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A B S T R A C T

Multimodal change detection (CD) is an increasingly interesting yet highly challenging subject in remote
sensing. To facilitate the comparison of multimodal images, some image regression methods transform one
image to the domain of the other image, allowing for images comparison in the same domain as in unimodal
CD. In this paper, we begin by analyzing the limitations of previous image structure based regression models
that only rely on similarity relationships. Then, we highlight the significance of incorporating dissimilarity
relationships as a complementary approach to more comprehensively characterize and utilize the image
structure. In light of this, we propose a novel method for multimodal CD called Similarity and Dissimilarity
induced Image Regression (SDIR). Specifically, SDIR construct a similarity based k-nearest neighbors (KNN)
graph and a dissimilarity based k-farthest neighbors (KFN) graph, where the former mainly characterizes
the low-frequency information and the latter captures the high-frequency information in spectral domain.
Therefore, the proposed SDIR that incorporates similarity (low-frequency) and dissimilarity (high-frequency)
relationships enables to achieve better regression performance. After completing the image regression, we
utilize a Markovian based fusion segmentation model to combine the change fusion and change extraction
processes for improving the final CD accuracy. The proposed method’s effectiveness is demonstrated through
experiments on six real datasets and compared with eleven advanced and widely used methods, achieving
5.6% improvements in the average Kappa coefficient. The source code is accessible at https://github.com/
yulisun/SDIR.
1. Introduction

1.1. Background

Remote sensing change detection (CD) is a technique used to extract
information about changes on the Earth’s surface by comparing multi-
ple images taken at the same geographical location, but at different
times (before and after an event). SINGH (1989). CD has been widely
utilized in various fields such as disaster rescue, urban planning and
environmental monitoring (Lv et al., 2021).

Based on the compared remote sensing images, CD can be classified
into two categories: unimodal CD and multimodal CD (Lv et al., 2022b).
Unimodal CD, also known as homogeneous CD, refers to the use of pre-
and post-event images obtained by sensors with the same type and iden-
tical sensor parameters. Unimodal CD has been extensively investigated
and is the main focus of prior CD research (Li et al., 2020). According
to the sensor type, unimodal CD can also be subdivided into CD of

∗ Corresponding author.
E-mail address: alaleilin@163.com (L. Lei).

multispectral (Wu et al., 2023; Chen et al., 2023a), hyperspectral (Liu
et al., 2022a) and synthetic aperture radar (SAR) images (Zhang et al.,
2022, 2021). Due to the rapid advancements in remote sensing tech-
nology and a more open access mechanism to remote sensing data,
a vast amount of data from different sensors with different imaging
mechanisms can be used by CD to detect changes (Ferraris et al., 2020),
forming the basis of multimodal CD, also known as heterogeneous
CD (Lv et al., 2022b).

Compared to traditional unimodal CD, multimodal CD offers two
distinct advantages (Sun et al., 2022b). Firstly, in the situations requir-
ing emergency response such as earthquakes, landslides, explosions,
etc., where unimodal images are unavailable because of the uncooper-
ative imaging conditions (e.g., light, weather) or satellite revisit cycle
limitations, multimodal CD can utilize any available pre- and post-event
images for rapidly acquiring change information (Sun et al., 2021a).
Secondly, in long-term dynamic monitoring processes, multimodal CD
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can incorporate images from various sources to enhance temporal res-
olution, especially being able to make full use of early remote sensing
data (such as images acquired from outdated sensors).

1.2. Related work

Unimodal CD compares two homogeneous images directly to extract
changes, whereas in multimodal CD, the representations of the same
object in pre- and post-event images are different. Thus, applying
mature paradigms developed for unimodal CD to accurately detect
changes from heterogeneous images in multimodal CD is not feasi-
ble (Touati, 2019; Volpi et al., 2015). Consequently, the first task of
multimodal CD is to construct a connection between the heterogeneous
images and then transform them into a common domain, making them
‘‘comparable’’ (Chen et al., 2023b). To achieve this goal, researchers
have proposed various approaches related to feature learning, data
transformation and domain adaptation (Deng et al., 2021). The existing
multimodal CD methods can be roughly categorized into five groups
based on the transformation method and common domain.

(1) Fusion based methods that usually use image fusion or feature
fusion to complement the modal discrepancies and establish compara-
bility between the them. Ferraris et al. propose a method where two
multimodal images are modeled as degraded versions of two latent
images with same spatial and spectral resolutions (Ferraris et al., 2018).
They transform the MCD task into a robust fusion task, assuming that
the differences between the latent images are spatially sparse (Ferraris
et al., 2017). Some other methods use the deep neural network (DNN)
to complete the fusion, such as the cross-resolution difference learning
method with coupled DNN (Zheng et al., 2022a), the deeply supervised
image fusion network (Zhang et al., 2020), and deep homogeneous
feature fusion method (Jiang et al., 2020). However, when considering
the multimodal differences and the presence of noise in remote sens-
ing images, particularly in SAR images with prominent speckle noise,
the resulting fused image in these methods may contain outliers or
anomalies. These outliers can potentially lead to false detections or
pseudo-changes in the detection results (Lv et al., 2022b).

(2) Classification comparison-based methods, including
post-classification comparison method (Camps-Valls et al., 2008), com-
pound classification with multitemporal segmentation method (Wan
et al., 2019), multidimensional evidential reasoning-based method (Liu
et al., 2014), and hierarchical extreme learning machine-based post-
classification method (Han et al., 2021), which transform the images
to the same category domain. This type of method has two advan-
tages: first, these methods are simple and intuitive, and existing image
classification methods can be used to obtain certain change detection
results; second, they can output a multivariate change map, which not
only identifies change regions but also the change category. However,
these methods also have certain limitations, including the following:
(1) change detection results may be limited by the image classification
algorithm; (2) there is a risk of error accumulation; (3) labeled samples
are required to train the classifier.

(3) Similarity measure based methods that usually assume some
connections between multimodal images regardless of the imaging
conditions, and use these connections to construct a imaging modality
invariant metric, such as Copula theory based local statistical met-
ric (Mercier et al., 2008), manifold learning based similarity met-
ric (Prendes et al., 2015), sorted histogram based distance (Wan et al.,
2018), affinity matrix distance (Luppino et al., 2019), nonlocal patch
distance (Sun et al., 2021c), and pixel pairwise energy based mod-
els (Touati and Mignotte, 2018; Touati et al., 2020). These methods
have several advantages such as being intuitive, highly interpretable,
and mostly unsupervised. However, the performance of such methods
depends on two aspects: first, the reasonableness of the imaging modal-
ity invariant assumption, which requires that the assumptions used
can be applied to different multimodal CD scenarios with universal
71

applicability; second, the distinguishability of constructed similarity m
metrics, which requires that the changed and unchanged regions can
be well distinguished under these metrics.

(4) Feature leaning based methods that usually first transform two
multimodal images into a common feature space and then compare the
images in the transformed domain. This type of methods are mainly
deep leaning based methods that usually take the form of Siamese
or pseudo-Siamese networks (Zhang et al., 2016), such as symmetric
convolutional coupling network (Liu et al., 2018a), bipartite convo-
lutional neural network (Liu et al., 2022b), common feature learning
with commonality autoencoder (Wu et al., 2021), simple multiscale
UNet (Lv et al., 2022a), self-supervised leaning based method (Chen
and Bruzzone, 2022), structural relationship graph convolutional au-
toencoder (Chen et al., 2022). Deep feature comparison-based methods
offer the advantage of establishing connections between multimodal
images by using the powerful learning ability of neural networks,
without the need for manually constructed metrics, which makes these
methods adaptive and robust. However, these methods also often suffer
from two limitations. First, deep network training is a time-consuming
and computationally resource-intensive process. Second, their perfor-
mance is strongly influenced by the training samples. Furthermore, due
to the lack of large-scale datasets for multimodal CD, most of these
methods have to use the pre- and post-event images themselves to train
the deep network. This results in the need to retrain the network when
the task scene, sensor type, imaging conditions are different, leading to
weak transferability of the network.

(5) Image regression based methods aim to make multimodal im-
ages comparable by transforming one image to the domain of the
other image and then comparing images as in the unimodal CD,
such as homogeneous pixel transformation method (Liu et al., 2018b),
fractal projection method (Mignotte, 2020), image structure regres-
sion based methods (Sun et al., 2021b), deep translation network (Li
et al., 2021), deep homogeneous feature fusion method (Jiang et al.,
2020), conditional generative adversarial network (CGAN) (Niu et al.,
2019), and cycle-consistent adversarial network with K-means cluster-
ing and random forest classifier (Liu et al., 2022c). Compared to feature
comparison-based methods, the benefit of image regression methods is
that they could provide more visual information by obtaining regres-
sion image in addition to the difference image (DI) and the final change
map (CM), which helps to identify change categories. However, these
methods also often face two primary challenges: firstly, how to build
an appropriate regression function in traditional regression methods,
and secondly, how to train the regression network in deep regression
methods. Additionally, deep regression methods are also limited by
the availability of computational resources and time, as well as the
transferability of the networks, which is particularly problematic due
to the lack of large-scale datasets for multimodal CD.

1.3. Motivations

The objective of this study is to propose a traditional image re-
gression method for multimodal CD. Let 𝑋 and 𝑌 denote the pre- and
ost-event images that are co-registered, respectively. For the image
egression based multimodal CD methods, they need to build two
ransform functions (or named mapping functions) of 1 ∶ 𝑋 → 𝑌 ′ and

2 ∶ 𝑌 → 𝑋′, where 𝑋 and 𝑋′, 𝑌 and 𝑌 ′ have the similar statistical
haracteristics under the unchanged region, resulting in regression
mage 𝑋′ (or 𝑌 ′) and original image 𝑋 (or 𝑌 ) are in the same image
omain. Obviously, the key to the image regression based multimodal
D is the design of the mapping functions (1 and 2).

Recently, some regression methods based on image structure have
een proposed for the multimodal CD (Jia et al., 2022; Zheng et al.,
022b). In the work of Luppino et al. Luppino et al. (2019), the
eterogeneous images are divided into patches and two affinity ma-
rices are built to capture the local structure of patches from different
mages, and then the affinity matrices distance (AMD) are calculated to

easure the structure difference. AMD is further used to select training
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samples, i.e., regions that are more likely to be unchanged, to train
four different traditional image regression algorithms (Luppino et al.,
2019) or the deep image translation networks, such as the adversarial
cyclic encoder network (ACE-Net) (Luppino et al., 2022b) and the code-
aligned autoencoder network (CAAE) (Luppino et al., 2022a). Mignotte
has proposed a fractal projection and Markovian segmentation based
method (FPMS) (Mignotte, 2020) for multimodal CD by exploiting the
image self-similarity, which first fractally encodes the pre-event image
to obtain its structure information, and maps it to the other domain by
fractal projection, and then compares the mapped image and post-event
image to detect changes. We have also proposed some graph-based re-
gression methods for multimodal CD based on the structure consistency
between images. These methods first construct a graph for the pre-event
image to capture either local structure information (Sun et al., 2021b)
or a combination of global and local structural information (Sun et al.,
2022c), and then use the image decomposition model to translate the
pre-event image by decomposing the post-event image into a change
image and a regression image.

These structure-based regression methods have two advantages:
first, they exploit the widespread structural consistency of images, so
the methods are certain universal; second, they are image structure-
based rather than pixel-based regression methods, so they are to some
extent robust to image noise and imaging conditions. Despite their rela-
tively good performance in multimodal CD, the existing image structure
based regression methods still have two shortcomings as follows.

First, the structural information is not adequately expressed and
used, i.e., not fully utilizing the structural information of the image,
resulting in less accurate regression images and limited detection per-
formance. They all focus solely on discovering and utilizing similarity
relationships, while ignoring the dissimilarity relationship. For exam-
ple, in FPMS (Mignotte, 2020), the structure of pre-event image is
represented by the fractal encoding that identifies the most similar
blocks of the target block in image; in the sparse-constrained adaptive
structure consistency based method (SCASC) (Sun et al., 2021b) and the
change smoothness based signal decomposition method (CSSD) (Zheng
et al., 2022b), the structure of image is represent by the k-nearest
neighbors (KNN) graph that connects each superpixel with its 𝐾 most
imilar superpixels. Accordingly, they can only use this similarity re-
ationship to obtain the regression image. For example, FPMS requires
he regression image to be reconstructed by the fractal decoding, that is,
sing the blocks of post-event image from the same location to recreate
he target block of the regression image; SCASC and CSSD require the
imilarity relationships of superpixels within regression image match
hose within pre-event image, that is, the superpixels within regression
mage connected by the KNN graph built on pre-event image are also
ery similar. In summary, these methods assume that the similarity
elationship within regression image is identical to that of pre-event
mage, while ignoring dissimilarity relationships. In fact, the problem of
eglecting dissimilarity also exists in many structure-based multimodal
D methods, such as the structure comparison based method (Sun et al.,
021c), however, this paper focuses only on structure-based regression
ethods.

In the structure regression based methods, if the image structure is
ore adequately characterized, the regression model will obtain more

ccurate regression images, and the corresponding extracted CD results
ill be better. In this study, we start by analyzing the limitations of

egression models that rely solely on similarity relationships. Then, we
ighlight the significance of incorporating dissimilarity relationships
s a complementary approach to more comprehensively characterize
he image structure. Additionally, we analyze that the similarity rela-
ionships based KNN graph places similar superpixels closer to each
ther, so it mainly describes the attraction between the superpixels
ithin the image and captures the low-frequency components of the

mage structure. To leverage the dissimilarity relationship, we con-
truct a k-farthest neighbors (KFN) that connects dissimilar superpixels
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hat represent different kinds of objects, which mainly describes the
repulsion between the superpixels within the image and captures the
high-frequency components of the image structure. We then integrate
a high-frequency constraint based on the dissimilarity relationship into
the regression model, and propose an regression model that fuses both
similarity (low-frequency) and dissimilarity (high-frequency) relation-
ships. In this way, the regression model is able to fully utilize the
structural information of the image and impose constraints on both
similar and dissimilar superpixels, thereby obtaining better regression
results.

