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In this paper, a s -difference type regularization for sparse recovery problem is proposed, which is the dif- 

ference of the penalty function R ( x ) and its corresponding s -truncated function R ( x s ). First, we show the 

equivalent conditions between the � 0 constrained problem and the unconstrained s -difference penalty 

regularized problem. Next, we choose the forward-backward splitting (FBS) method to approximately 

solve the non-convex regularization function and further derive some closed-form solutions for the prox- 

imal mapping of the s -difference regularization with some commonly used R ( x ), which makes the FBS 

easy and fast. We also show that any cluster point of the sequence generated by the proposed algo- 

rithm converges to a stationary point. Numerical experiments demonstrate the efficiency of the proposed 

s -difference regularization in comparison with some other existing penalty functions. 
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. Introduction 

.1. Background 

In recent years, sparse optimization problems have drawn lots

f attentions in many applications such as compressive sensing

CS), machine learning, image processing and medical imaging. Sig-

al and image processing problems are usually expressed as 

 ( x ) + n = b (1)

here A is the linear or non-linear operator, b is the observation

ata, and n represents the observation noise or error. Since prob-

em (1) is often ill-posed and the error n is unknown, solving (1) is

ifficult. To overcome this ill-posed problem, we need to make

ome constraints to narrow the solution space, such as the prior

parsity of the signals. Then the problem can be formulated as 

in 

x 
φ( x ) + P ( x ) (2) 

here the loss function φ( x ) is the data fidelity term related to

1) . For example, the least-square (LS) loss function ‖ A (x ) − b ‖ 2 2 
r the least-absolute (LA) loss function ‖ A (x ) − b ‖ 

1 
; P ( x ) is the

egularization function to penalize the sparsity of x . Intuitively,

 ( x ) should be selected as the � 0 -norm ‖ x ‖ 0 , which represents

he number of nonzero elements in x . However, minimizing the

 0 -norm is equivalent to finding the sparsest solution, which is

nown to be an NP-hard problem. A favorite and popular approach
∗ Corresponding author. 
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s using the � 1 -norm convex approximation, i.e., using ‖ x ‖ 1 to re-

lace the � 0 [1] . This � 1 model has been widely used in many dif-

erent applications, such as radar systems [2,3] , communications

4] , computed tomography (CT) [5] and magnetic resonant imag-

ng (MRI) [6] . It has been proved that the s -sparse signal x can be

ecovered by � 1 model under some assumptions of the operator A ,

uch as the restricted isometry property (RIP) of A when the op-

rator is a sensing matrix [1] . However, the � 1 -norm regularization

ends to underestimate high-amplitude components of x as it pe-

alizes the amplitude uniformly, unlike the � 0 -norm in which all

onzero entries have equal contributions. This may lead to recon-

truction failures with the least measurements [7,8] , and bring un-

esirable blocky images [9,10] . It is quite well-known that when

t promotes sparsity, the � 1 -norm does not provide a performance

lose to that of the � 0 -norm, and lots of theoretical and experimen-

al results in CS and low-rank matrix recovery suggest that better

pproximations of the � 0 -norm and matrix rank give rise to better

erformances. 

Recently, researchers begin to investigate various non-convex

egularizations to replace the � 1 -norm regularization and gain

ome better reconstructions. In particular, the � p (quasi)-norm with

 ∈ (0, 1) [11–16] , can be regarded as a interpolation between

he � 0 and � 1 , and a continuation strategy to approximate the

 0 as p → 0. The optimization strategies include half thresholding

14,17–20] and iterative reweighting [11,12,15] . Other non-convex

egularizations and algorithms have also been designed to out-

erform � 1 -norm regularization and seek better reconstructions:

apped � 1 -norm [21–23] , transformed � 1 -norm [24–26] , sorted � 1 -

orm [27,28] , the difference of the � 1 and � 2 -norms ( � 1 −2 ) [29–31] ,

https://doi.org/10.1016/j.sigpro.2019.107369
http://www.ScienceDirect.com
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the log-sum penalty (LSP) [8] , smoothly clipped absolute deviation

(SCAD) [32,33] , minimax-concave penalty (MCP) [34–36] . 

On the other hand, there are some approaches which do not

approximate the � 0 -norm, such as the single best replacement

(SBR) algorithm [73] and iterative hard thresholding (IHT) algo-

rithm [37,38] , which operate directly on the � 0 regularized cost

function or the s -sparse constrained optimization problem. More-

over, there are some acceleration methods for the IHT: accelerated

IHT (AIHT) [39] , proximal IHT (PIHT) [40] , extrapolated proximal

IHT (EPIHT) [41] and accelerated proximal IHT [42] . Meanwhile,

some researchers transform the � 0 -norm problem into an equiv-

alent difference of two convex functions, and then use the differ-

ence of convex algorithm (DCA) and the proximal gradient tech-

nique to solve the subproblem [43,44] . 

To address these non-convex regularization problems, many it-

erative algorithms are investigated by researchers, such as the DCA

[45–48] (or Convex-ConCave Procedure (CCCP) [49] , or the Multi-

Stage (MS) convex relaxation [22] ), and its accelerate versions:

Boosted Difference of Convex function Algorithms (BDCA) [50] and

proximal Difference-of-Convex Algorithm with extrapolation (pD-

CAe) [51] , the alternating direction method of multipliers (ADMM)

[52] , split Bregman iteration (SBI) [53] , General Iterative Shrinkage

and Thresholding (GIST) [54] , nonmonotone accelerated proximal

gradient (nmAPG) [55] , which is an extension of the accelerated

proximal gradient (APG) [56] . 

1.2. Contributions 

In many applications, the non-convex � 0 -norm based regular-

ization has its advantages over the convex � 1 -norm, such as image

restoration [41,53,57,58] , bioluminescence [59] , CT [9,10] , MRI re-

construction [60,61] . Thus, in this paper, we are interested in the

following � 0 constrained problem 

min 

x 
φ( x ) subject to ‖ 

x ‖ 0 ≤ s (3)

where s ∈ {1, 2, … , N }. This s -sparse problem tries to find the so-

lution minimizing φ( x ) under the constraint that the number of

non-zero coefficients below a certain value. 

This paper can be viewed as a natural complement and exten-

sion of Gotoh et al. framework [43] . First, we rewrite the � 0 con-

strained problem (3) as difference of two functions, one of which is

the convex or non-convex function R ( x ) and the other is the corre-

sponding s -truncated function R ( x s ), where x s is the best s term

approximation to x . Then, we consider the unconstrained mini-

mization problem by using this s -difference R (x ) − R ( x s ) type reg-

ularization. Second, we propose fast approaches to deal with this

non-convex regularization function, which are based on a proxi-

mal operator corresponding to R (x ) − R ( x s ) . Moreover, we derive

some cheap closed-form solutions for the proximal mapping of

R (x ) − R ( x s ) with some commonly used R ( x ), such as ‖ x ‖ 1 , ‖ x ‖ 2 ,
‖ x ‖ 1 − a ‖ x ‖ 2 , LSP, MCP and so on. Third, we prove the conver-

gence performance of the proposed algorithm, and show that any

cluster point of the sequence generated by the proposed algo-

rithm converges to a stationary point. We also show a link be-

tween the proposed algorithm with some related regularizations

and algorithms. Finally, we evaluate the effectiveness of the pro-

posed algorithm via numerical experiments. The reconstruction re-

sults demonstrate that the proposed s -difference penalty function

with closed-form solutions is more accurate than the � 1 -norm and

other non-convex regularization based methods, and faster than

the DCA based algorithms. 

1.3. Outline and notation 

The rest of this paper is structured as follows. In section II,

we define the s -difference regularization. In section III, we propose
he reconstruction algorithm by using the proximal operator with

losed-form solutions. In section IV, we provide some theorems to

emonstrate the convergence of the proposed algorithm. In section

, we discuss some related algorithms and extend the proposed

egularization to rank-constrained problem. Section VI presents the

umerical results. In the end, we provide our conclusion in section

II. 

Here, we define our notation. For a vector x ∈ R 

N , it can

e written as x = ( x 1 , x 2 , . . . , x N ) , and its � p -norm is defined as

 x ‖ p = ( 
∑ 

n | x n | p ) 1 / p . Especially, the � ∞ 

-norm of x is defined as

ax n | x n |. Given a matrix A ∈ R 

M×N , the transpose of A is denoted

y A 

T , the maximum eigenvalue of A 

T A is defined as ‖ A ‖ 2 
2 
. Some

f the arguments in this paper use sub-vectors. The letters �, �

enote sets of indices that enumerate the elements in the vector

 . By using this sets as subscripts, x � represents the vector that

etting all elements of x to zero except those in the set �. The it-

ration count is given in square bracket, e.g., x [ k ] . 〈 · , · 〉 denotes

he inner product, sign( · ) represents the sign of a quantity with

ign (0) ∈ [ −1 , 1 ] . We also use the notation R + = { x ∈ R : x ≥ 0 } ,
nd if the function f is defined as the composition f (x ) = h ( g(x ) ) ,

e write f = h ◦ g. 

Given a proper closed function h : R 

n → R ∪ {∞} , the subgradi-

nt of h at x is given by 

h ( x ) = { v ∈ R 

n : h ( u ) − h ( x ) − 〈 v , u − x 〉 ≥ 0 , ∀ u ∈ R 

n } (4)

n addition, if h ( x ) is continuously differentiable, then the subdif-

erential reduces to the gradient of h ( x ) denoted by ∇h ( x ). 

. Penalty representation for s -sparse problem 

In Gotoh et al. work of [43] , they expressed the � 0 -norm con-

traint as a difference of convex (DC) function: 

 

x ‖ 0 ≤ s ⇔ ‖ 

x ‖ 1 − ‖ | x | ‖ s = 0 (5)

here s ∈ {1, 2, … , N } and ‖ | x | ‖ s , which named top-( s , 1) norm, de-

otes the sum of top- s elements in absolute value. This notation is

lso known as the largest- s norm (or called CVaR norm in [62,63] ).

recisely, 

 | x | ‖ s := 

∣∣x πx ( 1 ) 

∣∣+ 

∣∣x πx ( 2 ) 

∣∣+ · · · + 

∣∣x πx ( s ) 

∣∣ (6)

here x πx (i ) denotes the element whose absolute value is the i -

h largest among the N elements of vector x ∈ R 

N , i.e., | x πx (1) | ≥
 x πx (2) | ≥ · · · ≥ | x πx (N) | . For convenience of description, we define

he set �s 
x = { πx (1) , πx (2) , . . . , πx (s ) } , then we have �1 

x ⊆ �2 
x ⊆

· · ⊆ �N 
x . By using · \ · as the set difference, we have �N 

x \ �s 
x =

 πx ( s + 1 ) , πx ( s + 2 ) , . . . , πx (N) } . 
We define x s as the best s term approximation to x , that is, any

 -sparse vectors that minimize ‖ x − x s ‖ 2 . By using the definition

f x πx (i ) , we have 

 

s 
i = 

{
x i , if i ∈ �s 

x 

0 , if i ∈ �N 
x \ �s 

x 

(7)

hen R ( x s ) can be named as a s -truncated function. In this work,

e consider a more general s -difference function R (x ) − R ( x s ) in-

tead of ‖ x ‖ 1 to replace the � 0 -norm constraint, where R ( x ) can

e convex or non-convex, separable or non-separable. Let P (x ) =
 (x ) − R ( x s ) , s ∈ {1, 2, … , N }. We defined a class of penalty func-

ions P, R : R 

N → R + as follows (without loss of generality, func-

ions P ( x ) and R ( x ) mentioned throughout this paper all satisfy

roperty 1 when there is no additional illustration). 

roperties 1. The penalty functions P, R : R 

N → R + satisfy the fol-

owing properties. 

(a) R (x ) = R ( −x ) 

(b) ‖ x ‖ ≤ s ⇔ P (x ) = 0 
0 
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Table 1 

Functions that satisfies Property 1 . 

Function type R ( x ) P 1 ( x ) P 2 ( x ) 

Convex, Separable ‖ x ‖ 1 ‖ x ‖ 1 ‖ x s ‖ 1 
‖ x ‖ 2 2 ‖ x ‖ 2 2 ‖ x s ‖ 2 2 

Convex, Non-separable ‖ x ‖ 2 ‖ x ‖ 2 ‖ x s ‖ 2 
R ( x ) = 

{
‖ x ‖ 2 2 / ( 2 θ ) , ‖ x ‖ 2 ≤ θ

‖ x ‖ 2 − θ/ 2 , ‖ x ‖ 2 > θ
, θ > 0 R ( x ) R ( x s ) 

Non-convex, Separable R (x ) = 

∑ N 
i =1 r i ( x i ) 

r i ( x i ) = log ( 1 + | x i | /θ ) , θ > 0 ‖ x ‖ 1 /θ + ( ‖ x s ‖ 1 /θ − R ( x s ) ) ‖ x s ‖ 1 /θ + ( ‖ x ‖ 1 /θ − R ( x ) ) 

R ( x ) = 

∑ N 
i =1 r i ( x i ) 

r i ( x i ) = 

{| x i | − x 2 
i 
/ ( 2 θ ) , | x i | ≤ θ

θ/ 2 , | x i | > θ
, θ > 0 ‖ x ‖ 1 + ( ‖ x s ‖ 1 − R ( x s ) ) ‖ x s ‖ 1 + ( ‖ x ‖ 1 − R ( x ) ) 

Non-convex, Non-separable ‖ x ‖ 1 − a ‖ x ‖ 2 , 0 < a ≤ 1 ‖ x ‖ 1 + a ‖ x s ‖ 2 ‖ x s ‖ 1 + a ‖ x ‖ 2 
log ( 1 + ‖ x ‖ 2 /θ ) , θ > 0 ‖ x ‖ 2 /θ + ( ‖ x s ‖ 2 /θ − R ( x s ) ) ‖ x s ‖ 2 /θ + ( ‖ x ‖ 2 /θ − R ( x ) ) {‖ x ‖ 2 − ‖ x ‖ 2 2 / ( 2 θ ) , ‖ x ‖ 2 ≤ θ

θ/ 2 , ‖ x ‖ 2 > θ
, θ > 0 ‖ x ‖ 2 + ( ‖ x s ‖ 2 − R ( x s ) ) ‖ x s ‖ 2 + ( ‖ x ‖ 2 − R ( x ) ) 
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(c) P ( x ) is a continuous function which can be decomposed into

the difference of two convex (DC) functions, that is, P (x ) =
P 1 (x ) − P 2 (x ) , where P 1 ( x ) and P 2 ( x ) are convex functions . 

