,
and image regression-based CD method for heterogeneous
RS images, which is based on the fact that heterogeneous
images share the same structure information for the same
ground object. The proposed SCASC first extracts the image
structural information by efficiently constructing a robust and
data-dependent graph, which adaptively selects neighbors and
adaptively assigns weights for each node. With the structure
consistency property, SCASC uses the structure-based graph
to translate one image to the domain of the other image by a
sparse-constrained image regression model. Finally, an MRF
segmentation model is designed to improve the accuracy
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of CM by combining the change information and spatial
contextual information. Experimental results on different het-
erogeneous datasets demonstrate the effectiveness of SCASC.

In the SCASC, the sparsity of changes is used as a regular-
ization term in the regression model. A future work would be
to explore more prior knowledge of the changes to improve
the regression results obtained by Algorithm 2, such as the
gradient sparsity of DI. Also, the distribution model of DI
obtained from the image regression process needs to be further
investigated, so as to design a more accurate segmentation
model.
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