Second, the fusion of change information from different domains
is often overlooked. Intuitively, for the image regression based mul-
timodal CD methods, one can obtain two change images with two
transformation processes: (1) forward regression: 1 ∶ 𝑋 → 𝑌 ′ and
the corresponding forward change image calculated by comparing 𝑌
and 𝑌 ′; (2) backward regression: 2 ∶ 𝑌 → 𝑋′ and the corresponding
backward change image calculated by comparing 𝑋 and 𝑋′. However,
in the previous regression based methods, the fusion of change infor-
mation from different domains has not been given sufficient attention.
On the one hand, some regression based multimodal CD methods
only complete a single regression process and neglect the fusion. For
example, methods such as FPMS (Mignotte, 2020), CSSD (Zheng et al.,
2022b), and hypergraph based image regression method (HGIR) (Sun
et al., 2022c) only perform the forward regression that transforms
the pre-event image to the domain of post-event image, CGAN (Niu
et al., 2019) only translates the optical image to SAR image, while
the deep homogeneous feature fusion (DHFF) (Jiang et al., 2020)
and self-supervised image translation (SSIT) (Liu et al., 2022c) based
multimodal CD methods only translate the SAR image to optical image.
On the other hand, some methods directly fuse change information
(difference images) obtained from different domains with a linear
fusion approach, such as homogeneous pixel transformation based
method (HPT) (Liu et al., 2018b), nonlocal patch graphs based method
(NLPG) (Sun et al., 2021c), structural relationship graph convolutional
autoencoder (SRGCAE) (Chen et al., 2022), and CAAE (Luppino et al.,
2022a). However, such fusion strategies fail to fully utilize the change
information in the DI calculated by different regression processes in
different domains, resulting in limited gains in detection accuracy
brought by fusion.

In this paper, to leverage the change information from different
domains, we first perform forward regression and backward regression
simultaneously to obtain forward and backward DI, which allows for
capturing more change information compared to previous methods that
only utilize a single-directional regression. Subsequently, to fully inte-
grate the DI computed from different domains, we further use a Markov
random field (MRF) model to combine DI fusion and DI segmentation. It
can incorporate not only the spatial and change information of DI, but
also the pairwise similarity and dissimilarity relationships presented in
the original multitemporal images, which can avoid the loss of change
information caused by the previous direct linear fusion.

1.4. Contributions

The key contributions of this work are summarized below.
(1) We propose a similarity and dissimilarity induced image regres-

sion (SDIR) based multimodal CD method, which uses structure con-
sistency constraints by incorporating both similarity (low-frequency)
and dissimilarity (high-frequency) relationships of the image structure.
To the best of our knowledge, this is the first method to introduce
the dissimilarity relationships into CD method, which can overcome
the shortcomings of previous methods that rely solely on similarity
relationships.

(2) We construct two high-order graph models based on different
neighborhood expansion principles to fully characterize the image
structure, i.e., a similarity relationships based high-order KNN graph

and a dissimilarity relationships based high-order KFN graph.
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Table 1
Notations.

Symbol Description

𝐗̃, 𝐘̃ Pre- and post-even images
𝐗̃′, 𝐘̃′ Regression images of 𝐘̃, 𝐗̃
𝐗̃𝑖 𝑖-th superpixel of ̃𝐦𝐚𝐗
𝐗, 𝐘 Feature matrices of 𝐗̃, 𝐘̃
𝐗′, 𝐘′ Regression feature matrices of 𝐘, 𝐗
𝐗𝑖 𝑖-th feature vector of 𝐗̃
𝚫𝑥, 𝚫𝑦 Changed feature matrices
𝐺𝑡1

𝑛 , 𝐺𝑡1
ℎ−𝑛 KNN graph and high-order KNN graph

𝐺𝑡1
𝑓 , 𝐺𝑡1

ℎ−𝑓 KFN graph and high-order KFN graph
𝐋𝑡1, 𝐋𝑡2 Laplacian matrices of the high-order KNN graphs
𝐈𝑁 An 𝑁 ×𝑁 identity matrix

(3) We address the issue of fusing change information from dif-
erent domains in multimodal CD with an MRF based fusion segmen-
ation model, which not only incorporates spatial information and
imilarity/dissimilarity information, but also takes into account the
nbalanced change information.

The remainder of the paper is structured as follows. Section 2
nalyzes the limitations of similarity relationship based KNN graph in
he previous regression method. Section 3 describes the proposed SDIR
n detail. Section 4 shows the experiments and gives some discussions.
inally, Section 5 provides conclusions.

. Limitation of KNN graph in the structure based regression
ethod

In this section, we first give the problem formulation of multimodal
D, then briefly review some previous regression method based on

mage structure, and then analyze the limitations of these methods.

.1. Problem formulation

Given two co-registered images collected at times 𝑡1 (pre-event) and
2 (post-event) with different modalities, denoted as 𝐗̃ ∈ R𝑀×𝑁×𝐵𝑥 in 

domain and 𝐘̃ ∈ R𝑀×𝑁×𝐵𝑦 in  domain, respectively. The image pixels
of 𝐗̃ and 𝐘̃ are denoted as 𝑥̃

(

𝑚, 𝑛, 𝑏𝑥
)

and 𝑦̃
(

𝑚, 𝑛, 𝑏𝑦
)

, respectively.
ecause the pixel values of 𝑥̃ and 𝑦̃ cannot be directly compared,
he main purpose of multimodal CD is to enable the comparison of
ncomparable images to detect the changed areas represented by the
M.

We denote the feature matrices of pre-event and post-event images
s 𝐗 and 𝐘 respectively. In the decomposition based regression model,
e decompose the feature matrix 𝐘 into a regression feature matrix 𝐘′

nd a changed feature matrix ∆𝑦 as 𝐘 = 𝐘′−∆𝑦, thereby obtaining the
egression image 𝐘̃′ and the matrix ∆𝑦 containing change information,
efined as the forward regression process; it decomposes the feature
atrix 𝐗 into a regression feature matrix 𝐗′ and a changed feature
atrix ∆𝑥 as 𝐗 = 𝐗′ − ∆𝑥, thereby obtaining the regression image

̃ ′ and the matrix ∆𝑥 containing change information, defined as the
ackward regression process. For easy reference, Table 1 lists some
mportant notations.

.2. Structure consistency

In the previous image structure based regression methods, such as
CASC (Sun et al., 2021b), FPMS (Mignotte, 2020), and CSSD (Zheng
t al., 2022b), they transform 𝐗̃ to the domain  by using the structure

consistency between multimodal images, which relies on the intrinsic
self-similarity property of images. Suppose that images are divided into
𝑁𝑆 small parts (e.g., square patches or superpixels), denoted as 𝐗̃𝑖 and
𝐘̃𝑖, 𝑖 = 1,… , 𝑁𝑆 . The self-similarity property implies that for the pre-
event image, each small part 𝐗̃𝑖 can always find some similar parts

̃
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within the same image, denoted as 𝐗𝑗 . Then, if both the 𝑖th and 𝑗th
parts are unchanged during the event, then the corresponding parts of
𝐘̃𝑖 and 𝐘̃𝑗 in post-event image are also very similar (Sun et al., 2021b).

We use a statistical model to analyze the structure consistency
property between multimodal images, which draws on the statistical
model proposed in Prendes et al. (2015). In the multimodal CD, the pre-
and post-event images are often collected by different sensors, denoted
as 𝑆1 and 𝑆2, respectively. We have the following simple statistical
model
𝐗̃𝑖|𝑃

𝑡1
𝑖 = 𝑓𝑆1

[

𝑇𝑆1
(

𝑃 𝑡1
𝑖
)

, 𝑛𝑡1
]

,

𝐘̃𝑖|𝑃
𝑡2
𝑖 = 𝑓𝑆2

[

𝑇𝑆2
(

𝑃 𝑡2
𝑖
)

, 𝑛𝑡2
]

,
(1)

where

∙ 𝑃 𝑡1
𝑖 and 𝑃 𝑡2

𝑖 denote the ground objects represented by the 𝑖th parts
of the pre- and post-event images, respectively;

∙ 𝑇𝑆1
(

𝑃 𝑡1
𝑖
)

and 𝑇𝑆2
(

𝑃 𝑡2
𝑖
)

are the imaging functions that transforms
𝑃 𝑡1
𝑖 and 𝑃 𝑡2

𝑖 into pixel values by sensors 𝑆1 and 𝑆2 under ideal
noise-free conditions, respectively;

∙ 𝑛𝑡1 and 𝑛𝑡2 are the random variables that represents the various
noises, e.g., sensor noise, atmospheric noise;

∙ 𝑓𝑆1 [⋅, ⋅] and 𝑓𝑆2 [⋅, ⋅] are the noise influence functions that de-
scribe how the noise interact with the ideal sensor measurements
of 𝑆1 and 𝑆2, respectively.

For example, if the pre-event image is collected by the optical sen-
sor, then the additive Gaussian white noise model is commonly used,
i.e., 𝐗̃𝑖|𝑃 𝑡1

𝑖 = 𝑇𝑆1
(

𝑃 𝑡1
𝑖
)

+ 𝑛𝑡1, where 𝑛𝑡1 ∼ 
(

0, 𝜎2
)

with 𝜎2 denoting
the variance; while for the SAR image, the multiplicative speckle noise
model with gamma distribution is commonly used, i.e., 𝐗̃𝑖|𝑃 𝑡1

𝑖 =
𝑇𝑆1

(

𝑃 𝑡1
𝑖
)

𝑛𝑡1, where 𝑛𝑡1 ∼ 𝛤
(

𝐿,𝐿−1) with 𝐿 denoting the equivalent
number of looks.

For one of the images, e.g., the pre-event image, if the 𝑖th and 𝑗th
parts correspond to the same type of object, i.e., 𝑃 𝑡1

𝑖 = 𝑃 𝑡1
𝑗 , then we

have 𝐗̃𝑖 and 𝐗̃𝑗 obey the same statistical distribution and are very
similar based on the model (1). If both the 𝑖th and 𝑗th region are
unchanged during the event, i.e., 𝑃 𝑡2

𝑖 = 𝑃 𝑡1
𝑖 and 𝑃 𝑡2

𝑗 = 𝑃 𝑡1
𝑗 , then the

corresponding 𝐘̃𝑖 and 𝐘̃𝑗 in the other image obey the same statistical
distribution as well (as 𝑃 𝑡2

𝑖 = 𝑃 𝑡2
𝑗 ) and are also very similar. On the

contrary, if one of the regions is changed during the event, e.g., the 𝑖th
region is unchanged but the 𝑗th region is changed during the event
(𝑃 𝑡2

𝑖 = 𝑃 𝑡1
𝑖 , 𝑃 𝑡2

𝑗 ≠ 𝑃 𝑡1
𝑗 ), then this similarity relationship cannot be

conformed by the other image, i.e., 𝐘̃𝑖 and 𝐘̃𝑗 is no longer similar as
𝑃 𝑡2
𝑖 ≠ 𝑃 𝑡2

𝑗 . Because the nonlocal similarity relationship within the image
itself can eliminate the discrepancy across different imaging modalities,
the image structure characterized by the similarity relationship can be
well preserved between unchanged multimodal images.

2.3. Structure based regression method

Based on the structure consistency, some regression methods have
been proposed (Sun et al., 2021b; Zheng et al., 2022b; Sun et al.,
2022b). They first construct a KNN graph 𝐺𝑡1

𝑛 for pre-event 𝐗̃, which
connects each part 𝐗̃𝑖 with its 𝐾 nearest-neighbors (NNs) with the
weight 𝑊 𝑡1

𝑖,𝑗 > 0. Obviously, the image parts of 𝐗̃𝑖 and 𝐗̃𝑗 connected
by graph 𝐺𝑡1

𝑛 are very similar. Then, they transform 𝐗̃ to domain  to
obtain the regression image 𝐘̃′ with a signal decomposition model as

min
𝐘′ ,∆𝑦

𝑁𝑆
∑

𝑖,𝑗=1

‖

‖

‖

𝐘′
𝑖 − 𝐘′

𝑗
‖

‖

‖

2

2
𝑊 𝑡1

𝑖,𝑗 + 𝜆‖∆𝑦
‖2,1

𝑠.𝑡. 𝐘 = 𝐘′ −∆𝑦,

(2)

where 𝜆 is the regularization parameter, 𝐖𝑡1 denotes the weighting
matrix of 𝐺𝑡1

𝑛 , 𝐘′
𝑖 is the 𝑖th column of regression feature matrix 𝐘′,

∆𝑦 denotes the forward changed feature matrix that carries change
information, and the 𝓁2,1-norm of ‖∆𝑦

‖2,1 =
∑𝑁𝑆

𝑖=1
‖

‖

‖

∆𝑦
𝑖
‖

‖

‖2
equals to the

𝑦
sum of the 𝓁2-norm of each column vector of ∆ .
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Fig. 1. An example of SCASC (Sun et al., 2021b) and the proposed SDIR. From (a1) to (a3) are: pre-event image 𝐗̃, post-event image 𝐘̃ and ground truth. 𝐗̃𝑖 and 𝐗̃𝑗 are connected
by the KNN graph 𝐺𝑡1

𝑛 with 𝑊 𝑡1
𝑖,𝑗 , 𝐘̃𝑖 and 𝐘̃𝑙 are connected by the KNN graph 𝐺𝑡2

𝑛 with 𝑊 𝑡2
𝑖,𝑙 . From (b1) to (b4) are results generated by SCASC: backward regression 𝐗̃′, forward

regression 𝐘̃′, backward DI and forward DI. From (c1) to (c4) are results generated by SDIR: backward regression 𝐗̃′, forward regression 𝐘̃′, backward DI and forward DI. During
the forward regression process, both SCASC and SDIR can perform image transformation and change detection. However, during the backward regression process, only SDIR is
able to detect changes while SCASC cannot, as SDIR utilizes the dissimilarity relationships.
In the model (2), the first term of ∑𝑁𝑆
𝑖,𝑗=1

‖

‖

‖

𝐘′
𝑖 − 𝐘′

𝑗
‖

‖

‖

2

2
𝑊 𝑡1

𝑖,𝑗 requires that
regression image 𝐘̃′ and pre-event image 𝐗̃ have the same structure,
i.e., the images parts of 𝐘̃′

𝑖 and 𝐘̃′
𝑗 connected by the KNN graph 𝐺𝑡1

𝑛
are also very similar. The second term of ‖∆𝑦

‖2,1 is based on the
sparse change prior in the practical CD problem. By solving the forward
regression model (2), the changed region can be detected from the
changed feature matrix ∆𝑦.