It should be noted that although P ( x ) is defined as P (x ) =
 (x ) − R ( x s ) and it can also be decomposed into DC functions as

 (x ) = P 1 (x ) − P 2 (x ) , but P 1 ( x ) and P 2 ( x ) are not always equiva-

ent to R ( x ) and R ( x s ) , respectively. They are two different expres-

ion forms of the same P ( x ). In fact, for the convex R ( x ), we can

et P 1 (x ) = R (x ) and P 2 (x ) = R ( x s ) to satisfy the DC decomposi-

ion of P ( x ), which is a special case in the infinite many DC de-

ompositions of P ( x ); however, for the non-convex R ( x ), the P 1 ( x )

an never be equal to R ( x ). This can also be shown in the proof of

roposition 1 and Table 1 . 

roposition 1. The penalty functions listed on Table 1 all satisfy

roperty 1 . 

See appendix A for the Proof of Proposition 1 . 

emark 1. For the separable R (x ) = 

∑ N 
i =1 r( x i ) , and r ( x ) is contin-

ous, symmetrical and strictly increasing on R + , if r ( x ) is con-

ex, then R ( x ) satisfies Property 1 ; if r ( x ) is non-convex, since

t can be written as the difference of two convex functions as

(x ) = h (x ) − g(x ) , then R ( x ) also satisfies Property 1 . 

It is easy to see that the penalty function in Ref [43] . is a special

ase of R (x ) = ‖ x ‖ 1 . 
With the Property 1 (b), we consider the following uncon-

trained minimization problem associated with (3): 

in 

x ∈ R N 
{ F ( x ) = φ( x ) + ρP ( x ) } (8) 

here ρ > 0 is the penalty parameter. We make the following as-

umptions on the above formulation throughout this paper, which

re usually used in image processing and many CS fields. 

ssumption 1. φ( x ) is continuously differentiable with Lipschitz

ontinuous gradient, i.e., there exists L > 0 such that 

 

∇ φ( x ) − ∇ φ( y ) ‖ 2 ≤ L ‖ 

x − y ‖ 2 , ∀ x , y ∈ R 

N (9)

ssumption 2. F ( x ) is bounded from below. 

From (8) , we can find that the difference between penalty P ( x )

nd other penalty functions, such as � 1 , � p , � 1 −2 and MCP, is that

here is no punishment in model (8) when the sparsity level of x

s under s . This is because that P ( x ) is equal to zero as ‖ x ‖ 0 ≤ s .

eanwhile, the selection of the regularization parameter ρ has an

mportant influence on the performance of the reconstruction. On

he one hand, ρ should be big enough to give a heavy cost for
onstraint violation: ‖ x ‖ 0 > s . On the other hand, if ρ is too big,

he reconstruction is mostly over regularized. In light of this, how

o choose an appropriate parameter is very difficult and some re-

earchers suggest using adaptive methods to select this parameter

uring the iterations [74] . The next Theorem ensures that problem

8) is equivalent to the original s -sparse constraint problem (3) as

e take the limit of ρ , which can be proved in a similar manner

o Theorem 17.1 in [71] . 

heorem 1. Let { ρt } be an increasing sequence with lim t→∞ 

ρt = ∞
nd suppose that x t is an optimal solution of (8) with ρ = ρt . Then,

ny limit point x̄ of { x t } is also optimal to (3) . 

See Appendix B for the proof. 

In addition to Theorem 1 , we have some stricter conclusions for

he parameter ρ under some assumptions of P ( x ) and φ( x ). 

roposition 2. If φ( x ) is Lipschitz continuous with constant β > 0,

.e., ‖ φ(x ) − φ(y ) ‖ 2 ≤ β‖ x − y ‖ 2 , ∀ x , y ∈ R 

N , and x̄ ρ is an optimal

olution of (8) with some ρ . Suppose that there exists a constant η > 0

uch that R (x ) − R (x + x s − x s +1 ) ≥ η‖ x s +1 − x s ‖ 2 for any x ∈ R 

N .

hen if ρ > β/ η, x̄ ρ is also optimal to (3) . 

See Appendix C for the proof. 

emark 2. Suppose that φ( x ) is β-Lipschitz continuous and the

egularization is P (x ) = ‖ x ‖ 1 − ‖ x s ‖ 1 . Then if ρ > β , any optimal

olution of (8) is also optimal to (3) . 

emark 3. Suppose that φ( x ) is β-Lipschitz continuous. If we

hoose R ( x ) as R (x ) = ‖ x ‖ 1 − a ‖ x ‖ 2 , 0 < a ≤ 1 , then any optimal

olution of (8) is also optimal to (3) when ρ > 

β
1 −a/ (2 

√ 

s ) 
. This can

e proved by using that 

 

x ‖ 2 −
∥∥x + x 

s − x 

s +1 
∥∥

2 
= 

∥∥x 

s +1 − x 

s 
∥∥2 

2 

‖ 

x ‖ 2 + ‖ 

x + x 

s − x 

s +1 ‖ 2 

≤
∥∥x 

s +1 − x 

s 
∥∥

2 

2 

√ 

s 
(10) 

f we choose R (x ) = θ1 ‖ x ‖ 1 −∑ N 
i =1 log (1 + | x i | / θ2 ) , θ1 > θ2 > 0 ,

hen the equivalent condition of ρ is ρ > 

β
θ1 −θ2 

. Meanwhile, we

an obtain similar conclusions for the R ( x ) which are the differ-

nce of ‖ x ‖ 1 and MCP ( Eq. (A.3) ), or SCAD ( Eq. (A.4) ) function. 

The next proposition, which is similar to Theorem 3 in [43] but

ith wider scope and stricter conclusion, shows another exact

enalty parameters ρ requirement for φ( x ) with Lipschitz contin-

ous gradient L . 
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Proposition 3. If Assumption 1 is satisfied and x̄ ρ is an optimal so-

lution of (8) with some ρ . Suppose that there exists a constant C > 0

such that ‖ ̄x ρ‖ 2 ≤ C for any ρ > 0, and there exists a constant η > 0

such that R (x ) − R (x + x s − x s +1 ) ≥ η‖ x s +1 − x s ‖ 
2 

for any x ∈ R 

N ,

Then if ρ > 

1 
η ( ‖∇φ( 0 ) ‖ 2 + (1 + 

1 
2 
√ 

s +1 
) LC) , x̄ ρ is also optimal to (3) .

See Appendix D for the proof. 

Remark 4. Suppose that φ(x ) = 

1 
2 ‖ Ax − b ‖ 2 

2 
and ‖ ̄x ρ‖ 2 ≤ C. If we

choose R ( x ) as R (x ) = ‖ x ‖ 1 , R (x ) = ‖ x ‖ 1 − a ‖ x ‖ 2 (0 < a ≤ 1) and

R (x ) = θ1 ‖ x ‖ 1 −∑ N 
i =1 log (1 + | x i | / θ2 ) ( θ1 > θ2 > 0), then any op-

timal solution of (8) is also optimal to (3) when ρ > ‖ A 

T b ‖ 2 +
(1 + 

1 
2 
√ 

s +1 
) ‖ A ‖ 2 2 C, ρ > 

1 
1 −a/ (2 

√ 

s ) 
( ‖ A 

T b ‖ 2 + (1 + 

1 
2 
√ 

s +1 
) ‖ A ‖ 2 2 C) and

ρ > 

1 
θ1 −θ2 

( ‖ A 

T b ‖ 2 + (1 + 

1 
2 
√ 

s +1 
) ‖ A ‖ 2 

2 
C) , respectively. 

Remark 5. Similarly to Theorem 3 in [43] by replacing penalty

function ‖ x ‖ 1 − ‖| x |‖ s with ordinary function R (x ) − R ( x s ) , we

have the following conclusions without proof. If the con-

ditions in Proposition 3 are satisfied, and supposing that

φ(x ) = 

1 
2 x 

T Qx + q 

T x , where Q = ( q i j ) ∈ R 

N×N is symmetric and

q = ( q i ) ∈ R 

N , then x̄ ρ is also optimal to (3) when ρ >

max 
i 

1 
η { | q i | + ( ‖ Q e i ‖ 2 + 

| q ii | 
2 
√ 

s +1 
) C } , where e i denotes the unit vector

in the i -th coordinate direction. 

3. Forward-backward splitting for the regularization of 

difference of two functions 

In this section, we use the FBS to approximately solve the un-

constrained minimization (8). Moreover, we derive closed-form so-

lutions for the proximal mapping of some special s -difference reg-

ularizations P ( x ), and this makes FBS more efficient. 

3.1. Forward-backward splitting and proximal operator 

Each iteration of forward-backward splitting applies the gradi-

ent descent of φ( x ) followed by a proximal operator. That is 

x 

[ k +1] = pro x βρP 

(
x 

[ k ] − β∇ φ
(
x 

[ k ] 
))

(11)

where β > 0 is the step size, and sometimes this type of FBS is

called the proximal gradient (PG) algorithm. The proximal operator

is defined as 

pro x λP ( y ) = arg min 

x ∈ R N 
‖ 

x − y ‖ 

2 
2 

2 λ
+ P ( x ) (12)

with parameter λ> 0. 

The Eq. (11) can be broken up into a forward gradient step

using the function φ( x ), and a backward step using the function

ρP ( x ). The proximal operator plays a central role in the analy-

sis and solution of optimization problems. For example, the soft

shrinkage operator, which is a proximal operator for � 1 -norm reg-

ularization, has been widely used in CS and rendered many effi-

cient � 1 algorithms. The proximal operator also has been success-

fully used with some non-convex regularizations, such as � p , SCAD,

LSP [64] , and MCP [52,65] . Normally, the closed-form solution of

the proximal operator needs some special properties on P ( x ), such

as convexity or separability (e.g., the � 1 -norm, LSP, MCP, and other

various separable functions in [66] ). Next, we will focus on the so-

lution of (12) with separable and non-separable s -difference P ( x ). 

3.2. Closed-form solution of the proximal operator 

Denote E ( x ) as 

E ( x ) = 

‖ 

x − y ‖ 

2 
2 

2 λ
+ P ( x ) (13)

and let x ∗ be the optimal solution of (12) , i.e., x ∗ = pro x λP (y ) , then

we have the following Proposition. 
roposition 4. Suppose that functions P ( x ) and R ( x ) satisfy

roperty 1 , and let x ∗ be the optimal solution of (12) . Then x ∗ = 0

f and only if y = 0 . 

roof. Necessary condition: note that E ( x ) ≥ 0 for any x , and when

 = 0 , we have E(0 ) = 0 . Thus if y = 0 , the optimal solution is x ∗ =
 . Sufficient condition: assume by contradiction that y � = 0 , then we

elect an arbitrary non-zero dimension y j in y , and construct ˜ x ∈
 

N as ˜ x i = { 0 , i � = j 
y j , i = j . Then we have 

 ( x 

∗) = E ( 0 ) = 

1 

2 λ

N ∑ 

i =1 

y 2 i > 

1 

2 λ

N ∑ 

i =1 ,i � = j 
y 2 i = E ( ̃  x ) (14)

his contradicts the optimality of x ∗. Thus if x ∗ = 0 , y must be

qual to zero. �

roposition 5. Suppose that functions P ( x ) and R ( x ) satisfy

roperty 1 , and let x ∗ be the optimal solution of (12) . Then, for i ∈ {1,

, … , N }, if y i > 0, then we have x ∗
i 

≥ 0 . If y i < 0, then we have x ∗
i 

≤ 0 .

roof. We prove it by establishing contradiction. If there exits any

 

∗
i 

< 0 when y i > 0, then we select an arbitrary one and we con-

truct ˜ x ∈ R 

N as ˜ x j = { x ∗
j 
, j � = i 

−x ∗
j 
, j= i . We have 

 ̃

 x − y ‖ 

2 
2 = 

∑ 

j � = i 

(
˜ x j − y j 

)2 + ( ̃  x i − y i ) 
2 

< 

∑ 

j � = i 

(
x ∗j − y j 

)2 + 

(
x ∗i − y i 

)2 = ‖ 

x 

∗ − y ‖ 

2 
2 (15)

he inequality follows from that x ∗
i 

has the opposite sign as y i 
nd y i > 0. Since we have not changed the absolute value of ˜ x i and

 (x ) = R (−x ) , then we have P ( ̃ x ) = P ( x ∗) . combining this and (15) ,

e have E( ̃ x ) < E( x ∗) . This contradicts the optimality of x ∗ and

roves that x ∗
i 

≥ 0 when y i > 0. On the other hand, we can prove

hat x ∗
i 

≤ 0 when y i < 0 by using a similar method. This completes

he proof. �

Next, we focus on the closed-form solutions of prox λP ( y ) with

ifferent types of R ( x ). 

roposition 6. Suppose that functions P ( x ) and R ( x ) satisfy

roperty 1 , and R ( x ) is separable, i.e., R (x ) = 

∑ N 
i =1 r i ( x i ) and each r i

s strictly increasing on R + . Let x ∗ be the optimal solution of (12) .

hen we have 

 

∗
i = 

{
y i , if i ∈ �s 

y 

pro x λr πy ( i ) 

(
y πy ( i ) 

)
, if i ∈ �N 

y \ �s 
y 

(16)

here �s 
y = { πy (1) , πy (2) , . . . , πy (s ) } and π y ( j ) is the index of the

-th largest amplitude of y , i.e., | y πy (1) | ≥ | y πy (2) | ≥ · · · ≥ | y πy (N) | . 
See Appendix E for the proof. From the proof we can find

hat if each r i is convex, then x ∗
i 

= ( ( I N + λ∂R ) −1 (y ) ) i when

 ∈ �N 
y \ �s 

y , where I N denotes the identity operator and the map-

ing ( I N + λ∂R ) −1 
is called the resolvent of the operator ∂R with

arameter λ. 

