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Abstract— Heterogeneous change detection (HeCD) is a highly
valuable yet challenging task in remote sensing. To enable
the comparison of heterogeneous images with different imaging
mechanisms, some structural consistency-based image transfor-
mation methods have been proposed, which utilize graph models
to represent image structures and constrain the transformed
images and original images to have the same structural charac-
teristics on the graph model. Consequently, these graph-based
methods face two challenges: adequately characterizing the
image structure and effectively utilizing the change information.
To address these challenges, this article proposes a signed
graph-based image transformation (SGIT) method for unsu-
pervised HeCD. First, we analyze the limitations of previous
unsigned graph-based methods in capturing the image structure,
which leads to the failure to detect changes in some scenes.
In light of this, we construct signed graph models that utilize
positive/negative weights to represent the similarity/dissimilarity
relationships within the image, respectively, and employ adap-
tive weighting, negative sampling, and neighborhood expansion
strategies to bolster the structure representation capability of
signed graphs. Second, we analyze how the change would induce
a bimodal distribution of vertex feature distances in original
and transformed images. Subsequently, a distribution-induced
reweighted graph Laplacian regularization (RGLR) is proposed
to exploit this prior change information. Finally, a more accu-
racy image transformation model is obtained by incorporating
three types of constraints: signed graph-based structural con-
sistency term, bimodal distribution-induced RGLR, and change
sparsity-based penalty term. Extensive comparative experiments
on five real datasets have demonstrated the effectiveness of the
proposed SGIT.

Index Terms— Change detection, heterogeneous data, image
transformation, signed graph.

NOMENCLATURE
Symbol Description
X, Y Original pre- and post-even images.
X ! Y’ Transformed images.
X.Y; ith superpixels of original images.
X,Y Feature matrices of original images.
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XY Transformed feature matrices.

AY, AV Changed feature matrices.

G'', G Unsigned graphs.

G+ =(G+,G) Signed graph with two subgraphs of

G, and G_.
High-order signed graph.
N x N identity matrix.

Gnt = (Gint, Gi—)
Iy

I. INTRODUCTION
A. Background

HANGE detection refers to the technique of extract-
Cing change information by comparing multiple remote
sensing images observed from the same region at different
times [1]. Change detection has been widely used in fields
such as environment monitoring, disaster evaluation, and agri-
cultural surveys [2], [3].

Currently, most change detection methods utilize multi-
ple images acquired under homogenous conditions with the
same sensor, known as homogenous change detection (HoCD)
or unimodal change detection. However, in certain practical
scenarios, it is challenging or even impossible to obtain
homogenous images before and after an event [4], [5], at this
time, changes can only be detected with the help of het-
erogeneous images captured by different sensors, termed as
heterogeneous change detection (HeCD) or multimodal change
detection. For instance, in emergency response to some sudden
disasters (earthquakes, floods, landslides, etc.), constrained by
image resources and imaging conditions, analysts often rely
on pre-event optical images and post-event synthetic aperture
radar (SAR) images for change analysis [6], swiftly obtaining
disaster information to support rescue efforts. In addition,
in the analysis of changes over long time-series, by introducing
heterogenous images in HeCD, the temporal range can be
expanded and the temporal resolution of the analysis can be
improved [7].

B. Related Work

Since the images used in HeCD come from different sensors
(e.g., optical and SAR) with different imaging conditions,
the heterogeneous images show great modal gap [8], [9] as
illustrated in Fig. 1, making it impossible to identify changed
region by directly comparing the pre- and post-event images
as in the case of HoCD. Therefore, the first task of HeCD
is to explore correlations between heterogeneous images and
convert them into a common space to enable comparison.
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Fig. 1. Pair of optical-SAR images acquired from the same area. From
these images and the zoomed-in subregions, it is clear that different sensors
provide distinct perspectives on the same ground truth and exhibit different
characteristics.

According to the comparative space, existing HeCD meth-
ods can be broadly categorized into three types: 1) image
classification-based HeCD methods utilize classifiers to clas-
sify images into common land cover types and subsequently
detect changes through comparing the categorization results,
such as the hierarchical compound classification [10], and
hierarchical extreme learning machine-based method [11];
2) feature transformation-based HeCD methods assume
some imaging-invariant correlations or utilize some deep
Siamese/pseudo-Siamese networks to transform heterogeneous
images into a shared feature space and then perform compar-
isons, such as the Copula theory-based similarity metrics [12],
the spatial self-similarity difference-based method [13], self-
guided autoencoders [14], hierarchical attention feature fusion-
based network [15]; and 3) image transformation-based HeCD
methods transform one image into another image domain,
and then compare the original and transformed images within
the same image domain, which is also referred to as style
migration or image translation [16], [17], such as the fractal
encoding—decoding [18], traditional image regression based on
affinity matrix difference (AMD) [19], copula mixtures-based
networks [20], code-aligned autoencoders [21], AMD-guided
deep translation network [22], and multidomain constrained
translation network [23].