2.4. Limitation of similarity graph based regression

In Fig. 1, we give a simple example of the SCASC (Sun et al., 2021b)
with the model (2). From Fig. 1, we can observe that the SCASC method
is capable of performing the forward regression that transforms the pre-
event 𝐗̃ to domain  , but fails to perform the backward regression that
transforms the post-event 𝐘̃ to domain  , which is based on the model

min
𝐗′ ,∆𝑥

𝑁𝑆
∑

𝑖,𝑗=1

‖

‖

‖

𝐗′
𝑖 − 𝐗′

𝑗
‖

‖

‖

2

2
𝑊 𝑡2

𝑖,𝑗 + 𝜆‖∆𝑥
‖2,1

𝑠.𝑡. 𝐗 = 𝐗′ −∆𝑥,

(3)

where 𝜆 is the regularization parameter, 𝐖𝑡2 denotes the weighting
matrix of 𝐺𝑡2

𝑛 , 𝐗′
𝑖 is the 𝑖th column of regression feature matrix 𝐗′,

and ∆𝑥 denotes the backward changed feature matrix. It is worth
noting that although only the regression failure of SCASC is shown in
Fig. 1, this similar failure also exists in other structure-based regression
methods, such as FPMS (Mignotte, 2020), AMD-IR (Luppino et al.,
2019), AGSCC (Sun et al., 2022b).

First, we analyze why SCASC behaves so differently in the forward
and backward regression, from the perspective of the regression mod-
els. As shown in Fig. 1, the 𝑖th part that belongs to the changed area,
𝐗̃𝑖 and 𝐗̃𝑗 are connected by 𝐺𝑡1

𝑛 , 𝐘̃𝑖 and 𝐘̃𝑙 are connected by 𝐺𝑡2
𝑛 . Then,

SCASC uses the pairwise relationships between the 𝑖th part and 𝑗, 𝑙-th
parts to help determine the label (changed or unchanged) of the 𝑖th
part.

(1) In the forward regression model (2), because 𝐗̃𝑖 and 𝐗̃𝑗 are
connected by 𝐺𝑡1

𝑛 , 𝐘̃𝑖 and 𝐘̃𝑗 belong to different types of object and
show very different features, the regularization of ‖𝐘′ − 𝐘′‖2 𝑊 𝑡1 and
74

‖

‖

𝑖 𝑗‖
‖2 𝑖,𝑗
the sparse penalty of ‖

‖

‖

∆𝑦
𝑖
‖

‖

‖2
+ ‖

‖

‖

∆𝑦
𝑗
‖

‖

‖2
can prompt the solution to be

𝐘′
𝑖 = 𝐘𝑗 and 𝐘′

𝑗 = 𝐘𝑗 , resulting in the changed 𝑖th part with ∆𝑦
𝑖 ≠ 0,

which can detect the changes in the forward regression model.
(2) However, in the backward regression model (3), because 𝐘̃𝑖

and 𝐘̃𝑙 are connected by 𝐺𝑡2
𝑛 , 𝐗̃𝑖 and 𝐗̃𝑙 belong to the same type of

object and show very similar features as well, the regularization of
‖

‖

‖

𝐗′
𝑖 − 𝐗′

𝑙
‖

‖

‖

2

2
𝑊 𝑡2

𝑖,𝑙 and the sparse penalty of ‖‖
‖

∆𝑥
𝑖
‖

‖

‖2
+ ‖

‖

‖

∆𝑥
𝑙
‖

‖

‖2
can prompt

the solution to be 𝐗′
𝑖 = 𝐗𝑖 and 𝐗′

𝑙 = 𝐗𝑙, resulting in the unchanged 𝑖th
part with ∆𝑥

𝑖 = 0, which cannot detect the changes in the backward
regression model.

In fact, consider a special case where the pre-event image is a com-
pletely smooth image with 𝐗𝑖 = 𝐗𝑗 , ∀𝑖, 𝑗 ∈

{

1,…𝑁𝑆
}

, i.e., the whole
image represent the same type of object, then the optimal solution of
backward regression model (3) is 𝐗′ = 𝐗 and ∆𝑥

𝑖 = 0, which means that
the model (3) cannot detect changes whatever the post-event image is.
Similarly, if the post-event image is a completely smooth image with
𝐘𝑖 = 𝐘𝑗 , ∀𝑖, 𝑗 ∈

{

1,…𝑁𝑆
}

, then the forward regression model (2)
outputs the 𝐘′ = 𝐘 and ∆𝑦

𝑖 = 0, which also fails to detect changes.
Next, we further analyze the reasons for the failure of SCASC in

the forward or backward regression, from the perspective of the graph
properties. In the similarity based graph constructed on the image
(e.g., pre-event image), either KNN graph or fully connected graph, its
edge weight 𝑊 𝑡1

𝑖,𝑗 are inversely proportional to the distance between

image parts of 𝐗̃𝑖 and 𝐗̃𝑗 , such as 𝑊 𝑡1
𝑖,𝑗 = exp

(

−
‖

‖

‖

𝐗𝑖−𝐗𝑗
‖

‖

‖

2

2
2𝜎2

)

. It describes

the attraction between the internal parts of the image, in other words,
it mainly characterizes the low-frequency information of the image
structure, as analyzed later in Section 4.5. We can treat the feature
matrix of the image as the graph signal defined on the graph, whose
𝑖th column vector represents the signal on the 𝑖th vertex. Then, it is
well known that image 𝐗̃ is smooth on the similarity based graph
(such as 𝐺𝑡1

𝑛 ) built on itself, that is, the difference between the signals
connected by the graph edge is very small (Ortega et al., 2018; Shuman
et al., 2013; Stanković et al., 2019). If, at this time, the other image
𝐘̃ is also smooth on this graph 𝐺𝑡1

𝑛 , this graph cannot distinguish
the structural differences between the two images, which leads to
the failure of regression model (2). Furthermore, it can also be seen
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d
𝐗

𝑠

from the structure constraint term of ∑𝑁𝑆
𝑖,𝑗=1

‖

‖

‖

𝐘′
𝑖 − 𝐘′

𝑗
‖

‖

‖

2

2
𝑊 𝑡1

𝑖,𝑗 in model

(2), which focuses on those terms ‖

‖

‖

𝐘′
𝑖 − 𝐘′

𝑗
‖

‖

‖

2

2
𝑊 𝑡1

𝑖,𝑗 with large weights
𝑊 𝑡1

𝑖,𝑗 . However, for terms with small 𝑊 𝑡1
𝑖,𝑗 that the connected 𝐗𝑖 and

𝐗𝑗 are very different, it has little constraint on the corresponding
𝐘′
𝑖 and 𝐘′

𝑗 . This means that the similarity-based graph is incomplete
in characterizing the image structure, i.e., it ignores the dissimilarity
relationships (the high-frequency) within the image, which are also
important in the regression model.

Recently, two papers have also observed the issue that the detection
results obtained from forward and backward regression processes are
significantly different (Florez-Ospina et al., 2023; Sun et al., 2023).
In Florez-Ospina et al. (2023), Florez-Ospina et al. have raised a ques-
tion in the conclusion section: ‘‘why is this happening in the first
place, and how can we maintain performance while making the method
invariant to such reversal’’? In Sun et al. (2023), we have attributed this
phenomenon to the structural asymmetry between multimodal images,
suggesting that the varying complexity of image structures leads to
differing difficulty levels in solving forward and backward regression
models. Consequently, we have introduced a change alignment regular-
ization term to enforce alignment between the DIs obtained by the two
regression models. In contrast to Sun et al. (2023), this paper analyzes
the performance inconsistency phenomenon from the perspective of
regression model and graph representation capacity, which is both
more accurate and more universally applicable. And then it presents an
alternative solution without the interaction between the two regression
processes, which can also address the question posed in Florez-Ospina
et al. (2023).

2.5. Dissimilarity and fusion

Return to the simple example of Fig. 1, in the post-event image, 𝐘̃𝑖
and 𝐘̃𝑗 represent different types of objects (i.e., 𝑃 𝑡2

𝑖 ≠ 𝑃 𝑡2
𝑗 ). Based on the

model (1), assuming that both the 𝑖th and 𝑗th regions are unchanged
during the event, then the corresponding 𝐗̃𝑖 and 𝐗̃𝑗 also represent
different types of objects. Therefore, we can add a penalty term in the
regression model (3) that requires the regression 𝐗̃′

𝑖 and 𝐗̃′
𝑗 to represent

different types of objects, showing that they are also very dissimilar,
which naturally prevents the unchanged 𝐗̃′

𝑖 .
On the other hand, we can find that combining the forward and

backward regression processes is beneficial, which may improve the
CD performance, as shown in Fig. 1. Therefore, in this paper we
first propose a similarity and dissimilarity induced image regression
method for multimodal CD, and then propose an MRF based fusion
segmentation model that combines the forward and backward detection
results.

3. Similarity and dissimilarity induced images regression method

In this section, we provide a detailed description of the proposed
SDIR, which contains three main parts: (1) representing the image
structure in terms of similarity and dissimilarity relationships, (2)
utilizing the relationship-based structure to perform image regression,
and (3) fusing the forward and backward detection results to enhance
the accuracy of CD. Fig. 2 shows the framework of the proposed SDIR.

3.1. Preprocessing

As aforementioned in (1), we need to segment the multitemporal
images into small parts with the same segmentation map. In addi-
tion, the pairwise relationship (similarity and dissimilarity) is used
to represent the image structure in this paper. In light of this, we
have opted to utilize superpixels as the basic analysis unit, which
not only retains object edge and contextual information well but also
significantly reduces algorithm complexity by decreasing the number
of graph vertices.
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We select the GMMSP (Ban et al., 2018) to segment the multitem-
poral images into homogeneous regions with the same segmentation
map, which is known to produce superpixels that conform to object
boundaries with linear complexity relative to the number of pixels
(i.e.  (𝑀𝑁)). We construct a false RGB image: the first two channels
are the normalized gray images of pre- and post-event images, which
are obtained by summing the squared pixel values along the channels
of the pre- and post-event images and then taking the square root;
the third channel of the false RGB image is an all-zero channel. Then,
GMMSP segments this false RGB image into 𝑁𝑆 superpixels with the
segmentation map 𝛬, and obtains the superpixels of 𝐗̃𝑖 and 𝐘̃𝑖, 𝑖 ∈ 
enoted as
̃
𝑖 =

{

𝑥̃
(

𝑚, 𝑛, 𝑏𝑥
)

| (𝑚, 𝑛) ∈ 𝛬𝑖, 𝑏𝑥 = 1,… , 𝐵𝑥
}

,

𝐘̃𝑖 =
{

𝑦̃
(

𝑚, 𝑛, 𝑏𝑦
)

| (𝑚, 𝑛) ∈ 𝛬𝑖, 𝑏𝑦 = 1,… , 𝐵𝑦
}

,
(4)

where  =
{

1,… , 𝑁𝑆
}

denotes the index set. Therefore, 𝐗̃𝑖 and 𝐘̃𝑖
represent the same geographical area and they have a high probability
of being internally homogeneous, i.e., the pixels inside the superpixel
of 𝐗̃𝑖 (and 𝐘̃𝑖) have a high probability of representing the same type
of object. However, since only the normalized gray image is used in
constructing the false RGB image, it causes a certain loss of information
to distinguish different objects, and the following situation may occur:
spatially adjacent pixels representing different types of objects may
be grouped within the same superpixel when they have similar pixel
values in the normalized gray image. This is a shortcoming of the
above superpixel segmentation method that needs to be improved in
the future.

Once the co-segmentation superpixels are obtained, the mean and
median values of each band are extracted as the superpixel feature for
simplicity (it is not exclusive, other features are also available). Then,
we obtain the feature matrices of 𝐗 ∈ R2𝐵𝑥×𝑁𝑆 and 𝐘 ∈ R2𝐵𝑦×𝑁𝑆 , where
each column represents the feature vector of a superpixel.