emark 6. Note that x ∗
i 

= y i if i ∈ { π y (1), π y (2), … , π y ( s )} in

16) . Suppose that there exits one or more components of y i ,

 �∈ { π y (1), π y (2), … , π y ( s )} having the same amplitude of y πy (s ) ,

.e., | y πy (s −m ) | = · · · = | y πy (s ) | = · · · = | y πy (s + j) | , m ≥ 0, j ≥ 1. Then

here exit C m +1 
j+ m +1 

solutions of x ∗ as there are C m +1 
j+ m +1 

arrangements

f y πy (s −m ) , . . . , y πy (s ) . 

emark 7. If R (x ) = ‖ x ‖ 1 , i.e., P (x ) = ‖ x ‖ 1 − ‖ x s ‖ 1 , then the solu-

ion x ∗ of (12) is 

 

∗
i = 

{
y i , if i ∈ �s 

y 

shrink ( y i , λ) , if i ∈ �N 
y \ �s 

y 

(17)
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here shrink(y i , λ) denotes the soft shrinkage operator given by 

hrink ( y i , λ) = sign ( y i ) max { | y i | − λ, 0 } (18) 

emark 8. If R (x ) = ‖ x ‖ 2 
2 
, i.e., P (x ) = ‖ x ‖ 2 

2 
− ‖ x s ‖ 2 

2 
, then the solu-

ion x ∗ of (12) is 

 

∗
i = 

{
y i , if i ∈ �s 

y 

y i / ( 2 λ + 1 ) , if i ∈ �N 
y \ �s 

y 

(19) 

emark 9. If R ( x ) is the MCP (A.3) , that is r i ( x i ) =
 

| x i |−x 2 
i 
/ ( 2 θ ) , | x i |≤θ

θ/ 2 , | x i | >θ
( θ > 0), then the solution x ∗ of (12) is: un-

er the condition of θ > λ, if i ∈ �s 
y or | y i | > θ , then x ∗

i 
= y i ;

therwise x ∗
i 

= sign ( y i ) max { θ (| y i | − λ) / (θ − λ) , 0 } . When θ ≤λ,

f i ∈ �s 
y or | y i | > θ , then x ∗

i 
= y i ; otherwise x ∗

i 
= 0 . If R ( x ) is the

SP (A.2) , that is r i ( x i ) = log (1 + | x i | /θ ) , θ > 0 , then the solution

 

∗ of (12) is: if i ∈ �s 
y , then x ∗

i 
= y i ; otherwise x ∗

i 
= sign ( y i ) w i ,

nd w i = arg min 

x i ∈ 

{ 1 

2 λ
( x i − | y i | ) 2 + 

∑ 

i log ( 1 + | x i | /θ ) } , where

is a set composed of 3 elements or 1 element. If

(| y i | − θ ) 2 − 4(λ − | y i | θ ) ≥ 0 , then 

= { 0 , max { ξ1 , 0 } , max { ξ2 , 0 } } (20) 

here ξ1 = 

1 
2 ( ( | y i | − θ ) + 

√ 

( | y i | − θ ) 2 − 4( λ − | y i | θ ) ) and ξ2 =
1 
2 ( ( | y i | − θ ) −

√ 

( | y i | − θ ) 2 − 4( λ − | y i | θ ) ) . Otherwise, 
 = { 0 } . 
Proposition 6 gives the solution of the (12) under the conditions

f R ( x ) with separable and strictly increasing properties. In fact,

here are some other commonly used separable and non-convex

 ( x ), which also have the closed-form solutions similar as (16) ,

uch as R (x ) = ‖ x ‖ p p with p = 1 / 2 , 2 / 3 [14] . However, these R ( x )

o not satisfy the Property 1 (c), so they are not within the scope

f this article. Next, we consider two special non-separable cases

s the reference for other non-separable regularizations. 

roposition 7. If P (x ) = R (x ) − R (x s ) with R (x ) = ‖ x ‖ 2 , then the

olution x ∗ of (12) is that: when i ∈ �s 
y , 

 

∗
i = 

( ‖ 

y s ‖ 2 + λ) 

(√ 

‖ 

y − y s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 + λ) 
2 − λ

)
‖ 

y s ‖ 2 

√ 

‖ 

y − y s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 + λ) 
2 

y i (21) 

hen i ∈ �N 
y \ �s 

y , 

 

∗
i = 

√ 

‖ 

y − y s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 + λ) 
2 − λ√ 

‖ 

y − y s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 + λ) 
2 

y i (22) 

See Appendix F for the proof. 

roposition 8. If P (x ) = R (x ) − R (x s ) with R (x ) = ‖ x ‖ 1 − a ‖ x ‖ 2 ,
 < a ≤ 1, then the solution x ∗ of (12) is that: 

(1) When | y πy (s +1) | > λ, for i ∈ �s 
y , 

 

∗
i = 

‖ 

y s ‖ 2 − aλ

‖ 

y s ‖ 2 

⎛ 

⎝ 1 + 

aλ√ 

‖ 

z − z s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 − aλ) 
2 

⎞ 

⎠ y i (23) 

or i ∈ �N 
y \ �s 

y , 

 

∗
i = 

⎛ 

⎝ 1 + 

aλ√ 

‖ 

z − z s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 − aλ) 
2 

⎞ 

⎠ z i (24) 

here z i = y πy (1) for i ∈ �s 
y , and z i = shrink ( y i , λ) for i ∈ �N 

y \ �s 
y . 

(2) When | y πy (s +1) | = λ, if a = 1 , s = 1 , | y πy (1) | = λ, and suppose

hat there are k components of y having the same amplitude of λ, i.e.,
i 
 y πy ( s +1 ) | = · · · = | y πy ( s + k ) | = λ > | y πy ( s + k +1 ) | . x ∗ is an optimal solu-

ion of (12) if and only if it satisfies ‖ x ∗‖ 2 = λ, x ∗
i 
y i ≥ 0 , and x ∗

i 
= 0

hen i ∈ { πy (k + 2) , πy (k + 3) , . . . , πy (N) } . In this case, there are in-

nite many solutions, Eqs. (A.40) and (A.41) are two solution exam-

les. When | y πy (s +1) | = λ, and any of these conditions of a = 1 , s = 1 ,

 y πy (1) | = λ cannot be satisfied, the solution x ∗ is 

 

∗
i = 

{
y i , i ∈ �s 

y 

0 , i ∈ �N 
y \ �s 

y 

(25) 

(3) When 0 ≤ | y πy (s +1) | < λ, the solution x ∗ is the same as (25) . 

We apply the similar proof framework in Ref [29] . for the fast

 1 −2 minimization. See Appendix G for the proof. 

emark 10. When a = 0 , then R (x ) = ‖ x ‖ 1 − a ‖ x ‖ 2 reduces to

 (x ) = ‖ x ‖ 1 , and the corresponding solution x ∗ of ( 23,24,25 ) re-

uces to (17) as in Remark 7 . 

From the above Propositions 6 –8 and Remarks 6 –10 , we can

nd that we have x ∗
i 

≤ y i when i ∈ �N 
y \ �s 

y for all these R (x ) =
 x ‖ 1 , ‖ x ‖ 2 2 

, MCP, LSP, ‖ x ‖ 2 and ‖ x ‖ 1 − a ‖ x ‖ 2 , which means that

t is a shrinkage operator for the bottom- ( N − s ) elements in ab-

olute value. However, when i ∈ �s 
y , for the separable R (x ) = ‖ x ‖ 1 ,

 x ‖ 2 
2 
, MCP and LSP, we have x ∗

i 
= y i ; for the non-separable convex

 (x ) = ‖ x ‖ 2 , we have x ∗
i 

≥ y i ; for the non-separable non-convex

 (x ) = ‖ x ‖ 1 − a ‖ x ‖ 2 , we have x ∗
i 

≤ y i . Meanwhile, when λ→ ∞ , all

hese optimal solutions of (12) with different regularizations P ( x )

egenerate into the hard thresholding operator. 

. Convergence analysis 

The purpose of this section is to demonstrate that the sequence

f { x [ k ] } obtained from the FBS of (11) for the minimization prob-

em (8) is convergent. 

heorem 2. Suppose that functions P ( x ) and R ( x ) satisfy Property 1 .

f Assumption 1 and 2 are satisfied and β < 1/ L, let { x [ k ] } be the se-

uence generated by the FBS of (11) for minimization problem (8) , the

ollowing statements hold. 

(1) The sequence { x [ k ] } is bounded. 

(2) lim karrow ∞ 

‖ x [ k +1] − x [ k ] ‖ 2 = 0 . 

(3) Any accumulation point of { x [ k ] } is a stationary point of F ( x ) . 

roof. 

(1) Rewrite (8) and consider the following inequality 

F 
(
x 

[ k +1] 
)

− F 
(
x 

[ k ] 
)

= φ
(
x 

[ k +1] 
)

+ ρP 
(
x 

[ k +1] 
)

− φ
(
x 

[ k ] 
)

− ρP 
(
x 

[ k ] 
)

≤
〈∇φ

(
x 

[ k ] 
)
, x 

[ k +1] − x 

[ k ] 
〉
+ 

L 
2 

∥∥x 

[ k +1] − x 

[ k ] 
∥∥2 

2 

+ ρP 
(
x 

[ k +1] 
)

− ρP 
(
x 

[ k ] 
)

= ρP 
(
x 

[ k +1] 
)

− ρP 
(
x 

[ k ] 
)

+ 

L 
2 

∥∥x 

[ k +1] − x 

[ k ] 
∥∥2 

2 

+ 

‖ 

x [ k +1] −( x [ k ] −β∇ φ( x [ k ] ) ) ‖ 

2 

2 

2 β
− ‖ 

β∇ φ( x [ k ] ) ‖ 

2 

2 

2 β

−‖ 

x [ k +1] −x [ k ] ‖ 

2 

2 

2 β

= ρ
(
E 
(
x 

[ k +1] 
)

− E 
(
x 

[ k ] 
))

+ 

(
L 
2 

− 1 
2 β

)∥∥x 

[ k +1] − x 

[ k ] 
∥∥2 

2 

≤
(

L 
2 

− 1 
2 β

)∥∥x 

[ k +1] − x 

[ k ] 
∥∥2 

2 

(26) 

where the E ( x ) in the third equation is the expression

(13) with y replaced by x [ k ] − β∇φ( x [ k ] ) and set λ =
βρ . The first inequality comes from Assumption 1 , and

the second inequality is based on the fact that x [ k +1] is
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the optimal solution of the E ( x ). When β < 1/ L , we have

F ( x [ k ] ) ≤ F ( x [0] ) for all k ≥ 0. Due to the level-boundedness of

F ( x ) ( Assumption 2 ), then the sequence { x [ k ] } is bounded. 

(2) Summing both sides of (26) from k = 0 to ∞ , we can obtain

(
1 

2 β
− L 

2 

) + ∞ ∑ 

k =0 

∥∥x 

[ k +1] − x 

[ k ] 
∥∥2 

2 
≤ F ( 0 ) − F 

(
x 

[ k +1] 
)

< ∞ 

(27)

Since β < 1/ L , we can deduce that

lim karrow ∞ 

‖ x [ k +1] − x [ k ] ‖ 2 = 0 from the above relation

obviously. 

(3) Since the sequence { x [ k ] } is bounded, there exists a subse-

quence of { x [ k ] }, denoted as { x [ k j ] } , converging to an accu-

mulation point x ∗. Considering that minimizer { x [ k j +1] } is a

critical point of (13) and P ( x ) can be decomposed into DC

functions as P (x ) = P 1 (x ) − P 2 (x ) , we have 

0 ∈ 

x 
[ k j +1] −x [ k ] + β∇ φ( x [ k ] ) 

βρ

+ ∂ P 1 
(
x 

[ k j +1] 
)

− ∂ P 2 
(
x 

[ k j +1] 
) (28)

Let k j → ∞ , by using ‖ x [ k j +1] − x [ k j ] ‖ 2 → 0 from the above

conclusion and considering the semi-continuity of ∇φ, ∂P 1 
and ∂P 2 , we have that 0 ∈ ∇φ( x ∗) + ρ∂ P 1 ( x 

∗) − ρ∂ P 2 ( x 
∗) .

Therefore, x ∗ is a critical point of problem (8) . This com-

pletes the proof. 

�

From the proof of Theorem 2 , we have that

lim k →∞ 

‖ x [ k +1] − x [ k ] ‖ 2 = 0 is a necessary optimality condition

of the FBS. Therefore, we can use ‖ x [ k +1] − x [ k ] ‖ 2 as a quantity to

measure the convergence performance of the sequence { x [ k ] } to a

critical point x ∗. 

Theorem 3. If Assumptions 1 and 2 are satisfied and β < 1/ L, let

{ x [ k ] } be the sequence generated by the FBS of (11) for minimization

problem (8) , then for every K ≥ 1, we have 

min 

0 ≤k ≤K 

∥∥x 

[ k +1] − x 

[ k ] 
∥∥2 

2 
≤ 2 β

F ( 0 ) − F ( x 

∗) 
K ( 1 − Lβ) 

(29)

Proof. Summing the inequality (26) over k = 0 , . . . , K, we can ob-

tain (
1 

2 β
− L 

2 

) K ∑ 

k =0 

∥∥x 

[ k +1] − x 

[ k ] 
∥∥2 

2 
≤ F ( 0 ) − F 

(
x 

[ K+1] 
)

(30)

When β < 1/ L , we have that { F ( x [ k ] )} is monotonically decreasing,

which means that F ( x [ K+1] ) ≥ F ( x ∗) . Substituting this into (30) , we

have 

K min 

0 ≤k ≤K 

∥∥x 

[ k +1] − x 

[ k ] 
∥∥2 

2 
≤ 2 β

F ( 0 ) −F ( x [ K+1] ) 
( 1 −Lβ) 

≤ 2 β F ( 0 ) −F ( x ∗) 
( 1 −Lβ) 

(31)

This completes the proof. �

In fact, we may have a stricter conclusion for the convergence

speed as F ( x [ k +1] ) − F ( x [ k ] ) can be smaller than ( L 2 − 1 
2 β

) ‖ x [ k +1] −
x [ k ] ‖ 2 2 in (26) . 