3.2. Structure representation

In the previous structure based multimodal CD methods, they only
focus on the similarity relationships within the image (pixel-wise (Liu
et al., 2018b; Touati and Mignotte, 2018), patch-wise (Mignotte, 2020;
Sun et al., 2021c) or superpixel-wise (Zheng et al., 2022b; Sun et al.,
2022c)) and construct the similarity induced graph to characterize the
image structure, such as the KNN graph (Zheng et al., 2022b), full con-
nected graph (Luppino et al., 2019), adaptive probabilistic graph (Sun
et al., 2021b). In this paper, in addition to similarity relationships, we
also explore the use of dissimilarity relationships to characterize the
image structure, which are represented by two graphs: KNN graph and
KFN graph, respectively.

3.2.1. KNN graph
In order to characterize the similarity relationships between the

objectives within the image, a high-order KNN graph is constructed.
Take the pre-event image 𝐗̃ as an example, we first construct a KNN
graph 𝐺𝑡1

𝑛 =
{

𝑉 𝑡1
𝑛 , 𝐸𝑡1

𝑛 , 𝑤
}

by setting each superpixel as a vertex and
connecting each superpixel with other superpixels with the weight 𝑊 𝑡1

𝑖,𝑗 ,
which is similar as the adaptive probabilistic graph used in SCASC (Sun
et al., 2021b) by using the following model

min
𝐖𝑡1

𝑁𝑆
∑

𝑖,𝑗=1
𝐷𝑡1

𝑖,𝑗𝑊
𝑡1
𝑖,𝑗 + 𝛼

(

𝑊 𝑡1
𝑖,𝑗

)2

.𝑡. 0 ≤ 𝑊 𝑡1
𝑖,𝑗 ≤ 1,

𝑁𝑆
∑

𝑗=1
𝑊 𝑡1

𝑖,𝑗 = 1,

(5)

where 𝐷𝑡1
𝑖,𝑗 = ‖

‖

‖

𝐗𝑖 − 𝐗𝑗
‖

‖

‖

2

2
denotes the feature distance between the 𝑖th

and 𝑗th superpixels of pre-event image, and 𝛼 denotes the regulariza-

tion parameter that controls the number of nearest neighbors of the
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Fig. 2. Framework of the proposed similarity and dissimilarity induced images regression method.
superpixel. According to Sun et al. (2021b), the closed-form solution of
𝐖𝑡1 is

𝑊 𝑡1
𝑖,(𝑗) =

⎧

⎪

⎨

⎪

⎩

𝐷𝑡1
𝑖,(𝑘+1)−𝐷

𝑡1
𝑖,(𝑗)

𝑘𝐷𝑡1
𝑖,(𝑘+1)−

∑𝑘
ℎ=1 𝐷

𝑡1
𝑖,(ℎ)

, 𝑗 ≤ 𝑘

0, 𝑗 > 𝑘
, (6)

where the distance vector 𝐃𝑡1
𝑖 is sorted in ascending order as

𝐷𝑡1
𝑖,(1), 𝐷

𝑡1
𝑖,(2),… , 𝐷𝑡1

𝑖,(𝑁𝑆 )
, and then the symbol (𝑗) in 𝐷𝑡1

𝑖,(𝑗) represents the
index of the 𝑗th smallest value in 𝐃𝑡1

𝑖 . Then, it can be observed that
𝐺𝑡1
𝑛 is a KNN graph that connects each superpixel with its 𝑘 NNs with

weights 𝐖𝑡1
𝑖 .

In the KNN graph, the number 𝑘 of NNs is a critical parameter.
On the one hand, a very small value of 𝑘 may not be robust enough
for the graph, which cannot adequately characterize the similarity
relationship of the images. On the other hand, a too large value of 𝑘
is also inappropriate, which may cause over-connections that lead to
confusion in the graph, i.e., dissimilar vertices are connected by the
KNN graph that characterizes similar relationships. In this paper, we
first construct the 𝐺𝑡1

𝑛 with a relatively small 𝑘 as 𝑘 =
√

𝑁𝑆 . Then, we
construct a high-order KNN graph 𝐺𝑡1

ℎ−𝑛 =
{

𝑉 𝑡1
ℎ−𝑛, 𝐸

𝑡1
ℎ−𝑛, 𝑤

}

based on the
𝐺𝑡1
𝑛 by using the principle: ‘‘a neighbor of the neighbor is also likely

to be a neighbor ’’, which can effectively expand each vertex’s similar
neighbors, i.e., connecting the 𝑖th vertex within 𝐻-hop away from this
vertex. The weighting matrix of the 𝐺𝑡1

ℎ−𝑛 is computed by

𝐖𝑡1
ℎ−𝑛 =

(

𝐃𝑡1
ℎ−𝑛

)−1 ⊙𝐖H, (7)

where 𝐖H =
∑𝐻

ℎ=1
(

𝐖𝑡1
ℎ−𝑛

)ℎ and 𝐃ℎ−𝑛 denotes the diagonal matrix with
the 𝑖th diagonal element being ∑𝑁𝑆

𝑗=1 𝑊
H
𝑖,𝑗 .

In this way, the 𝐺𝑡1
ℎ−𝑛 can connect each vertex with more similar

neighbors and capture the high-order information of the graph. For the
post-event image, we can construct the high-order KNN graph 𝐺𝑡2

ℎ−𝑛 in
a similar way as 𝐺𝑡1

ℎ−𝑛, whose weighting matrix is denoted as 𝐖𝑡2
ℎ−𝑛

3.2.2. KFN graph
In order to characterize the dissimilarity relationships between the

objects within the image, a KFN graph is constructed. Take the pre-
event image 𝐗̃ as an example, we first construct a KFN graph 𝐺𝑡1

𝑓 =
{

𝑉 𝑡1, 𝐸𝑡1, 𝑤
}

by setting each superpixel as a vertex and connecting
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𝑓 𝑓
each superpixel with the 𝑘 most different superpixels, i.e., (𝑖, 𝑗) ∈ 𝐸𝑡1
𝑓 if

and only if 𝐷𝑡1
𝑖,𝑗 is among the 𝑘-largest elements of the distance vector

𝐃𝑡1
𝑖 .

Different from the KNN graph, the KFN graph used to character-
ize the dissimilarity relationships has three aspects to be considered
separately.

∙ First, the choice of the number 𝑘 of farthest neighbors. It is well
known that there are many object categories in remote sensing images,
so there are more superpixel pairs representing different categories of
objects than those representing the same object category. Therefore, the
number 𝑘 of farthest neighbors in KFN graph should be larger than the
NNs number in the KNN graph 𝐺𝑡1

𝑛 . In this paper, we set 𝑘 = 5
√

𝑁𝑆 for
the KFN graph.

∙ Second, the high-order information of graph. In the high-order
graph 𝐺𝑡1

ℎ−𝑛, we use the principle of ‘‘a neighbor of the neighbor is also
likely to be a neighbor’’. However, this principle is not applicable in the
KFN graph 𝐺𝑡1

𝑓 . For example, suppose that 𝐗̃𝑡 and 𝐗̃𝑗 belong to the same
object of ‘‘Grass’’, and they are both connected by the 𝐗̃𝑖 that represents
the object of ‘‘Water ’’ in the KFN graph 𝐺𝑡1

𝑓 , then if we use the
neighborhood expansion principle in the KNN graph, the highly similar
𝐗̃𝑡 and 𝐗̃𝑗 will then be connected by KFN graph, which is inappropriate.
Here, we use another two neighborhood expansion principles for the
KFN graph instead: ‘‘a nearest-neighbor of the farthest-neighbor is also
likely to be a farthest-neighbor; and a farthest-neighbor of the nearest-
neighbor is also likely to be a farthest-neighbor ’’. Therefore, we can
construct the high-order KFN graph 𝐺𝑡1

ℎ−𝑓 =
{

𝑉 𝑡1
ℎ−𝑓 , 𝐸

𝑡1
ℎ−𝑓 , 𝑤

}

by using
the high-order KNN graph 𝐺𝑡1

ℎ−𝑛 as follows

(𝑖, 𝑗) ∈ 𝐸𝑡1
ℎ−𝑓 ; if (𝑖, 𝑗) ∈ 𝐸𝑡1

𝑓 ,

or (𝑖, 𝑡) ∈ 𝐸𝑡1
𝑓 , (𝑡, 𝑗) ∈ 𝐸𝑡1

ℎ−𝑛,

or (𝑖, 𝑡) ∈ 𝐸𝑡1
ℎ−𝑛, (𝑡, 𝑗) ∈ 𝐸𝑡1

𝑓 .

(8)

∙ Third, the weight of the edges. In the KNN graph, the more similar
the superpixels are, the larger the weight of the edges connecting
them as in (6). However, in the KFN graph, the dissimilarity of the
superpixels is hard to measure, that is, it is meaningless to measure
the degree of difference between different categories. For example, we
cannot say that the difference between ‘‘Water ’’ and ‘‘Grass’’ is greater

than that between ‘‘Water ’’ and ‘‘Buildings’’. Therefore, in the high-order
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KFN graph, we assign the same weight to all edges connecting the
vertices as

𝐖𝑡1
ℎ−𝑓 =

(

𝐃𝑡1
ℎ−𝑓

)−1
⊙ 𝐀𝑡1

ℎ−𝑓 , (9)

here 𝐖𝑡1
ℎ−𝑓 , 𝐀𝑡1

ℎ−𝑓 and 𝐃𝑡1
ℎ−𝑓 denote the random walk matrix, adja-

ent matrix and degree matrix of the high-order KFN graph 𝐺𝑡1
ℎ−𝑓 ,

espectively.
In this way, the 𝐺𝑡1

ℎ−𝑓 can connect each vertex with more dissimi-
arity neighbors and capture the high-order information of the graph.
dditionally, we can construct the high-order KFN graph 𝐺𝑡2

ℎ−𝑓 for the
ost-event image in a similar way as 𝐺𝑡1

ℎ−𝑓 , whose weighting matrix is
enoted as 𝐖𝑡2

ℎ−𝑓 .

.3. Structure based regression model

For the regression based multimodal CD methods, their intentions
re to transform one image to the other image’s domain for comparing
mages in the same domain. In the proposed SDIR, we choose super-
ixels as the fundamental analysis unit and extract their features to
epresent them, which requires finding the transformation functions
etween different feature matrices of the images, defined as 1 ∶ 𝐗 →
′ and 2 ∶ 𝐘 → 𝐗′ with 𝐗′ and 𝐘′ denoting the transformed feature
atrices. We define the superpixel feature extraction operator as  ,
efine the pixel value recovery operator from superpixel features as
−1, e.g., extracting the mean feature as the pixel value of each pixel

nside the superpixel, define the 𝐗̃′ and 𝐘̃′ as the translated images.
hen we have the forward transformation as

̃ ′ = −1 (𝐘′) = −11 (𝐗) = −11
(

𝐗̃
)

, (10)

nd the backward transformation as

̃ ′ = −1 (𝐗′) = −12 (𝐘) = −12
(

𝐘̃
)

. (11)

ext, we describe these two transformation processes in detail.

.3.1. Similarity relationships based regularization
As can be seen in (10), it is necessary to find the connection

etween the translated image 𝐘̃′ and the original image 𝐗̃. By using
he statistical model (1), we have

̃ ′
𝑖|𝑃

𝑡1
𝑖 = 𝑓𝑆2

[

𝑇𝑆2
(

𝑃 𝑡1
𝑖
)

, 𝑛𝑡2
]

. (12)

hen, we have that the similarity relationship between superpixels
ithin the images of 𝐗̃ and 𝐘̃′ are the same.

In the high-order KNN graph of 𝐺𝑡1
ℎ−𝑛, if the superpixels of 𝐗̃𝑖

nd 𝐗̃𝑗 are connected by the edge 𝐸𝑡1
ℎ−𝑛, we have a high probability

hat 𝐗̃𝑖 and 𝐗̃𝑗 belong to the same type of object, i.e. 𝑃 𝑡1
𝑖 = 𝑃 𝑡1

𝑗 ,
hen the corresponding 𝐘̃′

𝑖 and 𝐘̃′
𝑗 in the transformed image also are

ery similar by using (12), which means that the superpixels in the
ransformed image 𝐘̃′ connected by the graph 𝐺𝑡1

ℎ−𝑛 should be similar
s well. Therefore, we need to construct a similarity relationship based
egularization (SRR) that penalizes the dissimilarity of the connected 𝐘̃′

𝑖
nd 𝐘̃′

𝑗 . With the same regularization term as in KNN graph learning
odel (2), we choose SRR as

𝑁𝑆
∑

,𝑗=1

‖

‖

‖

𝐘′
𝑖 − 𝐘′

𝑗
‖

‖

‖

2

2

(

𝑊 𝑡1
ℎ−𝑛

)

𝑖,𝑗 = 2Tr
(

𝐘′𝐋𝑡1𝐘′𝑇 ) , (13)

here 𝐋𝑡1 denotes the Laplacian matrix of the high-order KNN graph
𝑡1
ℎ−𝑛 and Tr (⋅) denotes the trace of matrix.

.3.2. Dissimilarity relationships based regularization
In the high-order KFN graph of 𝐺𝑡1

ℎ−𝑓 , if the superpixels of 𝐗̃𝑖 and
̃
𝑗 are connected by the edge 𝐸𝑡1

ℎ−𝑓 , we have a high probability that 𝐗̃𝑖
nd 𝐗̃𝑗 belong to the different types of objects, i.e. 𝑃 𝑡1

𝑖 ≠ 𝑃 𝑡1
𝑗 , then

he corresponding 𝐘̃′
𝑖 and 𝐘̃′

𝑗 in the transformed image also belong
o the different types of objects by using (12), which means that the
77
uperpixels in the transformed image 𝐘̃′ connected by the graph 𝐺𝑡1
ℎ−𝑓

hould be dissimilar as well. Here, we need to construct a dissimilarity
elationship based regularization (DRR) that penalizes the similarity of
he connected 𝐘̃′

𝑖 and 𝐘̃′
𝑗 as

𝑁𝑆
∑

,𝑗=1
𝜙
(

𝑑𝑖𝑠𝑡𝑌
′

𝑖,𝑗

)(

𝑊 𝑡1
ℎ−𝑓

)

𝑖,𝑗
, (14)

here the value of 𝜙
(

𝑑𝑖𝑠𝑡𝑌 ′
𝑖,𝑗

)

is inversely proportional to the feature
istance of 𝑑𝑖𝑠𝑡𝑌 ′

𝑖,𝑗 .
Intuitively, the simplest and most straightforward penalty function

s
(

𝑑𝑖𝑠𝑡𝑌
′

𝑖,𝑗

)

= − ‖

‖

‖

𝐘′
𝑖 − 𝐘′

𝑗
‖

‖

‖

2

2
. (15)

owever, we need to consider the specificity of dissimilarity based
enalty, which has also been emphasized in the construction of KFN
raph, i.e., the degree of difference between different categories is not
omparable. Therefore, the purpose of DRR is to make the 𝐘̃′

𝑖 and
̃ ′
𝑗 connected by high-order KFN graph not belong to the same type
f objects, not to make them increasingly different from each other
n terms of features when they originally belong to different types of
bjects. It serves to impose penalties on very similar superpixels of 𝐘̃′

𝑖
and 𝐘̃′

𝑗 , while those less similar 𝐘̃′
𝑖 and 𝐘̃′

𝑗 should be ignored (because
they already represent different types of objects), at this point it would
lead to errors if 𝐘̃′

𝑖 and 𝐘̃′
𝑗 were separated further apart instead. So the

value of 𝜙
(

𝑑𝑖𝑠𝑡𝑌 ′
𝑖,𝑗

)

should be large around 𝑑𝑖𝑠𝑡𝑌 ′
𝑖,𝑗 ≈ 0, and relatively

flat and converging to 0 in the region where 𝑑𝑖𝑠𝑡𝑌 ′
𝑖,𝑗 is larger.

If we use a threshold 𝑡ℎ to determine whether 𝐘̃′
𝑖 and 𝐘̃′

𝑗 belong to
the same type of object, the penalty function should be

𝜙
(

𝑑𝑖𝑠𝑡𝑌
′

𝑖,𝑗

)

=

{

𝑐, if 𝑑𝑖𝑠𝑡𝑌 ′
𝑖,𝑗 ≤ 𝑡ℎ

0, otherwise
, (16)

where 𝑐 is a constant. However, this threshold 𝑡ℎ is hard to determine.
In this paper, we use the penalty function as follows

𝜙
(

𝑑𝑖𝑠𝑡𝑌
′

𝑖,𝑗

)

= 1
‖

‖

‖

𝐘′
𝑖 − 𝐘′

𝑗
‖

‖

‖

2

2
+ 𝜀

, (17)

where 𝜀 > 0 is a parameter to adjust the steepness of the curve. Here,
we set 𝜀 = 1

|

|

|

𝐸𝑡2
𝑛
|

|

|

∑

(𝑖,𝑗)∈𝐸𝑡2
𝑛

‖

‖

‖

𝐘𝑖 − 𝐘𝑗
‖

‖

‖

2

2
, which is approximately equal to

the average distance between superpixels representing the same type
of objects in the post-event image.

3.3.3. Prior sparsity based regularization
For the post-event feature matrix 𝐘, we decompose it into a trans-

formed feature matrix 𝐘 and a changed feature matrix ∆𝑦 as 𝐘 =
𝐘′ − ∆𝑦, where the changed feature matrix ∆𝑦 contains the change
information caused by the event. We have a prior sparsity based
regularization (PSR) for the changed feature matrix, which is based on
the fact that only a small part of objects are changed during the event
in the practice. Intuitively, the 𝓁2,0-norm regularization ‖∆𝑦

‖2,0 that
equals to the number of non-zero column of ∆𝑦, i.e., the number of
changed superpixels, should be chosen as the PSR. However, ‖∆𝑦

‖2,0
is non-convex and imposing constraints on it in the model leads to
difficulties in solving. Therefore, we use the 𝓁2,1-norm based PSR as

‖∆𝑦
‖2,1 =

𝑁𝑆
∑

𝑖=1

‖

‖

‖

∆𝑦
𝑖
‖

‖

‖2
, (18)

𝑦
which is a convex relaxation of ‖∆ ‖2,0.
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3.3.4. Objective function
By combining the SRR (13), DRR (14) and PSR (18), we can obtain

the similarity and dissimilarity induced forward regression model as

min
𝐘′ ,∆𝑦

2Tr
(

𝐘′𝐋𝑡1𝐘′𝑇 ) + 𝛽
𝑁𝑆
∑

𝑖,𝑗=1

(

𝑊 𝑡1
ℎ−𝑓

)

𝑖,𝑗

‖

‖

‖

𝐘′
𝑖 − 𝐘′

𝑗
‖

‖

‖

2

2
+ 𝜀

+ 𝜆 ‖∆𝑦
‖2,1

𝑠.𝑡. 𝐘 = 𝐘′ −∆𝑦,

(19)

where 𝛽, 𝜆 > 0 are the balancing parameters.
From (19), we can find that the SRR tends to obtain the solution

of smoothed 𝐘, such as 𝐘 = 0, the DRR tends to obtain the non-
smooth 𝐘, while the PSR tends to obtain the solution of 𝐘′ = 𝐘, which
means that these regularization terms have an adversarial balancing
effect. In addition, by comparing the proposed SDIR (19) with the
previous SCASC (2), we can find that with the help of DRR, even when
the post-event image is a completely smooth image with 𝐘𝑖 = 𝐘𝑗 ,
∀𝑖, 𝑗 ∈

{

1,…𝑁𝑆
}

, the optimal solution of 𝐘′ is not 𝐘′ = 𝐘 and ∆𝑦
𝑖 = 0

as in SCASC (2). Problem (19) can be efficiently optimized by using
the alternating direction method of multipliers (ADMM), the details of
which are shown in Appendix.

Similar to the forward regression model of (19), we can obtain the
backward regression by using the following model

min
𝐗′ ,∆𝑥

2Tr
(

𝐗′𝐋𝑡2𝐗′𝑇 ) + 𝛽
𝑁𝑆
∑

𝑖,𝑗=1

(

𝑊 𝑡2
ℎ−𝑓

)

𝑖,𝑗

‖

‖

‖

𝐗′
𝑖 − 𝐗′

𝑗
‖

‖

‖

2

2
+ 𝜀

+ 𝜆 ‖∆𝑥
‖2,1

𝑠.𝑡. 𝐗 = 𝐗′ −∆𝑥.

(20)

3.4. Change extraction

In case the transformed feature matrices of 𝐘, 𝐗 and changed
feature matrices of ∆𝑦, ∆𝑥 are calculated by the forward and backward
regression models of (19) and (20), we can compute the regression
images by using 𝐘̃′ = −1 (𝐘′) and 𝐗̃′ = −1 (𝐗′), and obtain the DIs
by using

DI𝑦 (𝑚, 𝑛) = 𝑝𝑦𝑖 ; (𝑚, 𝑛) ∈ 𝛬𝑖, 𝑖 ∈ ,

DI𝑥 (𝑚, 𝑛) = 𝑝𝑥𝑖 ; (𝑚, 𝑛) ∈ 𝛬𝑖, 𝑖 ∈ ,
(21)

where 𝑝𝑦𝑖 =
‖

‖

‖

∆𝑦
𝑖
‖

‖

‖2
and 𝑝𝑥𝑖 = ‖

‖

‖

∆𝑥
𝑖
‖

‖

‖2
represent the forward and backward

change levels of the 𝑖th superpixel, respectively.
From (21), we can find that the forward and backward DIs are

computed from different domains. A linear fusion approach that sums
and averages them may result in information loss. To fully fuse the
change information in the two DIs to extract the final CM, we use a
improved MRF fusion segmentation method based on IRG-McS (Sun
et al., 2021a). In contrast to the uniform distribution assumption used
in the segmentation model in IRG-McS, the proposed MRF fusion
segmentation in this paper modifies the data energy term to take into
account the class imbalance commonly observed in CD problems, that
is, the proportion of changed and unchanged areas is uneven.

We define 𝑳 =
{

𝐿𝑖|𝑖 ∈ 
}

as the label set of superpixels with 𝐿𝑖 ∈
{

𝜔𝑢, 𝜔𝑐
}

, where 𝐿𝑖 = 𝜔𝑢 represents that the region of 𝛬𝑖 is unchanged
and 𝐿𝑖 = 𝜔𝑐 represents that 𝛬𝑖 is changed during the event. Then, the
index set  can be divided into unchanged set 𝛺𝑢 =

{

𝑖|𝐿𝑖 = 𝜔𝑢, 𝑖 ∈ 
}

and changed set 𝛺𝑐 =
{

𝑖|𝐿𝑖 = 𝜔𝑐 , 𝑖 ∈ 
}

. The superpixel-labeling prob-
lem is equivalent to an energy minimization problem according to the
MRF theory (Geman and Geman, 1984; Szeliski et al., 2008) given the
change level vectors of 𝐩𝑥 and 𝐩𝑦

𝑳∗ = arg min
𝑳∈{𝜔𝑢 ,𝜔𝑐}

𝛾𝑑 (𝑳) + (1 − 𝛾)𝑠 (𝑳) , (22)

where 𝑑 (𝑳) represents the data energy term based on the DIs, 𝑠 (𝑳)
represents the spatial energy term, and 𝛾 > 0 is a weighting parameter.

In order to construct the data energy term 𝑑 (𝑳), we first normalize
the change level vectors as 𝐩′𝑥 = min 𝐩𝑥∕2𝑇 𝑥, 1 , 𝐩′𝑦 = min 𝐩𝑦∕2𝑇 𝑦, 1 ,
78
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Fig. 3. Loss function with different 𝜐.

where 𝑇 𝑥 and 𝑇 𝑦 are the Otsu thresholding parameters (Otsu, 1979) on
𝐩𝑥 and 𝐩𝑦 respectively. Then, we define the 𝑑 (𝑳) as

𝑑 (𝑳) =
𝑁𝑆
∑

𝑖=1
𝜑𝑐

(

𝐿𝑖, 𝑝
′𝑥
𝑖
)

+ 𝜑𝑐
(

𝐿𝑖, 𝑝
′𝑦
𝑖
)

, (23)

where 𝜑𝑐 is inspired by the focal loss function (Lin et al., 2017) defined
as

𝜑𝑐
(

𝐿𝑖, 𝑝
)

=

{

−
(

1−𝑝
𝑝

)𝜐
log (𝑝), if 𝐿𝑖 = 𝜔𝑐

− log (1 − 𝑝) , if 𝐿𝑖 = 𝜔𝑢
, (24)

where 𝜐 > 0 is a tuning parameter.

From (23) and (24), we can find that when 𝑝𝑥𝑖 > 𝑇 𝑥, 𝜑𝑐
(

𝜔𝑐 , 𝑝′𝑥𝑖
)

is
smaller than 𝜑𝑐

(

𝜔𝑢, 𝑝′𝑥𝑖
)

, which encourages the 𝑖th superpixel to be la-
beled as changed; when 𝑝𝑥𝑖 < 𝑇 𝑥, 𝜑𝑐

(

𝜔𝑐 , 𝑝′𝑥𝑖
)

is larger than 𝜑𝑐
(

𝜔𝑢, 𝑝′𝑥𝑖
)

,
which encourages the 𝑖th superpixel to be labeled as unchanged. At
the same time, the class imbalances, i.e. the very small percentage of
changed classes and the very large percentage of unchanged classes in
the binary CM, are taken into account by the energy function 𝑑 (𝑳).
When 𝜐 = 0, this type 𝑑 (𝑳) can be regarded as derived from the
assumption that 𝐩′𝑥 and 𝐩′𝑦 obey uniform distributions. Fig. 3 plots the
loss function of 𝜑𝑐

(

𝜔𝑐 , 𝑝
)

−𝜑𝑢
(

𝜔𝑐 , 𝑝
)

with different 𝜐, from which it can
be seen that as 𝜐 gets larger, the value of 𝜑𝑐

(

𝜔𝑐 , 𝑝
)

−𝜑𝑢
(

𝜔𝑢, 𝑝
)

increases
faster as 𝑝 decreases from 0.5 to 0.2. However, in the other direction as
𝑝 increases from 0.5 to 0.8, the value of 𝜑𝑐

(

𝜔𝑐 , 𝑝
)

− 𝜑𝑢
(

𝜔𝑢, 𝑝
)

changes
very slowly. This means that the defined function (24) tends to obtain
more unchanged regions, and the parameter 𝜐 control the rate of the
imbalance penalties.