Proposition 9. Suppose that functions P ( x ) and R ( x ) satisfy Property

1 , and R ( x ) is separable, i.e., R (x ) = 

∑ N 
i =1 r i ( x i ) , and each r i is strictly

increasing on R + . Let { x [ k ] } be the sequence generated by the FBS of

(11) for minimization (8) , then we have 

F 
(
x 

[ k +1] 
)

− F 
(
x 

[ k ] 
)

≤
(

L 
2 

− 1 
2 β

)∥∥x 

[ k +1] − x 

[ k ] 
∥∥2 

2 

+ min 

{ 
− 1 

2 β

∥∥x 

[ k +1] − x 

[ k ] 
∥∥2 

2 
+ ρ�k , 0 

} (32)
here �k = 

∑ 

i ∈ �k +1 
r i ( x 

[ k ] 
i 

) −∑ 

i ∈ �k 
r i ( x 

[ k ] 
i 

) , �k +1 = �N 
x [ k +1] 

\ �s 
x [ k +1] 

,

nd �k = �N 
x [ k ] 

\ �s 
x [ k ] 

. 

See Appendix H for the proof. 

From Proposition 9 , we can find that F ( x [ k +1] ) − F ( x [ k ] ) ≤ ( L 2 −
1 
β
) ‖ x [ k +1] − x [ k ] ‖ 2 

2 
if �s 

x [ k +1] 
is the same as �s 

x [ k ] 
. 

. Extensions 

In this section, we discuss some related algorithms for solving

8) , show a link between the DC function P ( x ) with other regular-

zation functions, and simply extend P ( x ) to rank-constrained prob-

em, which can enlarge the application scope of the proposed al-

orithm. 

.1. Related algorithms 

Here, we discuss some related algorithms. When φ( x ) is con-

ex, it is an intuitive idea that we can use the DCA to solve the

inimization (8) . Since P ( x ) can be written as the DC functions,

.e., P (x ) = P 1 (x ) − P 2 (x ) , the objective function can be naturally

ecomposed into 

 ( x ) = φ( x ) + ρP ( x ) = { φ( x ) + ρP 1 ( x ) } − ρP 2 ( x ) (33)

he corresponding DCA solves the minimization problem as 

 

[ k +1] = arg min 

x ∈ R N 
{
φ( x ) + ρP 1 ( x ) − ρP 2 

(
x 

[ k ] 
)
−ρ
〈
w 

[ k ] , x − x 

[ k ] 
〉}

(34)

here w 

[ k ] ∈ ∂P 2 ( x 
[ k ] ). Although this problem is convex, it does not

ecessarily have closed-form solution and the computational cost

s very expensive for large-scale problems. 

On the other hand, since φ( x ) is continuously differentiable

ith L -Lipschitz continuous gradient, we can use the Sequential

onvex Programming (SCP) [67] to solve problem (8) by updating

 x [ k ] } as 

 

[ k +1] = arg min 

x ∈ R N 
{
φ
(
x 

[ k ] 
)

+ 

〈∇φ
(
x 

[ k ] 
)
, x − x 

[ k ] 
〉

+ 

L 
2 

∥∥x − x 

[ k ] 
∥∥2 

2 
+ ρP 1 ( x ) − ρP 2 

(
x 

[ k ] 
)

−ρ
〈
w 

[ k ] , x − x 

[ k ] 
〉} (35)

eanwhile, the SCP can be thought as a variant of DCA with DC

ecomposition: 

 ( x ) = 

(
ρP 1 ( x ) + L ‖ 

x ‖ 

2 
2 / 2 

)
−
(
ρP 2 ( x ) + L ‖ 

x ‖ 

2 
2 / 2 − φ( x ) 

) (36)

The subproblem can be written as 

 

[ k +1] = arg min 

x ∈ R N 
{ ρP 1 ( x ) 

+ 

L 
2 

∥∥x −
(
x 

[ k ] − 1 
L 

(∇φ
(
x 

[ k ] 
)

− ρw 

[ k ] 
))∥∥2 

2 

} (37)

Due to that the subproblem (37) can be solved by using the

roximal operator, Ref [43] . and [44] call this type DCA as proximal

CA (PDCA). For some simple form P ( x ), subproblem (37) also has

losed-form solution. For example, P (x ) = ‖ x ‖ 1 − ‖ x s ‖ 1 and P (x ) =
 x ‖ 2 

2 
− ‖ x s ‖ 2 

2 
. In the numerical experiment, we will compare the

BS with this PDCA and show that the FBS is more efficient than

DCA in this problem. Meanwhile, as P ( x ) is a DC function, the FBS

educes to the GIST algorithm proposed in [54] . 

To improve the performance of the FBS, some acceleration

ethods can be used in the proximal framework. Such as the Non-

onotone Accelerated proximal gradient (nmAPG) method [55] ,

he extrapolation method in PDCA (pDCAe) [51] and the backtrack-

ng line search initialized method with Barzilai-Borwein (BB) rule

68] in GIST [54] . 
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Fig. 1. Level curves of different metrics. 
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p  
.2. Comparing with other regularization 

From the previous discussion, we have illustrated that the

C function P ( x ) can replace the � 0 -norm constraint. And in

heorem 1 and Proposition 2 , we have proved that the uncon-

trained problem (8) is equal to the original sparsity constrained

roblem (3) when we select proper parameter ρ . On the other

and, in the minimization problem (8) , P ( x ) can also be consid-

red as a regularization function. Then, we can investigate its per-

ormance from the aspect of sparsity metric. Fig. 1 shows the con-

ours of various regularizers for comparing. 

From Fig. 1 , we can find that the level curves of R (x ) − R ( x s )

pproach the x and y axes as the values get small, hence pro-

oting sparsity. Inspire by Sidky et al. work of [69] and Rahimi

t al. work of [70] , where they using toy examples to illustrate

he advantages of � p and � 1 / � 2 , respectively, we also use a simi-

ar example to show that with some special data sets ( A, b ), the

 (x ) − R ( x s ) tends to select a sparser solution. 

xample 1. Let N = 6 and define 

A := 

⎡ 

⎢ ⎢ ⎢ ⎣ 

1 −1 0 0 0 0 

0 1 −1 0 0 0 

0 1 2 1 0 0 

2 1 1 0 1 0 

0 . 5 0 . 5 3 0 0 −1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, b := 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 

0 

15 

20 

40 

⎤ 

⎥ ⎥ ⎥ ⎦ 

It is straightforward that any general solution of Ax = b has the

orm of x = (t , t , t , 15 − 3 t, 20 − 4 t, 4 t − 40) T for a scalar t ∈ R . The

parest solution occurs at t = 0 for the sparsity of x being 3, and

ome local solutions include t = 5 for sparsity being 4 and t = 10

or sparsity being 5. We plot the various regularization functions

ith respect to t in Fig. 2 , including � 1 , � p ( p = 1 / 2 ), � 1 −2 , � 1 / � 2 ,

CP ( θ = 15 ) of (A.3) and the proposed R (x ) − R ( x s ) with R (x ) =
 x ‖ 1 , ‖ x ‖ 2 , ‖ x ‖ 1 − ‖ x ‖ 2 , ‖ x ‖ 1 / ‖ x ‖ 2 , MCP, and s = 3 . 
From Fig. 2 , we can find that all these regularized functions are

ot differentiable at the values of t = 0 , 5 , and 10, where the cor-

esponding sparsities of x are all smaller than 6. However, only the

 1 / � 2 and the s -difference R (x ) − R ( x s ) can find the sparsest vector

 at t = 0 as a global minimum, where the other functions find

 = 5 as the minimum and lead to the sparsity of x being 4. 

.3. Extending to rank-constrained problem 

Similar to Gotoh et al. [43] , the penalty function P (x ) = R (x ) −
 (x s ) can also be extended to rank-constrained problem based on

he connection between the � 0 -norm on R 

N and the rank function

or a matrix. The rank-constrained minimization problem can be

ormulated as 

in 

w 

φ( w ) subject to rank ( w ) ≤ s , w ∈ R 

M ×N (38) 

here s is a non-negative integer with s ≤ q = min { M, N} . As the

ank of a matrix is equal to the number of its nonzero singular

alues, i.e., rank (w ) = ‖ σ (w ) ‖ 0 , where σ ( w ) represents the sin-

ular value vector of w and σ
i 
(w ) is the i -th largest term, then

e can construct the penalty functions P, R : R 

q 
+ → R + , P (σ (w )) =

 (σ (w )) − R ( σ s (w )) that satisfy Property 1 (b) and (c), where
s 
i 
(w ) = σ

i 
(w ) for i ∈ {1, 2, … , s } and σ s 

i 
(w ) = 0 for else. Replac-

ng the rank constraint with the DC penalty function P ( σ ( w )) and

onsidering the unconstrained problem: 

in 

w 

φ( w ) + ρP ( σ ( w ) ) (39) 

hen we can use the FBS, DCA or ADMM algorithms to solve this

ank-constrained problem. 

. Numerical experiments 

In this section, simulations are performed to demonstrate the

roposed conclusions and evaluate the performance of the s -
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Fig. 2. The objective functions of a toy example. For the top row, from the left to right, the five columns are functions of ‖ x ‖ 1 , ‖ x ‖ 0.5 , ‖ x ‖ 1 − ‖ x ‖ 2 , ‖ x ‖ 1 / ‖ x ‖ 2 , MCP 

of (A.3) with θ = 15 , respectively. While for the bottom row, from the left to right, the five columns are functions of R (x ) − R ( x s ) with R (x ) = ‖ x ‖ 1 , ‖ x ‖ 2 , ‖ x ‖ 1 − ‖ x ‖ 2 , 
‖ x ‖ 1 / ‖ x ‖ 2 , MCP, respectively. 
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o  
difference regularization. We mainly apply seven methods in com-

parison with the proposed algorithm: (1) the � 1 -norm regulariza-

tion based � 1 -ADMM [72] ; (2) the semismooth Newton augmented

Lagrangian (SSNAL) method [75] for LASSO problem ( http://www.

math.nus.edu.sg/ ∼mattohkc/SuiteLasso.html ); (3) the iterative p -

shrinkage (IPS) algorithm [17] with p = −1 , which uses the p -

shrinkage mapping as S p,λ( x i ) = sign ( x i ) max { | x i | − λ2 −p | x i | p−1 
, 0 } ;

(4) the generalized minimax-concave penalty (GMC) with γ =
0 . 8 [35] , which uses the proximal algorithm to find the

global minimizer (https://codeocean.com/2017/06/21/gmc-sparse-

regularization/); (5) the � p -norm ( p = 1 / 2 ) regularization based

half thresholding [14] ; (6) the � 0 -norm regularization based ac-

celerate IHT (AIHT) [39] ; (7) the difference of the � 1 and � 2 -

norms ( � 1 −2 ) regularization based � 1 −2 -DCA [31] . We choose the

representative R ( x ) as R (x ) = ‖ x ‖ 1 , ‖ x ‖ 2 , ‖ x ‖ 1 − ‖ x ‖ 2 for compar-

ing. Meanwhile, among all these penalties of comparisons, the

GMC, � 1 −2 and the proposed s -difference penalties all belong to

the type of difference of convex functions. However, the solutions

of these penalties based optimization problems are different: the

GMC based problem is minimized by finding the saddle-point with

proximal algorithms comprising simple computations in [35] , the

� 1 −2 based problem is approximately solved by using the DCA

framework in [31] , while the s -difference penalty regularized prob-

lem is approximately solved by using the iterative FBS. In addition,

although the GMC is nonconvex, the convexity of the total objec-

tive function is maintained, which means that it allows the lever-

aging of globally convergent. This convexity preservation is also the

most attractive aspect of GMC. All experiments are performed in

MATLAB 2015b running on ASUS laptop with Intel (R) Core (TM)

i7-8550U CPU, 8 GB of RAM and 64-bit Windows 10 operating sys-

tem. 

We focus on the following least squares problem: 

min 

x ∈ R N 
1 

2 

‖ 

Ax − b ‖ 

2 
2 + ρP ( x ) (40)

and conduct experiments on simulated vector signals. 

We test two types of matrices A : the random Gaussian ma-

trix with i.i.d. standard Gaussian entries and being normalized that

each column has unit norm, and the random partial DCT matrix

which is formed by randomly selecting rows from the full DCT ma-

trix. For the original sparse vector x̄ , we generate it with random

index set and draw non-zero elements with standard normal dis-

tribution. The observation is b = A ̄x + n , where n is zeros for the

noiseless test, and Gaussian noise for the contaminated measure-

ments. The initial value for all the methods is an approximated so-
ution of the � 1 minimization using ADMM after N iterations. The

aximum number of iterations for all these methods is 5 N except

or DCA, whose maximum number of internal iterations is 5 N and

he maximum number of external iterations is 20. The stopping

ondition is set to be 
‖ x [ k ] −x [ k −1] ‖ 2 
max { ‖ x [ k ] ‖ 2 , 1 } < 10 −5 . 

In the first study, we look at the success rates with 100 ran-

om instances under the noise-free condition, in which we set

he size of matrices A as 64 × 256 and let the sparsity level of x̄

eing 1, 2, 4, 6, … , 40. We vary the regularization parameter ρ
rom 10 −6 to 10 (with 30 logarithmically equally spaced) and set

= 10 ρ for each method, and then select the best one as the re-

ult. Here we consider a recovery x ∗ as successful if the relative

rror of recovery (Rel.Err) satisfies ‖ x ∗ − x̄ ‖ 2 / ‖ ̄x ‖ 2 ≤ 10 −3 . In addi-

ion, we set sparsity parameter s to be the ground truth s truth for

he proposed s -difference P ( x ). Fig. 3 plots the success rates of the

omparing methods for both the Gaussian matrix and the partial

CT matrix. From this, we can find that the s -difference regulariza-

ion with R (x ) = ‖ x ‖ 1 has the best performance for both Gaussian

atrix and partial DCT matrix. The R (x ) = ‖ x ‖ 1 − ‖ x ‖ 2 is compa-

able to � 1 −2 -DCA, followed by R (x ) = ‖ x ‖ 2 , half thresholding and

MC, which outperform the SSNAL, IPS and � 1 -ADMM. 