For the spatial energy term 𝑠 (𝑳), we directly use the form in IRG-
McS (Sun et al., 2021a) to penalize the spatial adjacent superpixels that
are assigned with different labels, which can incorporate the contextual
information of DI and pairwise similarity/dissimilarity relationships of
original multitemporal images. Finally, the energy minimization prob-
lem (22) can be solved efficiently by the graph cuts algorithm (Boykov
and Kolmogorov, 2004). After the 𝑳∗ is obtained, the binary CM can
be computed as

CM (𝑚, 𝑛) = 𝐿∗
𝑖 ; (𝑚, 𝑛) ∈ 𝛬𝑖, 𝑖 ∈ . (25)

The overall framework of SDIR based multimodal CD is summarized
in Algorithm 1.
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Table 2
Multimodal datasets.
Dataset Date Sensor (or modality) Location Image Size Event (& Spatial resolution)

#1 Sept. 1995–July 1996 Landsat-5/Google Earth Sardinia, Italy 300 × 412 × 1(3) Lake expansion (30 m.)
#2 May 2012–July 2013 Pleiades/WorldView2 Toulouse, France 2000 × 2000 × 3(3) Construction (0.52 m.)
#3 1999–2000 Spot/NDVI Gloucester, England 990 × 554 × 3(1) Flooding (≈ 25m.)
#4 June 2008–Sept. 2012 Radarsat-2/Google Earth Shuguang Village, China 593 × 921 × 1(3) Building construction (8 m.)
#5 July 2006–July 2007 QuickBird 2/TerraSAR-X Gloucester, England 4135 × 2325 × 3(1) Flooding (0.65 m.)
#6 June 2008–Sept. 2010 Radarsat-2/Google Earth Yellow River, China 343 × 291 × 1(3) Embankment change (8 m.)
a
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Algorithm 1: SDIR based multimodal change detection.

Input: Multimodal Images of 𝐗̃, 𝐘̃, parameters of 𝑁𝑆 , 𝛽, 𝜆.
Structure representation:

Segment images into superpixels by using GMMSP.
Extract features to obtain 𝐗 and 𝐘.
Construct the high-order KNN graphs of 𝐺𝑡1

ℎ−𝑛, 𝐺
𝑡2
ℎ−𝑛.

Construct the high-order KFN graphs of 𝐺𝑡1
ℎ−𝑓 , 𝐺𝑡2

ℎ−𝑓 .
Structural regression:

Initialize: set 𝚫𝑥, 𝚫𝑦 = 𝟎.
Repeat:

1: Update 𝐗′ and 𝐘′ through (30).
2: Update 𝚫𝑥 and 𝚫𝑦 through (32).
3: Update the Lagrange multiplier through (33).

Until the stopping criterion is met.
Change extraction:

Calculate the DIs of DI𝑥 and DI𝑦.
Compute the CM by using MRF fusion segmentation.

4. Experimental results and discussions

This section shows the capability of the proposed SDIR in unsu-
pervised multimodal CD problem. We consider six commonly used
datasets listed in Table 21. These datasets encompass a variety of
ensors, image sizes, spatial resolutions, and change events, allowing
or a comprehensive evaluation of the adaptability and robustness of
he proposed algorithm. We compare the SDIR with some state-of-the-
rt methods (including five traditional methods of AMD-IR (Luppino
t al., 2019), SCASC (Sun et al., 2021b), AGSCC (Sun et al., 2022b),
PMS (Mignotte, 2020), CICM (Touati, 2019) and six deep learning
ased methods of CGAN (Niu et al., 2019), SCCN (Liu et al., 2018a),
AAE (Luppino et al., 2022a), ACE-Net (Luppino et al., 2022b), X-
et (Luppino et al., 2022b), SRGCAE (Chen et al., 2022)) on regression

mages, DI and CM.

.1. Evaluation metric and implementation detail

To assess the performance of DI, we use the precision–recall (PR)
urve and calculate the corresponding area under the curve, denoted as
UP. For evaluating the performance of CM, we use metrics such as true
egatives (TN), true positives (TP), false negatives (FN), false positives
FP), miss alarms (MA) and false alarms (FA), overall accuracy (OA),
1-score (F1), and Kappa coefficient (𝜅), where the first four indicators
re marked with different colors in the qualitative results and the last
ive indicators are listed in the quantitative results.

For all the experiments of SDIR, we set the superpixel number
𝑆 ≈ 2500, and fix the balance parameter in the regression models of

19) and (20) as 𝜆 = 0.1, and adjust the 𝛽 by varying 𝛽 ∈ {5, 10, 15, 20},
and set the imbalance parameter in the MRF fusion segmentation as
𝜐 = 1. The effects of parameters are discussed in Section 4.5.

4.2. Regression images

To evaluate the regression performance of the proposed SDIR in
multimodal CD, four image regression based methods are chosen for

1 Datasets #2, #3 and #5 are available at Professor Max Mignotte’s
omepage of http://www-labs.iro.umontreal.ca/~mignotte
79
comparison, including the image structure based methods of AMD-
IR (Luppino et al., 2019), SCASC (Sun et al., 2021b), and AGSCC (Sun
et al., 2022b), and the deep translation method of CGAN (Niu et al.,
2019). In the case of methods that only have one-way regression, such
as SCASC, AGSCC, and CGAN, we reversed the order of the input
images to obtain the regression in the opposite direction.

Figs. 4 and 5 show the forward and backward regression images in
all the datasets. As seen in the regression images 𝐗̃′ and 𝐘̃′ of Figs. 4
nd 5, most of these methods are able to accomplish the style transfor-
ation of the images, i.e., the statistical properties of regression images

nd original images in the target domain are similar. However, when
urther comparing these regression images with the original images of
he source domain carefully, it can be seen that the regression images
btained by some methods do not retain the structure of the original
mages and regression errors occur. For example, in the backward
egression process of AMD-IR on Dataset #1, SCASC and AGSCC on
atasets #3 and #5, the structure of regressed 𝐗̃′ and original 𝐘̃ are

inconsistent. As analyzed in Section 2.4, this is due to the fact that the
original image 𝐘̃ of the target domain is smooth on the KNN graph
𝐺𝑡1
𝑛 constructed over the image 𝐗̃ of source domain as well, which

also validates the limitations of similarity-based graph in the structure
based regression method. Similarly, the forward regression images of
CGAN on Dataset #3 and AMD-IR on Dataset #5 are relatively different
from original images in structure. Meanwhile, it can be seen that
the regression method SDIR incorporating similarity and dissimilarity
relationships proposed in this paper can not only avoid the failure of
backward regression in Datasets #3 and #5, but also achieve better
results in forward regression of other datasets, such as Datasets #2 and
#6.

4.3. Difference images

To assess the ability of the forward and backward regression pro-
cesses to measure the changes, we show both forward and backward
DIs obtained by different methods in Figs. 4 and 5. Three-fold can
be observed: firstly, there are certain differences between the forward
and backward DIs of each method, which are due to the fact that
these DIs are calculated in different domains and also the detection
ability of the forward and backward regression models are different,
which again demonstrates the importance of fusing the forward and
backward DIs. Secondly, the forward and backward DIs obtained by
some methods are difficult to detect changes in some datasets due to the
different performance ability of similarity-based graph (i.e., the KNN
graph cannot distinguish between the pre- and post-event images), such
as the backward DIs of AMD-IR, SCASC and AGSCC on Datasets #1 and
#5, the forward DIs of CGAN on Dataset #3 and AMD-IR on Dataset
#5. Thirdly, the proposed SDIR is able to overcome the shortcomings
of the similarity-based KNN graph in terms of its insufficient structure-
representation ability, and introduce a dissimilarity-based KFN graph,
which enables the regression model to obtain better DIs in both forward
and backward regression processes. In addition, it can also be found
that the DI obtained by SDIR is sparse, which can be attributed to the
use of prior sparsity-based regularization in the model.

Figs. 6 and 7 plot the PR curves of DIs generated by all the
comparison methods except for CICM (which does not provide the

DI), and Table 3 reports the corresponding AUP of different methods.

http://www-labs.iro.umontreal.ca/~mignotte
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Fig. 4. Multimodal datasets, forward and backward regression images and DIs on Datasets #1-#3. From top to bottom, they correspond to Datasets #1 to #3, respectively. From
left to right are: (a) pre-event image 𝐗̃ and post-event image 𝐘̃; (b) the ground truth; (c)–(g) are the backward regression image of 𝐗̃′ and backward DI of DI𝑥 generated by (c)
AMD-IR, (d) SCASC, (e) CGAN, (f) AGSCC, (g) the proposed SDIR; (h)–(l) are the forward regression image of 𝐘̃′ and forward DI of DI𝑦 generated by (h) AMD-IR, (i) SCASC, (j)
CGAN, (k) AGSCC, (l) the proposed SDIR.

Fig. 5. Multimodal datasets, forward and backward regression images and DIs on Datasets #4-#6. From top to bottom, they correspond to Datasets #4 to #6, respectively. From
left to right are: (a) pre-event image 𝐗̃ and post-event image 𝐘̃; (b) the ground truth; (c)–(g) are the backward regression image of 𝐗̃′ and backward DI of DI𝑥 generated by (c)
AMD-IR, (d) SCASC, (e) CGAN, (f) AGSCC, (g) the proposed SDIR; (h)–(l) are the forward regression image of 𝐘̃′ and forward DI of DI𝑦 generated by (h) AMD-IR, (i) SCASC, (j)
CGAN, (k) AGSCC, (l) the proposed SDIR.



ISPRS Journal of Photogrammetry and Remote Sensing 208 (2024) 70–88Y. Sun et al.
Table 3
AUP of DIs on the multimodal datasets. The best and second best scores are marked in red and blue, respectively.

Methods Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5 Dataset #6 Average

Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward

AMD-IR (Luppino et al., 2019) 0.155 0.060 0.264 0.237 0.741 0.537 0.564 0.090 0.103 0.057 0.216 0.137 0.341 0.186
SCASC (Sun et al., 2021b) 0.383 0.133 0.458 0.276 0.636 0.123 0.695 0.218 0.681 0.048 0.597 0.517 0.575 0.219
CGAN (Niu et al., 2019) 0.550 0.590 0.436 0.284 0.238 0.887 0.273 0.270 0.073 0.287 0.375 0.474 0.324 0.465
AGSCC (Sun et al., 2022b) 0.532 0.106 0.534 0.427 0.719 0.113 0.787 0.257 0.797 0.053 0.664 0.606 0.672 0.260
FPMS (Mignotte, 2020) 0.406 0.590 0.258 0.224 0.774 0.102 0.904 0.237 0.836 0.050 0.652 0.327 0.638 0.255
SCCN (Liu et al., 2018a) 0.449 0.048 0.158 0.259 0.080 0.894 0.096 0.185 0.054 0.357 0.049 0.078 0.148 0.303
CAAE (Luppino et al., 2022a) 0.266 0.406 0.421 0.318 0.095 0.184 0.458 0.346 0.078 0.067 0.065 0.214 0.231 0.256
ACE-Net (Luppino et al., 2022b) 0.368 0.417 0.412 0.307 0.735 0.766 0.420 0.204 0.083 0.318 0.105 0.351 0.354 0.394
X-Net (Luppino et al., 2022b) 0.363 0.474 0.381 0.373 0.707 0.707 0.448 0.218 0.068 0.284 0.092 0.445 0.343 0.417
SRGCAE (Chen et al., 2022) 0.240 0.149 0.469 0.427 0.816 0.157 0.720 0.117 0.669 0.058 0.670 0.648 0.598 0.259

Proposed SDIR 0.585 0.468 0.554 0.543 0.698 0.701 0.791 0.274 0.784 0.618 0.659 0.747 0.678 0.559
Fig. 6. PR curves of the forward DI generated by different methods. From (a) to (f) are the results on Datasets #1 to #6, respectively.
Unsurprisingly, the AUP values of backward DI obtained by SDIR are
much higher than other methods on Datasets #2, #5 and #6. The
average AUP values obtained for the forward and backward DIs of SDIR
are 0.678 and 0.559 respectively, which are higher than the scores of all
other methods. Specifically, the average AUP value of the backward DI
is 9.4% higher than that of CGAN, which has the second highest score.
From Fig. 6, Fig. 7 and Table 3, it can be inferred that the DI obtained
by SDIR possesses a remarkable ability to detect changes, which enables
the direct use of simple thresholding methods (Otsu, 1979) or clustering
methods (Bezdek et al., 1984; Hartigan and Wong, 1979) for generating
a relatively good CM.

4.4. Change maps

To evaluate the detection performance of SDIR, we also show
the CM generated by comparison methods, including not only the
four methods compared in Figs. 4 and 5, but also the following
seven methods, i.e., the fractal projection and Markovian segmentation
based FPMS (Mignotte, 2020), the circular invariant convolution model
(CICM) (Touati, 2019), the deep feature comparison based SCCN (Liu
et al., 2018a), the code-aligned autoencoders (CAAE) (Luppino et al.,
2022a), the AMD induced deep translation methods of ACE-Net (Lup-
pino et al., 2022b) and X-Net (Luppino et al., 2022b), and the structural
relationship graph convolutional autoencoder (SRGCAE) (Chen et al.,
2022). To ensure a fair comparison, we selected the best results from
81
both the forward and backward processes of methods that only have
one-way regression (or transformation) in their original papers, such
as SCASC, CGAN, AGSCC, and FPMS.

Fig. 8 displays the CMs generated by various methods, where dif-
ferent colors are used to indicate TP, FP, TN, and FN. Tables 4 and
5 report the corresponding quantitative results. Since we selected the
best results from the forward and backward CMs for the comparison
methods, the CMs shown in Fig. 8 mostly detect changed areas. Nev-
ertheless, some methods still lack robustness. For example, AMD-IR
presents a large number of FP in Datasets #1, #2, #5, and #6; CICM
and SCCN also have many false detections in Dataset #6, resulting in
kappa coefficients of 0.024 and 0.183 respectively; CAAE have many
miss detections in Datasets #3 and #5, resulting in very small kappa
coefficients. As can be observed from Fig. 8 and Table 5, the proposed
SDIR is able to get better results stably with small false alarms and miss
detections, especially on the difficult Dataset #2 where SDIR performs
far better than the other compared methods. The average F1 and 𝜅
of SDIR on the six datasets are 0.775 and 0.756 respectively, which
are 5.3% and 5.6% higher than the second-ranked method. The results
presented in Fig. 8, Tables 4 and 5 demonstrate the effectiveness and
competitiveness of the proposed SDIR algorithm, even when compared
to some deep learning-based methods, such as CGAN, SCCN, CAAE,
ACE-Net, X-Net and SRGCAE.
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Fig. 7. PR curves of the backward DI generated by different methods. From (a) to (f) are the results on Datasets #1 to #6, respectively.
Table 4
MA and FA of CMs. The best and second best scores are marked in red and blue, respectively.

Methods Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5 Dataset #6 Average

MA FA MA FA MA FA MA FA MA FA MA FA MA FA

AMD-IR (Luppino et al., 2019) 0.206 0.200 0.366 0.259 0.153 0.095 0.198 0.043 0.421 0.204 0.047 0.323 0.232 0.187
SCASC (Sun et al., 2021b) 0.292 0.037 0.619 0.017 0.078 0.050 0.317 0.007 0.200 0.016 0.142 0.019 0.275 0.024
CGAN (Niu et al., 2019) 0.191 0.024 0.711 0.028 0.771 0.085 0.527 0.035 0.554 0.054 0.362 0.017 0.519 0.041
AGSCC (Sun et al., 2022b) 0.293 0.024 0.600 0.015 0.154 0.031 0.321 0.003 0.327 0.004 0.266 0.010 0.327 0.014
FPMS (Mignotte, 2020) 0.171 0.054 0.666 0.086 0.176 0.019 0.003 0.065 0.147 0.022 0.610 0.001 0.296 0.041
CICM (Touati, 2019) 0.525 0.023 0.525 0.023 0.525 0.023 0.525 0.023 0.525 0.023 0.525 0.023 0.525 0.023
SCCN (Liu et al., 2018a) 0.153 0.077 0.703 0.083 0.087 0.037 0.410 0.082 0.273 0.080 0.067 0.216 0.282 0.096
CAAE (Luppino et al., 2022a) 0.252 0.058 0.650 0.042 0.740 0.124 0.192 0.050 0.918 0.098 0.459 0.053 0.535 0.071
ACE-Net (Luppino et al., 2022b) 0.242 0.019 0.519 0.058 0.126 0.043 0.208 0.028 0.414 0.100 0.324 0.028 0.306 0.046
X-Net (Luppino et al., 2022b) 0.227 0.029 0.637 0.040 0.119 0.038 0.222 0.038 0.301 0.084 0.368 0.030 0.312 0.043
SRGCAE (Chen et al., 2022) 0.067 0.232 0.510 0.096 0.038 0.103 0.260 0.005 0.171 0.041 0.070 0.224 0.186 0.117

Proposed SDIR 0.352 0.015 0.424 0.020 0.053 0.041 0.133 0.012 0.187 0.006 0.216 0.009 0.227 0.017
Table 5
OA, F1 and 𝜅 of CMs. The best and second best scores are marked in red and blue, respectively.

Methods Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5 Dataset #6 Average

OA F1 𝜅 OA F1 𝜅 OA F1 𝜅 OA F1 𝜅 OA F1 𝜅 OA F1 𝜅 OA F1 𝜅

AMD-IR (Luppino et al., 2019) 0.799 0.328 0.255 0.724 0.411 0.259 0.898 0.664 0.607 0.950 0.597 0.572 0.782 0.254 0.171 0.686 0.170 0.115 0.807 0.404 0.330
SCASC (Sun et al., 2021b) 0.947 0.621 0.593 0.892 0.516 0.464 0.946 0.804 0.773 0.979 0.751 0.741 0.973 0.788 0.774 0.977 0.711 0.700 0.952 0.699 0.674
CGAN (Niu et al., 2019) 0.965 0.742 0.724 0.863 0.402 0.338 0.833 0.248 0.155 0.943 0.432 0.402 0.911 0.412 0.364 0.971 0.599 0.584 0.914 0.473 0.428
AGSCC (Sun et al., 2022b) 0.959 0.680 0.658 0.897 0.540 0.490 0.955 0.817 0.791 0.983 0.782 0.773 0.976 0.779 0.766 0.982 0.733 0.724 0.959 0.722 0.700
FPMS (Mignotte, 2020) 0.938 0.625 0.593 0.827 0.368 0.269 0.962 0.837 0.816 0.938 0.597 0.569 0.970 0.786 0.770 0.979 0.553 0.544 0.936 0.628 0.594
CICM (Touati, 2019) 0.943 0.481 0.451 0.867 0.321 0.270 0.884 0.573 0.507 0.974 0.759 0.745 0.896 0.423 0.371 0.789 0.080 0.024 0.892 0.439 0.395
SCCN (Liu et al., 2018a) 0.919 0.562 0.522 0.818 0.342 0.240 0.957 0.835 0.810 0.903 0.359 0.315 0.907 0.521 0.474 0.789 0.232 0.183 0.882 0.475 0.424
CAAE (Luppino et al., 2022a) 0.930 0.569 0.534 0.861 0.446 0.373 0.803 0.239 0.126 0.943 0.568 0.540 0.844 0.069 0.014 0.933 0.355 0.324 0.886 0.374 0.314
ACE-Net (Luppino et al., 2022b) 0.967 0.740 0.723 0.868 0.538 0.463 0.947 0.798 0.768 0.964 0.670 0.651 0.878 0.401 0.341 0.962 0.546 0.526 0.931 0.616 0.579
X-Net (Luppino et al., 2022b) 0.958 0.696 0.674 0.864 0.461 0.389 0.952 0.816 0.789 0.954 0.609 0.586 0.901 0.497 0.447 0.959 0.510 0.490 0.931 0.598 0.563
SRGCAE (Chen et al., 2022) 0.778 0.341 0.268 0.838 0.491 0.395 0.905 0.706 0.654 0.983 0.800 0.791 0.951 0.682 0.656 0.781 0.222 0.173 0.873 0.541 0.490

Proposed SDIR 0.964 0.691 0.672 0.919 0.683 0.638 0.958 0.843 0.819 0.982 0.819 0.810 0.982 0.853 0.843 0.984 0.764 0.755 0.965 0.775 0.756
T
A
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.5. Discussions

.5.1. Ablation study
Two main processes are included in the proposed SDIR: structure

epresentation and structure regression, as shown in Fig. 2. The key
echniques used in these two processes are analyzed separately below,
.e., higher-order neighborhood information (HNI) mining of KNN and
FN graphs in structure representation and the dissimilarity-based
FN graph induced DRR in structure regression. We construct a base-

ine model: structure representation without using HNI and structure
egression without using DRR.
82
able 6
blation study of SDIR measured by the average scores on all the evaluated datasets,
here ‘‘B’’ represents the baseline model.
Settings Forward DI Backward DI Final CM

AUP AUP OA F1 𝜅

B 0.571 0.236 0.838 0.401 0.327
B + HNI 0.651 0.283 0.851 0.446 0.383
B + DRR 0.649 0.527 0.960 0.743 0.724

B + HNI + DRR 0.678 0.559 0.965 0.775 0.756
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Fig. 8. CMs on multimodal datasets. From top to bottom, they correspond to Datasets #1 to #6, respectively. From left to right are the binary CMs generated by: (a) AMD-IR;
(b) SCASC; (c) CGAN; (d) AGSCC; (e) FPMS; (f) CICM; (g) SCCN; (h) CAAE; (i) ACE-Net; (j) X-Net; (k) SRGCAE; (l) proposed SDIR. In the binary CM, White: true positives (TP);
Red: false positives (FP); Black: true negatives (TN); Green: false negatives (FN). The original figure is available at https://github.com/yulisun/SDIR.
Table 6 presents the average quantitative evaluation results of the
DI and CM obtained from the model with and without the use of HNI
and DRR on all the evaluated datasets. As evident from the results in
Table 6, the performance of SDIR degrades a lot when HNI and DRR
are not used. To be specific, by using the two neighborhood expan-
sion principles proposed in Section 3.2 for constructing higher-order
KNN graphs and higher-order KFN graphs, the higher-order structural
information in the images can be preserved, which in turn makes
the structure representation and structure regression more accurate.
Specifically, adding HNI to the baseline model improves the AUP of
forward DI and backward DI by 8.0% and 4.7% respectively; adding
HNI to the baseline model with DRR improves the AUP of forward DI
and backward DI by 2.9% and 3.2% respectively. By using the DRR of
(14) that penalizes the similarity of superpixels connected by the KFN
graphs, the structure regression model can make use of the dissimilarity
relationships (high-frequency) of the image, and then obtain more
accurate DI and CM, especially for the backward regression process. As
presented in Table 6, when the dissimilarity base DRR term is added,
the detection performance of SDIR is significantly improved, e.g., the
average F1 is improved by nearly 0.342 compared to the baseline
model. In addition, when using both HNI and DRR, the SDIR detection
performance is improved even more significantly, e.g., its average F1
is improved by nearly 0.374 compared to the baseline model.

4.5.2. Parameter analysis
The main parameters in SDIR are the superpixel number 𝑁𝑆 , the

balancing parameters of 𝜆 and 𝛽 in the regression models of (19)
and (20), and the imbalance parameter 𝜐 of (24) in the MRF fusion
segmentation.

In general, the choice of 𝑁𝑆 should align with the image resolution
and the granularity demands of the CD task. Opting for a larger
𝑁𝑆 will result in smaller segmented superpixels, enhancing detection
granularity. However, this also amplifies computational complexity, as
discussed in the subsequent subsection of complexity analysis. In this
paper, we simply set 𝑁 ≈ 2500 as a compromise choice.
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𝑆

For the parameter 𝜆, it is the weight of PSR, which is used to
control the sparse level of changed feature matrix. Intuitively, it can be
adjusted according to the percentage of the changed area. The value of
𝜆 should be small when the proportion of the changed area is known to
be very low. Fig. 9 shows the AUP values of forward and backward DIs
obtained when 𝜆 takes different values (from 2−8 to (1), from which
it can be seen that SDIR is relatively robust to parameter 𝜆. According
to Fig. 9, we fix 𝜆 as 0.1 (i.e. 𝜆 ≈ 2−3.3) for simplicity. In addition, in
order to have a clearer view of the impact of 𝜆, Fig. 10 shows the DIs
generated by SDIR with different 𝜆 on Dataset #6, from which it can
be found that 𝜆 can control the sparsity of DI.

For the parameter 𝛽, it is the weight of DRR, which is used to
adjust the weight of dissimilarity-based constraints in the regression
model. As can be seen in Fig. 11, either too large or too small a 𝛽
is inappropriate: first, too small a 𝛽 would make the DRR weights
little to play a corresponding role; second, too large a beta would
make the model overly biased toward the DRR, destroying the balance
among the constraint terms and tending to obtain the non-smooth DI.
In addition, we can also find that the forward and backward regression
processes have different requirements for the parameter 𝛽. Take Dataset
#3 for example, it requires a larger 𝛽 in the backward regression than
in the forward regression. This is due to the fact that the post-event
image in Dataset #3 also has low-pass properties on the KNN graph
constructed on the pre-event image, so it is difficult to complete the
backward regression using only the similarity-based constraints at this
point. Therefore, it can be seen that the determination of 𝛽 should be
related to the spectral properties of pre- and post-event images on the
graphs.

For the parameter 𝜐, it controls the rate of the imbalance penalties
in the MRF fusion segmentation. In Fig. 12, we adjust 𝜐 = 0, 0.5, 1, 1.5
and plot the corresponding F1-scores on different datasets. From the
results shown in Fig. 12, it can be observed that considering the
class imbalance of change/unchanged categories in the MRF fusion
segmentation model significantly improves the detection accuracy. The

https://github.com/yulisun/SDIR
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Fig. 9. Sensitivity analysis of parameter 𝜆: (a) AUP of forward DI; (b) AUP of backward DI.
Fig. 10. Sensitivity analysis of parameter 𝜆 on Dataset #6. Top row is the forward
DI, bottom is the backward DI, generated with different 𝜆: (a) 𝜆 = 2−8; (b) 𝜆 = 2−4; (a)
𝜆 = 1.

F1 values are generally higher when 𝜐 = 0.5, 1, 1.5 compared to when
𝜐 = 0. Additionally, for most datasets, the best results are achieved
when the imbalance parameter 𝜐 is set to 1. Therefore, we fix 𝜐 = 1 in
this paper for simplicity.

4.5.3. Computational complexity
The proposed SDIR consists of four processes: preprocessing, struc-

ture representation, structure regression fusion by solving the mini-
mization models of (19) and (20), and the change extraction by using
the MRF fusion segmentation.