In the second study, we focus on the recovery quantity of

hese methods under different sizes of matrix. For the noiseless

ase, we set ρ = 10 −1 for s -difference regularization based FBS

nd ρ = 10 −6 for the ADMM and other types of methods. We

et β = 10 ρ, and consider ( M, N, s truth ) = ( 256 i, 1024 i, 48 i ) for i =
 , 2 , . . . , 8 . Here, we also set the sparsity threshold parameter to

e s truth for the AIHT and s -difference P ( x ). For each triple ( M,

, s truth ), we generate 30 random realizations. Tables 2 and 3 list

he mean and standard deviation of Rel.Err for Gaussian matrix

nd partial DCT matrix, respectively. We also test these meth-

ds in the presence of Gaussian noise as n = 0 . 01 ∗ randn ( M, 1 ) .

e set ρ = 1 for s -difference regularization based FBS and ρ =
0 −3 for the ADMM and other types of methods, and consider

( M, N, s truth ) = ( 256 i, 1024 i, 48 i ) for i = 1 , 2 , 3 , 4 . The recovery per-

ormance is listed in Tables 4 and 5 for comparing. From Tables 2–

 , we can find that the s -difference P ( x ) with the ground truth

parsity threshold parameter can provide a quite competitive or

lightly superior performance comparing with AIHT and other

ethods under the noise-free conditions. However, under the con-

ition of noise, AIHT performance decreases rapidly, while the s -

ifference P ( x ) is still able to provide a relatively best result, es-

ecially the P ( x ) with R (x ) = ‖ x ‖ 1 − ‖ x ‖ 2 . From the first and sec-

nd studies, we can find that the s -difference P ( x ) can obtain a

http://www.math.nus.edu.sg/~mattohkc/SuiteLasso.html
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Table 2 

Mean and standard deviation of Rel.Err for different methods with Gaussian matrix under noiseless condition. 

M N s true � 1 -ADMM SSNAL IPS GMC � 1 −2 -DCA Half thresholding AIHT s -difference ( � 1 ) s -difference ( � 1 −2 ) s -difference ( � 2 ) 

256 1024 48 1.212e-04 

(4.427e-08) 

1.613e-05 

(1.162e-11) 

1.877e-05 

(1.780e-10) 

1.670e-05 

(6.475e-11) 

2.390e-05 

(2.073e-11) 

2.361e-05 

(4.974e-10) 

1.436e-05 

(3.670e-11) 

1.546e-05 

(3.675e-11) 

1.548e-05 

(1.809e-10) 

1.558e-05 

(1.772e-10) 

512 2048 96 9.836e-05 

(1.774e-08) 

1.615e-05 

(5.634e-12) 

1.607e-05 

(3.291e-12) 

1.529e-05 

(2.990e-12) 

2.601e-05 

(1.224e-11) 

2.079e-05 

(7.632e-12) 

1.319e-05 

(2.544e-12) 

1.323e-05 

(2.581e-12) 

1.281e-05 

(2.307e-12) 

1.290e-05 

(2.341e-12) 

768 3072 144 1.014e-04 

(1.346e-08) 

1.662e-05 

(4.768e-12) 

1.640e-05 

(2.322e-12) 

1.461e-05 

(2.302e-12) 

2.483e-05 

(4.595e-12) 

2.125e-05 

(7.547e-12) 

1.351e-05 

(2.001e-12) 

1.372e-05 

(2.123e-12) 

1.317e-05 

(1.892e-12) 

1.325e-05 

(1.910e-12) 

1024 4096 192 1.205e-04 

(2.263e-08) 

1.562e-05 

(3.440e-12) 

1.562e-05 

(1.834e-12) 

1.433e-05 

(2.268e-12) 

2.529e-05 

(8.490e-12) 

2.093e-05 

(8.213e-12) 

1.284e-05 

(1.444e-12) 

1.444e-12 

(1.462e-12) 

1.254e-05 

(1.447e-12) 

1.260e-05 

(1.454e-12) 

1280 5120 240 1.297e-04 

(1.422e-08) 

1.642e-05 

(3.132e-12) 

1.610e-05 

(1.839e-12) 

1.507e-05 

(2.379e-12) 

2.533e-05 

(9.386e-12) 

2.113e-05 

(7.449e-12) 

1.288e-05 

(1.455e-12) 

1.316e-05 

(1.533e-12) 

1.292e-05 

(1.477e-12) 

1.297e-05 

(1.486e-12) 

1536 6144 288 1.155e-04 

(1.397e-08) 

1.576e-05 

(1.992e-12) 

1.574e-05 

(1.219e-12) 

1.449e-05 

(2.208e-12) 

2.468e-05 

(7.396e-12) 

2.108e-05 

(8.514e-12) 

1.294e-05 

(9.803e-13) 

1.282e-05 

(9.757e-13) 

1.256e-05 

(9.163e-13) 

1.261e-05 

(9.234e-13) 

1792 7168 336 1.069e-04 

(1.089e-08) 

1.540e-05 

(1.600e-12) 

1.538e-05 

(1.062e-12) 

1.436e-05 

(2.017e-12) 

2.527e-05 

(9.967e-12) 

2.101e-05 

(6.653e-12) 

1.265e-05 

(9.040e-13) 

1.270e-05 

(9.084e-13) 

1.229e-05 

(8.588e-13) 

1.233e-05 

(8.629e-13) 

2018 8192 384 1.456e-04 

(1.810e-08) 

1.573e-05 

(1.405e-12) 

1.564e-05 

(1.029e-12) 

1.442e-05 

(1.986e-12) 

2.539e-05 

(4.754e-12) 

2.067e-05 

(7.831e-12) 

1.287e-05 

(7.885e-13) 

1.279e-05 

(7.812e-13) 

1.251e-05 

(7.730e-13) 

1.255e-05 

(7.783e-13) 

Table 3 

Mean and standard deviation of Rel.Err for different methods with partial DCT matrix under noiseless condition. 

M N s true � 1 -ADMM SSNAL IPS GMC � 1 −2 -DCA Half thresholding AIHT s -difference ( � 1 ) s -difference ( � 1 −2 ) s -difference ( � 2 ) 

256 1024 48 6.766e-05 

(2.360e-09) 

5.792e-06 

(1.345e-12) 

5.119e-06 

(4.761e-13) 

4.693e-06 

(3.474e-13) 

2.521e-05 

(7.891e-12) 

7.681e-06 

(4.678e-12) 

4.208e-06 

(3.970e-13) 

3.132e-06 

(2.459e-13) 

2.969e-06 

(2.743e-13) 

3.113e-06 

(2.958e-13) 

512 2048 96 9.139e-05 

(1.507e-08) 

5.770e-06 

(8.264e-13) 

5.466e-06 

(3.370e-12) 

4.682e-06 

(2.995e-12) 

2.298e-05 

(2.539e-11) 

7.936e-06 

(5.357e-12) 

4.509e-06 

(2.496e-12) 

3.437e-06 

(2.129e-12) 

3.200e-06 

(1.456e-12) 

3.310e-06 

(1.528e-12) 

768 3072 144 7.828e-05 

(4.769e-09) 

5.845e-06 

(4.563e-13) 

5.265e-06 

(2.411e-13) 

4.546e-06 

(2.368e-13) 

2.418e-05 

(1.930e-11) 

7.860e-06 

(8.569e-12) 

4.343e-06 

(2.047e-13) 

3.254e-06 

(1.973e-13) 

3.075e-06 

(1.447e-13) 

3.165e-06 

(1.513e-13) 

1024 4096 192 1.088e-04 

(1.350e-08) 

5.567e-06 

(2.997e-13) 

5.049e-06 

(1.758e-13) 

4.881e-06 

(1.630e-13) 

2.189e-05 

(2.626e-11) 

7.700e-06 

(8.614e-12) 

4.156e-06 

(1.495e-13) 

3.065e-06 

(1.119e-13) 

2.935e-06 

(1.052e-13) 

3.008e-06 

(1.095e-13) 

1280 5120 240 1.201e-04 

(1.605e-08) 

5.745e-06 

(1.215e-13) 

5.175e-06 

(6.515e-14) 

4.621e-06 

(5.992e-14) 

2.398e-05 

(1.856e-11) 

7.868e-06 

(9.326e-12) 

4.267e-06 

(5.541e-14) 

3.284e-06 

(5.338e-14) 

3.018e-06 

(4.026e-14) 

3.086e-06 

(4.148e-14) 

1536 6144 288 1.085e-04 

(1.192e-08) 

5.793e-06 

(2.182e-13) 

5.351e-06 

(4.024e-13) 

5.075e-06 

(3.065e-13) 

2.418e-05 

(1.533e-11) 

6.895e-06 

(9.014e-12) 

4.409e-06 

(2.849e-13) 

3.265e-06 

(1.976e-13)) 

3.117e-06 

(1.550e-13) 

3.181e-06 

(1.613e-13)) 

1792 7168 336 1.441e-04 

(1.177e-08) 

5.632e-06 

(1.092e-13) 

5.117e-06 

(6.588e-14) 

4.605e-06 

(4.996e-14) 

2.224e-05 

(2.069e-11) 

7.843e-06 

(6.979e-12) 

4.212e-06 

(5.368e-14) 

3.178e-06 

(3.995e-14) 

2.973e-06 

(3.654e-14) 

3.030e-06 

(3.779e-14) 

2018 8192 384 8.597e-05 

(8.211e-09) 

5.641e-06 

(1.210e-13) 

5.131e-06 

(6.572e-14) 

4.639e-06 

(5.519e-14) 

2.286e-05 

(1.592e-11) 

7.654e-06 

(5.937e-12) 

4.217e-06 

(5.711e-14) 

3.188e-06 

(5.042e-14) 

2.969e-06 

(4.083e-14) 

3.023e-06 

(4.188e-14) 
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Table 4 

Mean and standard deviation of Rel.Err for different methods with Gaussian matrix under Gaussian noise. 

M N s true � 1 -ADMM SSNAL IPS GMC � 1 −2 -DCA 

Half 

thresholding AIHT s -difference ( � 1 ) 

s -difference 

( � 1 −2 ) s -difference ( � 2 ) 

256 1024 48 1.236e-01 

(4.490e-04) 

1.222e-01 

(4.419e-04) 

1.217e-01 

(4.331e-04) 

1.035e-01 

(2.065e-04) 

1.050e-01 

(2.965e-04) 

7.381e-02 

(1.717e-04)) 

2.123e-01 

(1.539e-03) 

6.192e-02 

(3.765e-04) 

5.857e-02 

(2.500e-04) 

5.887e-02 

(2.369e-04) 

512 2048 96 1.234e-01 

(3.272e-04) 

1.218e-01 

(3.261e-04) 

1.210e-01 

(3.245e-04) 

1.049e-01 

(2.126e-04) 

1.081e-01 

(2.027e-04) 

9.214e-02 

(7.262e-05) 

2.154e-01 

(7.431e-04) 

6.185e-02 

(1.705e-04) 

5.958e-02 

(1.431e-04) 

5.977e-02 

(1.438e-04) 

768 3072 144 1.243e-01 

(1.266e-04) 

1.224e-01 

(1.289e-04) 

1.219e-01 

(1.275e-04) 

1.087e-01 

(1.155e-04) 

1.118e-01 

(9.412e-05) 

1.020e-01 

(9.371e-05) 

2.202e-01 

(3.419e-04)) 

6.296e-02 

(9.727e-05) 

6.148e-02 

(7.771e-05)) 

6.120e-02 

(7.661e-05) 

1024 4096 192 1.228e-01 

(6.416e-05) 

1.208e-01 

(6.635e-05) 

1.202e-01 

(6.516e-05) 

1.052e-01 

(9.954e-05) 

1.097e-01 

(5.421e-05) 

1.101e-01 

(4.824e-05) 

2.182e-01 

(2.430e-04) 

6.188e-02 

(9.485e-05) 

5.901e-02 

(7.434e-05) 

5.989e-02 

(7.842e-05) 

Table 5 

Mean and standard deviation of Rel.Err for different methods with partial DCT matrix under Gaussian noise. 

M N s true � 1 -ADMM SSNAL IPS GMC � 1 −2 -DCA 

Half 

thresholding AIHT s -difference ( � 1 ) 

s -difference 

( � 1 −2 ) s -difference ( � 2 ) 

256 1024 48 7.361e-02 

(1.460e-04) 

7.352e-02 

(1.358e-04) 

7.348e-02 

(1.231e-04) 

6.837e-02 

(9.501e-05) 

6.273e-02 

(8.720e-05) 

4.303e-02 

(4.242e-05) 

1.777e-01 

(9.091e-04) 

4.005e-02 

(5.439e-05) 

3.105e-02 

(3.367e-05) 

3.116e-02 

(4.104e-05) 

512 2048 96 7.941e-02 

(9.035e-05) 

7.934e-02 

(9.012e-05) 

8.033e-02 

(8.977e-05) 

7.529e-02 

(7.255e-05) 

7.140e-02 

(6.952e-05) 

5.271e-02 

(3.233e-05) 

1.857e-01 

(5.822e-04) 

3.951e-02 

(5.122e-05) 

3.245e-02 

(2.568e-05) 

3.273e-02 

(2.506e-05) 

768 3072 144 7.428e-02 

(5.154e-05) 

7.288e-02 

(5.123e-05) 

7.125e-02 

(5.045e-05) 

7.039e-02 

(4.880e-05) 

6.760e-02 

(4.318e-05) 

6.078e-02 

(1.717e-05) 

1.728e-01 

(1.917e-04)) 

4.299e-02 

(3.023e-05) 

3.032e-02 

(3.032e-02)) 

3.062e-02 

(9.071e-06) 

1024 4096 192 7.480e-02 

(3.288e-05) 

7.369e-02 

(3.144e-05) 

7.357e-02 

(3.055e-05) 

7.163e-02 

(2.835e-05) 

6.888e-02 

(2.619e-05) 

6.608e-02 

(1.337e-05) 

1.758e-01 

(1.537e-04) 

4.289e-02 

(9.025e-06) 

2.997e-02 

(6.900e-06) 

2.984e-02 

(6.853e-06) 
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Fig. 3. Success rates versus sparsity for compared methods: (a) Gaussian matrix, 

(b) partial DCT matrix. 
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Fig. 4. Convergence performance of DCA-ADMM, PDCA and FBS for solving the s - 

difference ‖ x ‖ 1 − ‖ x s ‖ 1 regularization problem. 
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etter recovery than other compared methods. However, we can

lso find that it is hard to determine theoretically which one is the

est for all application scenarios. This is maybe because that all

hese P ( x ) are non-convex regularizations. Their similarity is that

hey are equal to zero when the sparsity level of x is under s , and

he difference between these P ( x ) is that they use different ways

o punish the signals x that are not sparse enough, which leads to

ifferent shrinkage operators as shown in section III. 

In the third study, we focus on the accuracy and efficiency

f the methods under fixed matrix A and sparsity level as

( M, N, s truth ) = ( 256 , 1024 , 48 ) . To illustrate the benefit of the

losed-form solutions of proposed s -difference regularization, we

electively analyse the performance of DCA, PDCA and FBS under

he condition of the same regularization P (x ) = ‖ x ‖ 1 − ‖ x s ‖ 1 . The

CA solves the minimization problem (40) by using (34) , which is

 

[ k +1] = arg min 

x ∈ R N 

{ 
1 

2 

‖ 

Ax − b ‖ 

2 
2 + ρ‖ 

x ‖ 1 − ρ
〈
w 

[ k ] , x 

〉} 
(41) 

here w 

[ k ] ∈ ∂‖ x s [ k ] ‖ 1 . This problem can be solved by ADMM as 

min 

 , v ∈ R N 

{ 
1 

2 

‖ 

Ax − b ‖ 

2 
2 + ρ‖ 

v ‖ 1 − ρ
〈
w 

[ k ] , x 

〉} 
ub ject to x − v = 0 (42) 
e denote this method as DCA-ADMM for short. The PDCA solve

he minimization problem (40) by using (37) , that is 

 

[ k +1] = arg min 

x ∈ R N 
{ ρ‖ 

x ‖ 1 

+ 

L 
2 

∥∥x −
(
x 

[ k ] − 1 
L 

(
A 

T 
(
A x 

[ k ] − b 

)
− ρw 

[ k ] 
))∥∥2 

2 

} (43) 

nd it can be solved by using the soft shrinkage operator (18) . We

enote this method as PDCA for short. The FBS solves the problem

y using closed-form solution (17) in Remark 7 . 

Fig. 4 shows the convergence performance of three methods

nder noise-free condition with partial DCT matrix, which is mea-

ured by the Log-Rel.Err (defined as 10log 10 (Rel.Err)) versus iter-

tion numbers. Table 6 lists the mean of relative error, iteration

umber and computational time (in seconds) under the noise-

ree and Gaussian noise conditions as n = 0 . 01 ∗ randn ( M, 1 ) . From

ig. 4 and Table 6 , it is clear that the FBS with closed-form method

eads to less error and converges faster than the DCA type meth-

ds. 

From the definition of s -difference P ( x ), it is easy to under-

tand that the parameter s plays an important role in the al-

orithm. Here we focus on the problem of how to select the

roper parameter s . We consider the fixed matrix A and s truth 

s ( M, N, s truth ) = ( 256 , 1024 , 48 ) . Fig. 5 shows the performance of

 -difference P (x ) = ( ‖ x ‖ 1 − ‖ x ‖ 2 ) − ( ‖ x s ‖ 1 − ‖ x s ‖ 2 ) under differ-

nt s from 1 to 10 0 0. In addition to using the FBS with closed-

orm solution as Proposition 8 , we also consider the approxi-

ate DCA-ADMM using the similar solution of (42) but set w 

[ k ] ∈
( ‖ x [ k ] ‖ 2 + ‖ x s [ k ] ‖ 1 − ‖ x s [ k ] ‖ 2 ) . This method is not a true DCA as

he decomposition is not a convex function. However, this DCA-

DMM still works well as shown in Fig. 5 . From Fig. 5 , we can

nd that once the parameter s is less than the true sparsity s truth ,

he performance of FBS with closed-form will drop sharply. How-

ver, the DCA-ADMM is almost unaffected. This is probably be-

ause that the FBS solves the problem as the hard thresholding

ay when | y πy ( s +1 ) | is smaller than λ in Proposition 8 , whereas

he DCA-ADMM make full use of the non-convex P ( x ) and bring

etter results than the � 1 -norm methods. According to this deduc-

ion, designing an adaptive penalty parameter for FBS is quite nec-

ssary, which also is our future work. The good performance of

CA-ADMM also shows the superiority of this s -difference regular-

zation from another point of view. 

From Fig. 5 , we also have a suggestion that if we already

ave a preliminary range of judgements about sparsity based on

rior knowledge, i.e., s truth ∈ ( s max , s min ), then we suggest that

 decreases from the s max , but no less than s min , or just set

 be equal to s max when the range of sparsity is not very

arge. Here, we also introduce an adjustment strategy to estimate
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Table 6 

Mean of relative error, iteration number and computational time (sec.) under the noise-free and Gaussian noise conditions. 

Methods 

Noiseless condition 

Gaussian matrix 

Noiseless condition 

partial DCT matrix 

Noisy condition Gaussian 

matrix 

Noisy condition partial 

DCT matrix 

Rel.Err Iter/Time Rel.Err Iter/Time Rel.Err Iter/Time Rel.Err Iter/Time 

� 1 -ADMM 1.098E-04 1.357E-04 1.198E-01 7.485E-02 

‖ x ‖ 1 − ‖ x s ‖ 1 (DCA-ADMM) 2.298E-05 178/0.05 2.501E-05 170/0.05 7.182E-02 302/0.08 4.430E-02 511/0.12 

‖ x ‖ 1 − ‖ x s ‖ 1 (PDCA) 3.735E-05 530/0.13 4.063E-05 460/0.12 1.179E-01 5120/1.46 1.005E-01 3559/1.08 

‖ x ‖ 1 − ‖ x s ‖ 1 (FBS) 1.368E-05 126/0.04 3.059E-06 65/0.03 6.190E-02 195/0.06 4.264E-02 108/0.05 

Fig. 5. Recovery performance of DCA-ADMM and FBS for solving the s -difference 

regularization problem with different parameter s : (a) Gaussian matrix, (b) partial 

DCT matrix. 
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the parameter s when we don’t know the prior sparsity range:

set s [ k +1] = size ( f ind( | x [ k ] | ≥ min { | x [ k −1] 

πx ( s [ k −1] ) 
| , ε } ) ) , where constant

ε > 0 is given. Some experiments show that this adjustment strat-

egy can often find the approximate true sparsity level s truth , which

means that it maybe can be used to estimate the sparsity of the

unknown signal. 

7. Conclusion 

In this paper, we propose a new s -difference type penalty func-

tion for the sparse optimization problem, which is the difference

of the normal convex or non-convex penalty function and its cor-

responding s -truncated function. To approximately solve this non-

convex regularization problem, we use the FBS method based on

the proximal operator, which has some cheap closed-form solu-

tions for commonly used R ( x ), such as � 1 , � 2 , � 1 −2 and so on.
he convergence and effectiveness of the proposed algorithm are

roved and demonstrated by the theoretical proof and numerical

xperiments, respectively. In addition, we have observed that the

CA with s -difference regularization gives better recovery results

han the FBS using close-form solutions when the parameter s is

ess than the true sparsity, which motivates us to find an adap-

ive strategy for the penalty and sparsity parameters in the future.

eanwhile, how to choose the appropriate s -difference P ( x ) among

hese different regularization functions for specific application sce-

arios is also the unsolved problem that we need to consider. 
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ppendix A. Proof of Proposition 1 

To prove the Proposition 1 , we use the following Lemma: 

emma 1. If R : R 

N → R is convex, then for any s ∈ {1, 2, … , N },

 ( x s ) is also convex. 

roof. let v = diag{ v 1 , v 2 , . . . , v N } , since R ( x ) is convex, then R ( vx )

s convex. Then the R ( x s ) can be written as a pointwise maximum

f convex functions: 

 ( x 

s ) = max 
v 

{ R ( vx ) : v i ∈ { 0 , 1 } , ‖ v ‖ 1 = s } (A.1)

hen we have that R ( x s ) is convex. 

(1) For the convex and separable functions R (x ) = ‖ x ‖ p p (p ≥ 1) ,

uch as ‖ x ‖ 1 and ‖ x ‖ 2 2 , and the convex and non-separable func-

ions R (x ) = ‖ x ‖ p , (p > 1) , such as R (x ) = ‖ x ‖ 2 , it is obviously

hat they satisfy Property 1 (a) and (b). Then by using Lemma 1 ,

t completes the Property 1 (c) by setting P 1 (x ) = R (x ) and P 2 (x ) =
 (x s ) . 

(2) For the non-convex and separable functions R (x ) =
 N 
i =1 r i ( x i ) , where r i ( x i ) are equations (A .2) , (A .3) and (A .4) corre-

ponding to LSP, MCP and SCAD, respectively. 

 i ( x i ) = log ( 1 + | x i | /θ ) , θ > 0 (A.2)

 i ( x i ) = 

{
| x i | − x 2 

i 
/ ( 2 θ ) , | x i | ≤ θ

θ/ 2 , | x i | > θ
, θ > 0 (A.3)

https://doi.org/10.13039/501100001809
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 i ( x i ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

| x i | , | x i | < 1 

2 θ | x i | −x 2 
i 
−1 

2 ( θ−1 ) 
, 1 ≤ | x i | < θ

( θ + 1 ) / 2 , | x i | ≥ θ

, θ > 2 (A.4) 

Property 1 (a) and (b) are obvious. Then we need to give the DC

ormulations for P ( x ). Take the LSP as an example, we have that 

 

x s ‖ 1 
θ

− R ( x 

s ) 

= max 
v 

{
N ∑ 

i =1 

| v i x i | 
θ

− log 
(
1 + 

| v i x i | 
θ

)
: v i ∈ { 0 , 1 } , ‖ 

v ‖ 1 = s 

}
(A.5) 

hich means that ‖ x s ‖ 1 /θ − R ( x s ) is convex as | v i x i | /θ − log (1 +
 v i x i | /θ ) is convex. Then we can rewrite P ( x ) as 

 ( x ) = R ( x ) − R ( x 

s ) 

= { ‖ 

x ‖ 1 /θ + ( ‖ 

x 

s ‖ 1 /θ − R ( x 

s ) ) } ︸ ︷︷ ︸ 
P 1 ( x ) 

−{ ‖ 

x 

s ‖ 1 /θ + ( ‖ 

x ‖ 1 /θ − R ( x ) ) } ︸ ︷︷ ︸ 
P 2 ( x ) 

(A.6) 

here P 1 ( x ) and P 2 ( x ) are two convex functions. For MCP and

CAD, we can obtain similar formulations in the same way. 

(3) For the non-convex and non-separable functions, when

 (x ) = ‖ x ‖ 1 − a ‖ x ‖ 2 , 0 < a ≤ 1 , we have R (x ) = R (−x ) . When

 x ‖ 0 ≤ s , it is easy to see that P (x ) = 0 . When P (x ) = 0 ,

e have ‖ x ‖ 0 ≤ s ; otherwise ‖ x ‖ 0 > s , then ‖ x ‖ 2 
2 

≤ ‖ x s ‖ 2 
2 

+
( ‖ x ‖ 1 − ‖ x s ‖ 1 ) 2 < (‖ x s ‖ 

2 
+ ‖ x ‖ 1 − ‖ x s ‖ 1 ) 2 , then we have ‖ x ‖ 2 −

 x s ‖ 2 < ‖ x ‖ 1 − ‖ x s ‖ 1 , which means that P (x ) = R (x ) − R ( x s ) =
 x ‖ 1 − ‖ x s ‖ 1 − a ( ‖ x ‖ 2 − ‖ x s ‖ 2 ) > 0 , and this is contradiction to

 (x ) = 0 . Meanwhile, P ( x ) can be formulated as 

 ( x ) = R ( x ) − R ( x 

s ) 

= { ‖ 

x ‖ 1 + a ‖ 

x 

s ‖ 2 } ︸ ︷︷ ︸ 
P 1 ( x ) 

−{ ‖ 

x 

s ‖ 1 + a ‖ 

x ‖ 2 } ︸ ︷︷ ︸ 
P 2 ( x ) 

(A.7) 

hen R ( x ) is the non-separable LSP denoted as R (x ) = log (1 +
 x ‖ 2 /θ ) , θ > 0 , Property 1 (a) and (b) are obvious. Note that

 x s ‖ 2 /θ − R ( x s ) can be thought as a composition function h ◦g ,

here h (x ) = | x | /θ − log (1 + | x | /θ ) and g(x ) = ‖ x s ‖ 2 , by using

he above deduction, we have that ‖ x s ‖ 2 /θ − R ( x s ) is convex.

hen P ( x ) can be rewritten as 

 ( x ) = R ( x ) − R ( x 

s ) 

= { ‖ 

x ‖ 2 /θ + ( ‖ 

x 

s ‖ 2 /θ − R ( x 

s ) ) } ︸ ︷︷ ︸ 
P 1 ( x ) 

−{ ‖ 

x 

s ‖ 2 /θ + ( ‖ 

x ‖ 2 /θ − R ( x ) ) } ︸ ︷︷ ︸ 
P 2 ( x ) 

(A.8) 

or the non-separable type MCP and SCAD, we can obtain similar

ormulations in the same way. �

ppendix B. Proof of Theorem 1 

roof. This theorem can be proved in a similar manner to Theo-

em 17.1 in [71] . Let ˆ x be an optimal solution of (3) , that is, (
ˆ x 

)
≤ φ( x ) for all x with ‖ 

x ‖ 0 ≤ s (A.9) 

ince x t minimizes (8) at ρ = ρt , we have that 

( x t ) + ρt P ( x t ) ≤ φ
(

ˆ x 

)
+ ρt P 

(
ˆ x 

)
= φ
(

ˆ x 

)
(A.10)

y rearranging this expression, we have 

 ( x t ) − R ( x 

s 
t ) ≤

1 

ρt 

(
φ
(

ˆ x 

)
− φ( x t ) 

)
(A.11) 
uppose that x̄ is a limit point of { x t }, then there exits an infi-

ite subsequence T such that lim t∈T x t = x̄ . By taking the limit as

 → ∞ , t ∈ T , on both side of (A.11) 