∙ Pre-processing: the complexity of the GMMSP is linear in the
number of pixels in the image  (𝑀𝑁), which is reported in Ban
et al. (2018). The average number of pixels within each superpixel is
𝑀𝑁∕𝑁𝑆 , then the complexities of mean feature extraction and median
feature extraction are around 

((

𝐵𝑥 + 𝐵𝑦
)

𝑀𝑁
)

and 
((

𝐵𝑥 + 𝐵𝑦
)

𝑀𝑁 log
(

𝑀𝑁∕𝑁𝑆
))

, respectively.
∙ Structure representation: first, calculating the distances between

all the superpixels requires 
((

𝐵𝑥 + 𝐵𝑦
)

𝑁2
𝑆
)

. Second, sorting the dis-
tance matrix by column for finding the KNN and KFN requires

(

𝑁2
𝑆 log𝑁𝑆

)

by using some accelerated sorting algorithms. Third,
calculating the closed-form similarity vector 𝑊 𝑡1

𝑖 by using (6) requires

(

𝑁𝑆
)

. Fourth, constructing the high-order graphs requires 
(

𝑁2
𝑆
)

.
Therefore, the structure representation by constructing high-order KNN
graph and KFN graph requires 

(

𝑁2
𝑆 log𝑁𝑆

)

.
∙ Structural regression: first, updating 𝐗′ and 𝐘′. Taking 𝐘′ update

with (30) as an example, computing the matrix Φ requires 
(

𝐵 𝑁2),
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𝑦 𝑆
the matrix multiplication requires 
(

𝐵𝑦𝑁2
𝑆
)

. Second, updating ∆𝑥 and
∆𝑦 with (32). As ∆𝑦 can be solved column-wisely by using the closed-
form operator, then it requires 

(

𝐵𝑦𝑁𝑆
)

. Third, updating the Lagrange
multipliers by using (33) requires 

(

𝐵𝑦𝑁𝑆
)

. Therefore, the structural
regression fusion requires 

((

𝐵𝑥 + 𝑏𝑦
)

𝑁2
𝑆
)

.
∙ Change extraction by using the MRF fusion segmentation method.

As discussed in Sun et al. (2021a), the computation of energy terms
requires 

(

𝑁𝑆
)

and 
(

𝑁𝑅
)

respectively, where 𝑁𝑅 denotes the num-
ber of edges in the 𝑅-adjacency neighbor system. The investigation of
using the min-cut/maxflow algorithm for energy minimization problem
is presented in Boykov and Kolmogorov (2004). Specifically, the theo-
retical complexity in the worst-case scenario is 

(

2𝑁𝑅𝑁2
𝑆
)

, while the
empirical complexity tends to be relatively low for typical instances in
vision problems.

Due to the inclusion of both inner and outer loops in the process of
structural regression, and the fact that matrix Φ needs to be updated in
each iteration of the inner loop, it is actually the structural regression
is the most time-consuming process in SDIR. The MATLAB running
time of SDIR on the Dataset #1 is 24.21 s, with each of the four
processes consuming 0.14, 1.46, 22.18, and 0.43 s respectively, in an
environment of Windows Laptop with Intel Core i9-10980HK CPU and
64 GB of RAM.

4.5.4. Spectral domain analysis of SDIR
Define the graph Laplacian matrix as 𝐋, it can be decomposed

into 𝐋 = 𝐔Λ𝐔−1, with 𝐔 denoting the orthonormal matrix of the
eigenvectors 𝐮𝑘 in its column and Λ denoting the diagonal matrix of
the corresponding eigenvalues 𝜆𝑘. The graph Fourier transform (GFT)
of a graph signal 𝐟 can be mathematically expressed as

𝐟 = GFT (𝐟 ) = 𝐔−1𝐟 . (26)

The inverse GFT can be expressed as

𝐟 = IGFT
(

𝐟
)

= 𝐔𝐟 . (27)

If we sort the eigenspectra of graph Laplacian matrix 𝐋 as 𝜆1 ≤ 𝜆2 ≤
⋯ ≤ 𝜆𝑁𝑆

, then 𝜆𝑁𝑆
represents the highest frequency and 𝜆1 represents

the lowest frequency (Stankovic et al., 2019; Stanković et al., 2019).
In the previous work (Sun et al., 2022a), it treats each feature matrix

as a graph signal on the constructed KNN graph, and converts the
multimodal CD into a graph signal processing problem. Based on the
defined graph and graph signals, it has analyzed the spectral properties
of the image on its own constructed similarity based KNN graph, that
is, both the regressed signal 𝐘′ and original signal 𝐗 are approximate
low-pass signals on the KNN graph of 𝐺𝑡1

𝑛 , and both the regressed signal
𝐗′ and original signal 𝐘 are approximate low-pass signals on the KNN
graph of 𝐺𝑡2

𝑛 . The high-frequency components of signals 𝐗 on 𝐺𝑡2
𝑛 and 𝐘

on 𝐺𝑡1
𝑛 are introduced by the changes as illustrated by Fig. 13, where the

spectra are defined as 𝐗̂𝑡1
𝑛 =

(

𝐔𝑡1
𝑛
)−1 𝐗, 𝐘̂𝑡1

𝑛 =
(

𝐔𝑡1
𝑛
)−1 𝐘, 𝐘̂𝑡2

𝑛 =
(

𝐔𝑡2
𝑛
)−1 𝐘,

and 𝐗̂𝑡2
𝑛 =

(

𝐔𝑡2
𝑛
)−1 𝐗, and the orthonormal matrices of 𝐔𝑡1

𝑛 and 𝐔𝑡2
𝑛 are

𝑡1 𝑡2
computed from the Laplacian matrices of 𝐺𝑛 and 𝐺𝑛 respectively.
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Fig. 11. Sensitivity analysis of parameter 𝛽: (a) AUP of forward DI; (b) AUP of backward DI.
Fig. 12. Sensitivity analysis of parameter 𝜐.
Fig. 13. Spectral properties of graph signals 𝐗 and 𝐘 on the KNN graphs 𝐺𝑡1
𝑛 and 𝐺𝑡2

𝑛 . (a) 𝐗 on the 𝐺𝑡1
𝑛 ; (b) 𝐘 on the 𝐺𝑡1

𝑛 ; (c) 𝐘 on the 𝐺𝑡2
𝑛 ; (d) 𝐗 on the 𝐺𝑡2

𝑛 . The graph signals
and KNN graphs are constructed from the multitemporal images of Dataset #1 in Fig. 4.
From Fig. 13 and the spectral analysis in Sun et al. (2022a), it can
be seen that the KNN graph mainly captures low-frequency information
of the image structure, while the SRR (13) in the regression model (19)
constrains that the regression image and original image have the same
low-frequency characteristics on the similarity based KNN graph.

In Fig. 14, we plots the spectral properties of graph signals 𝐗 and
𝐘 on the KFN graphs of 𝐺𝑡1 and 𝐺𝑡2 respectively, where the spectra
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𝑓 𝑓
are defined as 𝐗̂𝑡1
𝑓 =

(

𝐔𝑡1
𝑓

)−1
𝐗, 𝐘̂𝑡1

𝑓 =
(

𝐔𝑡1
𝑓

)−1
𝐘, 𝐘̂𝑡2

𝑓 =
(

𝐔𝑡2
𝑓

)−1
𝐘,

and 𝐗̂𝑡2
𝑓 =

(

𝐔𝑡2
𝑓

)−1
𝐗, and the orthonormal matrices of 𝐔𝑡1

𝑓 and 𝐔𝑡2
𝑓 are

computed from the Laplacian matrices of 𝐺𝑡1
𝑓 and 𝐺𝑡2

𝑓 respectively. From
Fig. 14, we can find that the KFN graph can capture the high-frequency
information of the image structure. This can also be illustrated by
the construction process of the KFN, i.e., its edges are connected to
superpixels representing different types of objects, so the variation level
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Fig. 14. Spectral properties of graph signals on the KFN graphs 𝐺𝑡1
𝑓 and 𝐺𝑡2

𝑓 . (a) 𝐗 on the 𝐺𝑡1
𝑓 ; (b) 𝐘 on the 𝐺𝑡1

𝑓 ; (c) 𝐘 on the 𝐺𝑡2
𝑓 ; (d) 𝐗 on the 𝐺𝑡2

𝑓 . The graph signals and KFN
graphs are constructed from the multitemporal images of Dataset #1 in Fig. 4.
between the graph signals connected by the edges in the KFN graph
is very dramatic, i.e., the graph signals have a large high-frequency
component on the 𝐺𝑡1

𝑓 and 𝐺𝑡2
𝑓 . The DRR (14) in the regression model

(19) constrains that the regression image and the original image have
the same high-frequency characteristics on the dissimilarity based KFN
graph. Therefore, the proposed SDIR can incorporate both similar-
ity (low-frequency) and dissimilarity (high-frequency) relationships of
images by combining the high-order KNN graph and KFN graph.

5. Conclusion

This paper focuses on the problem of multimodal CD in remote
sensing. We first analyze the previous structural regression-based meth-
ods and found the shortcomings of these methods using only similarity
relationships. Then, we propose a similarity and dissimilarity induced
image regression method for the multimodal CD. The proposed method
constructs high-order KNN and KFN graphs to capture the similarity
and dissimilarity relationships of the image, and then utilizes structure
consistency constraints to decompose the target image into a regression
image and a change image, which requires the regression image to
share the same spectral properties as the original image on the KFN
and KNN graphs. Once the forward and backward image regression
are completed, an MRF based fusion segmentation model is employed
to combine the change fusion and change extraction processes. The
experimental results demonstrate the effectiveness of the proposed
method under various scenarios.

As elaborated in Section 3.1, when employing the image superpixel
co-segmentation method, there is a certain loss of information as only
the grayscale information of the images is utilized in constructing
the false RGB image, which may result in inaccuracies in superpixel
segmentation. Therefore, future research involves the use of more
advanced superpixel segmentation methods to ensure that segmented
superpixels are internally homogeneous within their respective images.

The analysis of graphs has prompted us to focus on dissimilarity
relationships and high-frequency components of graph spectra. In the
future, we will explore the potential of incorporating graph wavelet
techniques to better capture the structure of images and extend the
dissimilarity relationships to graph neural network based multimodal
CD (Florez-Ospina et al., 2023), thus improving the CD performance.
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Appendix. Optimization of fused regression model

We use the alternating direction method of multipliers for solving
the minimization problem of (20), the augmented Lagrangian function
of (20) is

𝛩
(

𝐘′,∆𝑦,𝐑
)

=2Tr
(

𝐘′𝐋𝑡1𝐘′𝑇 ) + 𝛽
𝑁𝑆
∑

𝑖,𝑗=1

(

𝑊 𝑡1
ℎ−𝑓

)

𝑖,𝑗

‖

‖

‖

𝐘′
𝑖 − 𝐘′

𝑗
‖

‖

‖

2

2
+ 𝜀

+ 𝜆 ‖∆𝑦
‖2,1 + Tr

(

𝐑𝑇 (

𝐘′ − 𝐘 −∆𝑦))

+
𝜇
2
‖

‖

𝐘′ − 𝐘 −∆𝑦
‖

‖

2
𝐹 ,

(28)

where 𝐑 ∈ R2𝑏𝑦×𝑁𝑆 is a Lagrange multiplier, and 𝜇 > 0 is a penalty pa-
rameter that affects the convergence performance of the ADMM (Boyd
et al., 2011), which is fixed to 0.4 in the experiment. The optimization
of (28) can be decomposed into three subproblems.

(1) 𝐘′ subproblem. The optimization problem for minimizing (28)
with respect to 𝐘′ can be written as

min
𝐘′

2Tr
(

𝐘′𝐋𝑡1𝐘′𝑇 ) + 𝛽
𝑁𝑆
∑

𝑖,𝑗=1

(

𝑊 𝑡1
ℎ−𝑓

)

𝑖,𝑗

‖

‖

‖

𝐘′
𝑖 − 𝐘′

𝑗
‖

‖

‖

2

2
+ 𝜀

+ Tr
(

𝐑𝑇 (

𝐘′ − 𝐘 −∆𝑦)) +
𝜇
2
‖

‖

𝐘′ − 𝐘 −∆𝑦
‖

‖

2
𝐹 .

(29)

The gradient descent method is used for this minimization problem. We
set the iteration number of inner loop for 𝐘′ subproblem as 𝑁 and the
𝑖
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T
2

∆

p

step size as 𝜏, then we have

𝑔
(

𝐘′) = 𝐘′
(

𝜇𝐈𝑁𝑆
+ 4

(

𝐋𝑡1 − 𝛽Φ
)

)

+ 𝐑 − 𝜇 (𝐘 +∆𝑦) ,

𝐘′ ← 𝐘′ − 𝜏𝑔(𝐘′),
(30)

where Φ = Φ1 −Φ2 with 𝛷2
𝑖,𝑗 =

(

𝑊 𝑡1
ℎ−𝑓

)

𝑖,𝑗
(

‖

‖

‖

𝐘′
𝑖−𝐘

′
𝑗
‖

‖

‖

2

2
+𝜀

)2 and Φ1 ∈ R𝑁𝑆×𝑁𝑆 being

a diagonal matrix with 𝛷1
𝑖,𝑖 =

∑𝑁𝑆
𝑗=1

𝛷2
𝑖,𝑗+𝛷

2
𝑗,𝑖

2 .
(2) ∆𝑦 subproblem. The optimization problem for minimizing (28)

with respect to ∆𝑦 can be written as

min
∆𝑦

𝜆‖∆𝑦
‖2,1 + +

𝜇
2
‖

‖

‖

‖

∆𝑦 + 𝐘 − 𝐘′ − 𝐑
𝜇
‖

‖

‖

‖

2

𝐹
. (31)

he closed-form solution of (31) can be obtained from (Yang et al.,
009) as

𝑦
𝑖 = max

{

‖

‖

𝐐𝑖
‖

‖2 −
𝜆
𝜇

} 𝐐𝑖
‖

‖

𝐐𝑖
‖

‖2
, (32)

where 𝐐 = 𝐘′ − 𝐘 + 𝐑
𝜇 and we follow 0 ⋅ (0∕0) = 0.

(3) Multiplier updating. Finally, we update the Lagrangian multi-
lier of 𝐑 by using

𝐑 ← 𝐑 + 𝜇
(

𝐘′ − 𝐘 −∆𝑦) . (33)
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