 ≤ R ( ̄x ) − R ( ̄x 

s ) ≤ lim 

t∈T 
1 

ρt 

(
φ
(

ˆ x 

)
− φ( x t ) 

)
= 0 (A.12)

herefore, we have that R ( ̄x ) − R ( ̄x s ) = 0 , which means that x̄ is

easible to (3). Moreover, by taking the limit as t → ∞ for t ∈ T on

A.10) , we have that 

( ̄x ) ≤ φ( ̄x ) + lim 

t∈T 
ρt P ( x t ) ≤ φ

(
ˆ x 

)
(A.13) 

ince x̄ is feasible to (3) and ˆ x is an optimal solution of (3) , then x̄

s also optimal to (3) . �

ppendix C. Proof of Proposition 2 

roof. For simplicity, we use x̄ instead of x̄ ρ for an optimal solu-

ion of (8) with some ρ . First, we proof that ‖ ̄x ‖ 0 ≤ s . If ‖ ̄x ‖ 0 > s,

hich means that ‖ ̄x (s +1) − x̄ s ‖ 2 > 0 . We construct a vector ˜ x as

˜  = x̄ + ̄x s − x̄ (s +1) , easily we have that ˜ x s = x̄ s . When ρ > β/ η, we

ave 

 ( ̄x ) − F ( ̃  x ) = φ( ̄x ) + ρ( R ( ̄x ) − R ( ̄x 

s ) ) − φ( ̃  x ) − ρ( R ( ̃  x ) − R ( ̃  x 

s ) ) 

= φ( ̄x ) − φ( ̃  x ) + ρ( R ( ̄x ) − R ( ̃  x ) ) 

≥ −β‖ ̄

x − ˜ x ‖ 2 + ρη‖ ̄

x − ˜ x ‖ 2 

= ( ρη − β) 
∥∥x̄ 

(s +1) − x̄ 

s 
∥∥

2 
> 0 

(A.14) 

his contradicts the optimality of x̄ . Then we have that ‖ ̄x ‖ 0 satis-

es the s -sparse constraint of (3) . Let ˆ x be an optimal solution of

3) , then we have 

( ̄x ) − φ
(

ˆ x 

)
= F ( ̄x ) − ρP ( ̄x ) − F 

(
ˆ x 

)
+ ρP 

(
ˆ x 

)
= F ( ̄x ) − F 

(
ˆ x 

)
≤ 0 

(A.15) 

he inequality comes from that x̄ is the optimal solution of (8) .

his means that x̄ is also optimal to (3) . �

ppendix D. Proof of Proposition 3 

roof. Similar to the previous proof of Proposition 2 , we use x̄ in-

tead of x̄ ρ for an optimal solution of (8) with some ρ . Assume by

ontradiction that ‖ ̄x ‖ 0 > s, which means that ‖ x s +1 − x s ‖ 2 > 0 . By

onstructing ˜ x = x̄ + ̄x s − x̄ (s +1) , we have 

 ( ̄x ) − F ( ̃  x ) = φ( ̄x ) + ρ( R ( ̄x ) − R ( ̄x 

s ) ) − φ( ̃  x ) − ρ( R ( ̃  x ) − R ( ̃  x 

s ) ) 

= φ( ̄x ) − φ( ̃  x ) + ρ( R ( ̄x ) − R ( ̃  x ) ) 

≥
〈∇φ( ̄x ) , ̄x 

(s +1) − x̄ 

s 
〉
− L 

2 

∥∥x̄ 

(s +1) − x̄ 

s 
∥∥2 

2 

+ ρη
∥∥x̄ 

(s +1) − x̄ 

s 
∥∥

2 

≥
∥∥x̄ 

(s +1) − x̄ 

s 
∥∥

2 

(
ρη − ‖ 

∇φ( ̄x ) ‖ 2 − LC 
2 
√ 

s +1 

)
≥
∥∥x̄ 

(s +1) − x̄ 

s 
∥∥

2 

(
ρη − ‖ 

∇φ( 0 ) ‖ 2 −
(

1 + 

1 
2 
√ 

s +1 

)
LC 

)
> 0 

(A.16) 

he first inequality uses Assumption 1 that 

( y ) ≤ φ( x ) + 〈 ∇φ( x ) , y − x 〉 + 

L 

2 

‖ 

y − x ‖ 

2 
2 , ∀ x , y ∈ R 

N (A.17)

he third inequality follows from that 

 

∇φ( ̄x ) ‖ 2 ≤ ‖ 

∇φ( 0 ) ‖ 2 + ‖ 

∇ φ( ̄x ) − ∇ φ( 0 ) ‖ 2 

≤ ‖ 

∇φ( 0 ) ‖ 2 + LC 
(A.18) 
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(A.16) contradicts the optimality of x̄ , then we have that ‖ ̄x ‖ 0 
satisfies the s -sparse constraint of (3) . Then we can prove

that x̄ is also optimal to (3) similar as the previous proof of

Proposition 2 . �

Appendix E. Proof of Proposition 6 

Proof. Suppose that x ∗ is the optimal solution of (12) . First, we

prove that if |y i | > |y j |.we have | x ∗
i 
| ≥ | x ∗

j 
| ; otherwise | x ∗

i 
| < | x ∗

j 
| ,

then we construct ˜ x ∈ R 

N as ˜ x ∗
i 

= sign ( y i ) | x ∗j | and ˜ x ∗
j 
= sign ( y j ) | x ∗i | .

Whether i, j ∈ �s 
y or i, j / ∈ �s 

y or i ∈ �s 
y , j / ∈ �s 

y , we always have that

R ( ̃ x ) = R ( x ∗) and R ( ̃ x s ) = R ( x ∗s ) . As ‖ ̃ x − y ‖ 2 
2 

< ‖ x ∗ − y ‖ 2 
2 
, then we

can obtain E( ̃ x ) < E( x ∗) . However, this contradicts the optimality

of x ∗. 

Next, we prove that | x ∗
πy (s +1) 

| ≤ | y πy (s ) | . To prove this, we

need to prove that | x ∗
πy ( j) 

| ≤ | y πy (s ) | for all j ∈ { s + 1 , s + 2 , . . . , N} .
We can do this one by one, i.e., we look at x ∗

πy (N) 
first. Eas-

ily, we have | x ∗
πy (N) 

| ≤ | y πy (s ) | ; otherwise we construct ˜ x πy (N) =
sign ( y πy (N) ) | y πy (s ) | , as r i is strictly increasing on R + and sym-

metrical, thus we have the contradiction E( ̃ x ) < E( x ∗) , then we

have | x ∗
πy (N) 

| ≤ | y πy (s ) | . By using this deduction, we can prove that

| x ∗
πy (N−1) 

| ≤ | y πy (s ) | in a similar way. At last, we have | x ∗
πy (s +1) 

| ≤
| y πy (s ) | . 

Rewrite E ( x ) as 

E ( x ) = 

s ∑ 

j=1 

1 
2 λ

(
x πy ( j ) − y πy ( j ) 

)2 

+ 

N ∑ 

j= s +1 

(
1 

2 λ

(
x πy ( j ) − y πy ( j ) 

)2 + r πy ( j ) 

(
x πy ( j ) 

)) (A.19)

As | x ∗
πy (s +1) 

| ≤ | y πy (s ) | , we have that x ∗
πy ( j) 

= y πy ( j) , j =
1 , 2 , . . . , s and x ∗

πy ( j) 
= pro x λr πy ( j) 

( y πy ( j) ) , j = s + 1 , s + 2 , . . . , N.

Moreover, if each r i is convex, we have that x ∗
πy ( j) 

=
(1 + λ∂ r πy ( j) ) 

−1 ( y πy ( j) ) for j = s + 1 , s + 2 , . . . , N. This completes

the proof. �

Appendix F. Proof of Proposition 7 

Proof. First, we show that when R (x ) = ‖ x ‖ 2 , we also have if

|y i | > |y j |. We have | x ∗
i 
| ≥ | x ∗

j 
| . Otherwise, we can always construct

a ˜ x ∈ R 

N , which swaps the absolute value of x ∗
i 

and x ∗
j 

as the same

way in the proof of Proposition 6 , then we can obtain a smaller

objective value. As proved in Proposition 4 , x ∗ = 0 if and only if

y = 0 . Then, we only need to consider the case y � = 0 . 

(1) If | y πy (s ) | � = | y πy (s +1) | , then we have 

{ πx ( 1 ) , πx ( 2 ) , . . . , πx ( s ) } = { πy ( 1 ) , πy ( 2 ) , . . . , πy ( s ) } 
(A.20)

Easily, we have that if y πy (s +1) = 0 , then x ∗ = y and E( x ∗) =
0 . 

When y πy (s +1) � = 0 , the first-order optimality condition of

minimizing E ( x ) is that ⎧ ⎨ 

⎩ 

(
1 + 

λ
‖ x ‖ 2 −

λ
‖ x s ‖ 2 

)
x i = y i , i ∈ �s 

y (
1 + 

λ
‖ x ‖ 2 

)
x i = y i , i ∈ �N 

y \ �s 
y 

(A.21)

By using Proposition 5 , we have that 1 + 

λ
‖ x ‖ 2 −

λ
‖ x s ‖ 2 ≥ 0 in

(A.21) . Using (A.21) , we have { 

(
1 + 

λ
‖ x ‖ 2 

)
‖ 

x 

s ‖ 2 = ‖ 

y s ‖ 2 + λ

‖ 

x ‖ 2 = 

λ‖ x −x s ‖ 2 ‖ y −y s ‖ −‖ x −x s ‖ 
(A.22)
2 2 
Substitute one equation of (A.22) into another, we have 

‖ 

x 

s ‖ 2 = 

‖ 

y s ‖ 2 + λ

‖ 

y − y s ‖ 2 

‖ 

x − x 

s ‖ 2 (A.23)

By using the equation ‖ x ‖ 2 = 

√ ‖ x s ‖ 2 
2 

+ ‖ x − x s ‖ 2 
2 
, we have 

‖ 

x ‖ 2 = 

√ 

‖ 

y − y s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 + λ) 
2 − λ (A.24)

‖ 

x 

s ‖ 2 = ( ‖ 

y s ‖ 2 + λ) 

√ 

‖ 

y − y s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 + λ) 
2 − λ√ 

‖ 

y − y s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 + λ) 
2 

(A.25)

‖ 

x − x 

s ‖ 2 = ‖ 

y − y s ‖ 2 

√ 

‖ 

y − y s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 + λ) 
2 − λ√ 

‖ 

y − y s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 + λ) 
2 

(A.26)

Substitute these into (A.21) , then we have 

x ∗i = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

( ‖ y s ‖ 2 + λ) 

(√ 

‖ y −y s ‖ 2 2 + ( ‖ y s ‖ 2 + λ) 
2 −λ

)
‖ y s ‖ 2 

√ 

‖ y −y s ‖ 2 2 + ( ‖ y s ‖ 2 + λ) 
2 

y i , i ∈ �s 
y √ 

‖ y −y s ‖ 2 2 + ( ‖ y s ‖ 2 + λ) 
2 −λ√ 

‖ y −y s ‖ 2 2 + ( ‖ y s ‖ 2 + λ) 
2 

y i , i ∈ �N 
y \ �s 

y 

(A.27)

(2) If | y πy (s ) | = | y πy (s +1) | , then we have a similar conclusion as

Remark 6 . 

From the above deduction, we have the expression of x ∗ in

(21) and (22) when R (x ) = ‖ x ‖ 2 . This completes the proof. 

�

ppendix G. Proof of Proposition 8 

roof. Similar to the previous proof of Proposition 6 , we have that

 

x ∗i | ≥
∣∣x ∗j ∣∣ if | y i | > 

∣∣y j ∣∣ (A.28)

As proved in Proposition 4 , x ∗ = 0 if and only if y = 0 . Then,

e just consider the condition of y � = 0 . Firstly, we suppose

hat | y πy (s ) | � = | y πy (s +1) | , then we have { πx (1) , πx (2) , . . . , πx (s ) } =
 πy (1) , πy (2) , . . . , πy (s ) } . 

The first-order optimality condition of minimizing E ( x ) is that 

1 − aλ

‖ 

x ‖ 2 

+ 

aλ

‖ 

x 

s ‖ 2 

)
x i = y i , i ∈ �s 

y (A.29)

1 − aλ

‖ 

x ‖ 2 

)
x i = y i − λq i , i ∈ �N 

y \ �s 
y (A.30)

here q ∈ ∂ ‖ x − x s ‖ 1 is a subgradient. 

(1) First case, when | y πy (s +1) | > λ. Easily we have 1 − aλ
‖ x ∗‖ 2 >

 by using Proposition 5 : x ∗
i 
{ ≥ 0 , if y i > 0 

≤ 0 , if y i < 0 
. . When y πy (s +1) > λ,

hen y πy (s +1) − λq > 0 , so we have 1 − aλ
‖ x ∗‖ 2 > 0 ; when y πy (s +1) <

λ, then y πy (s +1) − λq < 0 , and we also have 1 − aλ
‖ x ∗‖ 2 > 0 . 

For i ∈ �N 
y \ �s 

y , if | y i | ≤λ, then x ∗
i 

= 0 . Otherwise, for this i , if

 < y i ≤λ, then x ∗
i 

> 0 based on Proposition 5 . As 1 − aλ
‖ x ∗‖ 2 > 0 ,

he left-hand side (LHS) of (A.30) is positive, while the right-hand

ide (RHS) of (A.30) nonpositive; if −λ ≤ y i < 0 , then x ∗
i 

< 0 based
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n Proposition 5 . The LHS of (A.30) is negative, while the RHS of

A.30) is nonnegative; if y i = 0 , we have x ∗
i 

= 0 based on (A.28) . 

For i ∈ �N 
y \ �s 

y , if any | y i | > λ, then we have x ∗
i 

� = 0 based on

A.30) . For this i , we construct a vector z ∈ R 

N as 

 i = 

{
shrink ( y i , λ) , i ∈ �N 

y \ �s 
y 

y πy ( 1 ) , i ∈ �s 
y 

(A.31) 

For i ∈ �N 
y \ �s 

y , we have (1 − aλ
‖ x ‖ 2 ) x i = z i , then we can obtain 

1 − aλ

‖ 

x ‖ 2 

)
‖ 

x − x 

s ‖ 2 = ‖ 

z − z s ‖ 2 (A.32) 

or i ∈ �s 
y , we have 

1 − aλ

‖ 

x ‖ 2 

+ 

aλ

‖ 

x 

s ‖ 2 

)
‖ 

x 

s ‖ 2 = ‖ 

y s ‖ 2 (A.33) 

Substitute (A.32) into (A.33) , we have 

 

x 

s ‖ 2 = 

‖ 

y s ‖ 2 − aλ

‖ 

z − z s ‖ 2 

‖ 

x − x 

s ‖ 2 (A.34) 

y using the equation ‖ x ‖ 2 = 

√ ‖ x s ‖ 2 
2 

+ ‖ x − x s ‖ 2 
2 
, we have 

 

x − x 

s ‖ 2 = ‖ 

z − z s ‖ 2 + 

aλ‖ 

z − z s ‖ 2 √ 

‖ 

z − z s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 − aλ) 
2 

(A.35) 

 

x 

s ‖ 2 = ( ‖ 

y s ‖ 2 − aλ) 

⎛ 

⎝ 1 + 

aλ√ 

‖ 

z − z s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 − aλ) 
2 

⎞ 

⎠ 

(A.36) 

 

x ‖ 2 = ‖ 

z − z s ‖ 2 

√ 

1 + 

( ‖ 

y s ‖ 2 − aλ) 
2 

‖ 

z − z s ‖ 

2 
2 

+ aλ (A.37) 

ubstitute these into (A.29) and (A.30) , then we have: for i ∈ �s 
y , 

 

∗
i = 

‖ 

y s ‖ 2 − aλ

‖ 

y s ‖ 2 

⎛ 

⎝ 1 + 

aλ√ 

‖ 

z − z s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 − aλ) 
2 

⎞ 

⎠ y i (A.38) 

or i ∈ �N 
y \ �s 

y , 

 

∗
i = 

⎛ 

⎝ 1 + 

aλ√ 

‖ 

z − z s ‖ 

2 
2 + ( ‖ 

y s ‖ 2 − aλ) 
2 

⎞ 

⎠ z i (A.39) 

(2) Second case, if | y πy (s +1) | = λ, for i ∈ �N 
y \ �s 

y , suppose that

here are k components of y i having the same amplitude of λ, i.e.,

 y πy (s +1) | = · · · = | y πy (s + k ) | = λ > | y πy (s + k +1) | . 
For i ∈ { πy (s + k + 1) , πy (s + k + 2) , . . . , πy (N) } , we have x ∗

i 
=

 . Otherwise, for this i , if 0 < y i < λ, then x ∗
i 

> 0 based on

roposition 5 . Easily, we have y i − λq i < 0 and 1 − aλ
‖ x ∗‖ 2 < 0 from

A.30) . Meanwhile, as | y πy (s +1) | = λ, we have | x ∗
πy (s +1) 

| ≥ | x ∗
i 
| > 0 ,

hen y πy (s +1) − λq πy (s +1) = 0 , and this contradicts to the equation

(1 − aλ
‖ x ∗‖ 2 ) x 

∗
πy (s +1) 

= y πy (s +1) − λq πy (s +1) in (A.30) . If −λ < y i < 0 ,

hen x ∗
i 

< 0 based on Proposition 5 , we have y i − λq i > 0 and 1 −
aλ

‖ x ∗‖ 2 < 0 from (A.30) . However, as y πy (s +1) − λq πy (s +1) = 0 , this

lso contradicts to the equation (1 − aλ
‖ x ∗‖ 2 ) x 

∗
πy (s +1) 

= y πy (s +1) −
q πy (s +1) . If y i = 0 , we have x ∗

i 
= 0 based on (A.28) . Then we ob-

ain that x ∗
i 

= 0 for i ∈ { πy (s + k + 1) , πy (s + k + 2) , . . . , πy (N) } . 
For i ∈ { πy (s + 1) , πy (s + 2) , . . . , πy (s + k ) } , if there exits x ∗

i 
� = 0 ,

or this i we have y i − λq i = 0 , then we obtain 1 − aλ
‖ x ∗‖ = 0 and
2 
 x ∗‖ 2 = aλ. Substitute this into (A.29) , we have ‖ y s ‖ 2 = aλ. As

 y πy (s +1) | = λ, then we have that there exits x ∗
i 

� = 0 if and only

f the conditions of a = 1 , s = 1 , | y πy (1) | = λ and ‖ x ∗‖ 2 = λ are

ll satisfied. In this case, there are infinite many solutions, and

ll these x ∗ should satisfy ‖ x ∗‖ 2 = λ, x ∗
i 
y i ≥ 0 and x ∗

i 
= 0 when

 ∈ { πy (k + 2) , πy (k + 3) , . . . , πy (N) } . For example, 

 

∗
i = 

{
sign 

(
y πy ( 1 ) 

)
λ, i = πy ( 1 ) 

0 , i ∈ { πy ( 2 ) , πy ( 3 ) , . . . , πy ( N ) } (A.40) 

r 

 

∗
i = 

{ 

sign ( y πy ( i ) ) λ
( k +1 ) 

, i ∈ { πy ( 1 ) , πy ( 2 ) , . . . , πy ( k + 1 ) } 
0 , i ∈ { πy ( k + 2 ) , πy ( k + 3 ) , . . . , πy ( N ) } 

(A.41) 

When any of these conditions of a = 1 , s = 1 , | y πy (1) | = λ
annot be satisfied, we have x ∗

i 
= 0 for i ∈ { πy (s + 1) , πy (s +

) , . . . , πy (s + k ) } . Then we have x ∗ = x ∗s . Substitute this into

A.29) , we have x ∗
i 

= y i for i ∈ �s 
y . Then the solution x ∗ can be ex-

ressed as 

 

∗
i = 

{
y i , i ∈ �s 

y 

0 , i ∈ �N 
y \ �s 

y 

(A.42) 

(3) Third case, if 0 < | y πy (s +1) | < λ, for i ∈ �N 
y \ �s 

y , suppose that

here are k components of y i having the same amplitude with

 πy (s +1) , i.e., | y πy (s +1) | = · · · = | y πy (s + k ) | > | y πy (s + k +1) | . 
For i ∈ { πy (s + k + 1) , πy (s + k + 2) , . . . , πy (N) } , we have x ∗

i 
=

 . Otherwise, for this i , as | y πy (s +1) | > | y i | , we have | x ∗
πy (s +1) 

| ≥
 x ∗

i 
| > 0 based on (A.28). Then we obtain 1 − aλ

‖ x ∗‖ 2 < 0 from

A.30), and we have (1 − aλ
‖ x ∗‖ 2 ) | x ∗πy (s +1) 

| ≤ (1 − aλ
‖ x ∗‖ 2 ) | x ∗i | , which

eans that | y πy (s +1) − λq πy (s +1) | ≥ | y i − λq i | through (A.30). Since

 x ∗
πy (s +1) 

| ≥ | x ∗
i 
| � = 0 , then we can obtain q πy (s +1) = sign ( y πy (s +1) )

ased on Proposition 5 . If y i � = 0, then we have q i = sign ( y i )

nd obtain | sign ( y πy (s +1) ) | · || y πy (s +1) | − λ| ≥ | sign ( y i ) | · || y i | − λ| ,
hich means that λ − | y πy (s +1) | ≥ λ − | y i | . However, this contra-

icts | y πy (s +1) | > | y i | . If y i = 0 , we have | y πy (s +1) − λq πy (s +1) | ≥
, then we can obtain || y πy (s +1) | − λ| ≥ λ, which contradicts

 < | y πy (s +1) | < λ. Then, we obtain that x ∗
i 

= 0 for i ∈ { πy (s + k +
) , πy (s + k + 2) , . . . , πy (N) } . 

For i ∈ { πy (s + 1) , πy (s + 2) , . . . , πy (s + k ) } , if there exits x ∗
i 

� = 0 ,

hen we have 1 − aλ
‖ x ∗‖ 2 < 0 as the signs of y i − λq i and x ∗

i 
are op-

osite. For i ∈ �s 
y , from (A.29), we have 

 

x 

∗s ‖ 2 = ( ‖ 

y s ‖ 2 − aλ) 

(
1 − aλ

‖ 

x 

∗‖ 2 

)
(A.43) 

f ‖ y s ‖ 2 ≥ a λ, we have ‖ x ∗s ‖ 2 ≤ 0, which contradicts x ∗
i 

� = 0 . So,

hen ‖ y s ‖ 2 ≥ a λ, we have x ∗
i 

= 0 , and then the solution x ∗ is 

 

∗
i = 

{
y i , i ∈ �s 

y 

0 , i ∈ �N 
y \ �s 

y 

(A.44) 

f ‖ y s ‖ 2 < a λ, for i ∈ { πy (s + 1) , πy (s + 2) , . . . , πy (s + k ) } , suppose

here are c components of x ∗
i 

� = 0 and c ≤ k . From (A.30), we

ave ‖ x ∗ − x ∗s ‖ 2 = 

√ 

c (| y π(s +1) | − λ) / (1 − aλ
‖ x ∗‖ 2 ) . Substitute this

nto ‖ x ∗s ‖ 2 = ( ‖ y s ‖ 2 − aλ) / (1 − aλ
‖ x ‖ 2 ) from (A.29), we have 

 

x 

∗‖ 2 = aλ −
√ 

( ‖ 

y s ‖ 2 − aλ) 
2 + c 

(∣∣y π( s +1 ) 

∣∣− λ
)2 

(A.45) 
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1 
Reconsidering the expression of E ( x ), and using the first-order op-

timality condition, we have 

E ( x 

∗) = 

‖ x ∗‖ 2 2 + ‖ y ‖ 2 2 

2 λ
−
〈
x 

∗, y 
λ

〉
+ ‖ 

x 

∗‖ 1 − a ‖ 

x 

∗‖ 2 − ‖ 

x 

∗s ‖ 1 + a ‖ 

x 

∗s ‖ 2 

= 

‖ x ∗‖ 2 2 + ‖ y ‖ 2 2 

2 λ
−
〈 
x 

∗s , 

(
1 
λ

− a 
‖ x ∗‖ 2 + 

a 
‖ x ∗s ‖ 2 

)
x 

∗s 
〉 

−
〈 
x 

∗ − x 

∗s , q + 

(
1 
λ

− a 
‖ x ∗‖ 2 

)(
x 

∗ − x 

∗s 
)〉 

+ ‖ 

x 

∗‖ 1 − a ‖ 

x 

∗‖ 2 − ‖ 

x 

∗s ‖ 1 + a ‖ 

x 

∗s ‖ 2 

= 

‖ x ∗‖ 2 2 + ‖ y ‖ 2 2 

2 λ
− ‖ x ∗s ‖ 2 2 

λ
+ 

a ‖ x ∗s ‖ 2 2 ‖ x ∗‖ 2 − a ‖ 

x 

∗s ‖ 2 

−‖ 

x 

∗ − x 

∗s ‖ 1 − ‖ x ∗−x ∗s ‖ 2 2 

λ
+ 

a ‖ x ∗−x ∗s ‖ 2 2 ‖ x ∗‖ 2 
+ ‖ 

x 

∗‖ 1 − a ‖ 

x 

∗‖ 2 − ‖ 

x 

∗s ‖ 1 + a ‖ 

x 

∗s ‖ 2 

= −‖ x ∗‖ 2 2 

2 λ
+ 

‖ y ‖ 2 2 

2 λ

(A.46)

Then we have E ( x ∗) < E ( 0 ), and we need to find the x ∗ with the

largest norm among all x ∗ that satisfying (A.29) and (A.30). From

this, we have that c should be zero to make the largest ‖ x ∗‖ in

(A.45). So, when ‖ y s ‖ 2 < a λ, we have the solution x ∗ the same as

(A.44). 

(4) Fourth case, if y π(s +1) = 0 , for i ∈ �N 
y \ �s 

y , we have x ∗
i 

= 0 .

Otherwise, we can construct a vector ˜ x ∈ R 

N , which is equal to x ∗

except setting these corresponding ˜ x 
i 

to be zero. Then we can ob-

tain a smaller objective value, which contradicts the optimality of

x ∗. For i ∈ �s 
y , we have x ∗

i 
= y i . Then the solution x ∗ can be ex-

pressed as (A.44). 

Once again, if there exits one or more components of y i , i / ∈ �s 
y 

having the same amplitude of y πy (s ) , then we have a similar con-

clusion as Remark 6 . This completes the proof. 

�

Appendix H. Proof of Proposition 9 

Proof. Let x [ k +1] be the optimal solution of (13) with y = x [ k ] −
β∇ φ( x [ k ] ) , then we have 

E 
(
x [ k +1] 

)
− E 
(
x [ k ] 
)

= 

‖ x [ k +1] −y ‖ 2 
2 

2 λ
+ R 
(
x [ k +1] 

)
− R 
(
x [ k +1] s 

)
−‖ x [ k ] −y ‖ 2 

2 

2 λ
− R 
(
x [ k ] 
)

+ R 
(
x [ k ] 

s )
= −‖ x [ k +1] −x [ k ] ‖ 2 

2 

2 λ
+ 

〈 x [ k +1] −x [ k ] , x [ k +1] −y 〉 
λ

+ R 
(
x [ k +1] 

)
− R 
(
x [ k +1] s 

)
− R 
(
x [ k ] 
)

+ R 
(
x [ k ] 

s )
= −‖ x [ k +1] −x [ k ] ‖ 2 

2 

2 λ
+ 

∑ 
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The third equation comes from Proposition 6 , and the last inequal-

ity is based on the property of subgradient. Then we have 

E 
(
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[ k +1] 
)

− E 
(
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[ k ] 
)

≤ min 

{ 

−
∥∥x 

[ k +1] − x 

[ k ] 
∥∥2 
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2 λ
+ �k , 0 

} 

(A.48)

where �k = 

∑ 

i ∈ �k +1 
r i ( x 

[ k ] 
i 

) −∑ 

i ∈ �k 
r i ( x 

[ k ] 
i 

) , �k +1 = �N 
x [ k +1] 

\ �s 
x [ k +1] 

,

and �k = �N 
x [ k ] 

\ �s 
x [ k ] 

. Substituting this into (26) , then we have (32) .
This completes the proof. �
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