Existing HeCD methods either rely on certain
imaging-invariant assumptions or use labeled samples
to train networks to establish correlations between

heterogeneous images. Therefore, the robustness of the
established correlations is very important for these methods.
Recently, similarity graph-based HeCD methods have attracted
the attention of researchers, which utilize the structural
consistency between heterogeneous images to transform them
into the same feature domain or image domain [24]. For
example, some structure comparison-based HeCD methods
construct or learn structural graphs to characterize the
similarity relationships within images, and then compare the
structural differences by graph mapping, such as the nonlocal
patch graph comparison method [4], local and nonlocal
structure graph fusion-based method [25], iterative robust
graph-based method [26], adaptive optimization of a structured
graph [27], and structural graph representation learning-based
method [28], enhanced graph structure representation-based
method [29]. Some structure regression-based HeCD methods
utilize structural graphs to transform one image to the other
image domain using the structural consistency constraint
between original and transformed images, such as the image
translation methods based on structure regression [30],
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change smoothness [31], and similarity graph-based image
transformation network [32].

These structural graph-based HeCD methods present three
advantages: 1) these methods are intuitive and interpretable;
2) since the image structure exhibits the property of imaging-
invariant, these methods are ideal for the unsupervised HeCD
problem as they can establish the correlation between hetero-
geneous images without labeling samples; and 3) the image
structure is less disturbed by noise than image pixel value,
which enhances the robustness of these methods. While exist-
ing structural graph-based HeCD methods perform relatively
well in HeCD, they still suffer from the following two short-
comings.

First, the graph model could not adequately characterize the
image structural information, which reduces the performance
of the structure comparison and structure transformation
algorithms, resulting in limited change detection accuracy.
Previous methods all focus solely on the use of unsigned graph
models that characterize the similarity relationships of the
image, while neglecting to explore and utilize the dissimilarity
relationships within the image, such as the k-nearest neigh-
bors (KNNs) graphs used in the INLPG [4], IRG-McS [26],
AOSG [27], the high-order similarity graph in [25], the KNN
graph-based hypergraph in [30], the adaptive local structure
graph in [33], the graph convolutional autoencoder-based local
and nonlocal similarity graphs [28], and the graph convolu-
tional network in [32]. For structural graph-based methods,
the representational capacity of the graph is a crucial factor
affecting change detection performance. If the graph model
can more fully extract image structure information, then the
constraints based on structural consistency used in the struc-
tural comparison and structural regression models will be more
precise, thereby improving the HeCD performance.

Second, previous methods failed to fully exploit the change
prior information inherent in the HeCD problem, consequently
limiting the expressive capability of the image transformation
model. This limitation makes it challenging to effectively
utilize prior knowledge and accurately extract change informa-
tion. Currently, most methods leverage the change information
in the HeCD problem primarily in two key aspects: spa-
tial smoothness and sparsity of change. For instance, some
methods consider the change smoothness, that is, spatially
neighboring pixels tend to belong to the same class of objects,
and therefore their change states tend to be the same as well.
This concept is often employed during the segmentation of
difference image (DI) to derive binary change map (CM) [26],
[28], [31]. Concurrently, some methods incorporate change
sparsity as a constraint in the image transformation model,
that is, the proportion of regions experiencing change is min-
imal, with the majority remaining unchanged throughout the
event [32], [33]. However, in addition to the spatial smoothness
and sparsity, there are other prior knowledge about changes
that can be mined in the HeCD problem. Further utilization
of this knowledge can lead to better change detection results.

C. Motivations and Contributions

In this article, we first analyze the shortcomings of previ-
ous unsigned graph models in image structure-based HeCD
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methods. Subsequently, we emphasize the advantages of the
signed graph model in characterizing image structure and
HeCD methods. With this perspective, we develop a signed
graph model for each image and propose a signed graph-based
image transformation (SGIT) method for HeCD. Specifically,
we employ signed weights to depict the similarity/dissimilarity
relationships within an image. That is, positive weights
connect similar superpixels (representing the same class of
objects), while negative weights link dissimilar superpixels
(representing different classes of objects), reflecting attractive
and repulsive forces between superpixels within an image,
respectively. Subsequently, the signed graphs are applied to
the image transformation model to constrain the transformed
images and original images to exhibit the same similar-
ity/dissimilarity relationships, i.e., possess identical structural
properties on the signed graphs, which yields more precise
transformed images and DIs than using only the unsigned
graphs.

Furthermore, we delve deeper into the change prior to HeCD
problem and identify differences in the distribution of vertex
feature distances between pre- and post-event images as a con-
sequence of changes. Building on this observation, we propose
a reweighted graph Laplacian regularization (RGLR) in the
image transformation model. Specifically, we utilize an image
decomposition model to decompose the target domain image
into a transformed image derived from the source domain and
a change image caused by the change event, and employ three
constraints: 1) a signed graph-based structural consistency
term that constrains the transformed image and source domain
image to have the same similarity/dissimilarity relationships
on the signed graph; 2) a change sparsity term that constrains
the change image to be sparse; and 3) a distribution-induced
reweighted graph Laplacian term that can efficiently promote
a bimodal distribution of vertex feature distances for the
transformed image. By incorporating these three constraints,
a more accurate and robust image transformation model can
be obtained than the previous methods that utilized only the
unsigned graph constraint and the change sparsity constraint,
leading to better performance in the HeCD. The main contri-
butions of this article are as follows.

1) We proposed a signed graph model-based image trans-
formation method for the HeCD problem. This approach
involves constructing signed graphs to represent the sim-
ilarity/dissimilarity relationships among original images
and subsequently ensuring that the transformed and
original images exhibit identical structural properties on
the signed graph. To the best of our knowledge, this is
the first method to introduce signed graphs into a change
detection task, addressing the limitations of previous
unsigned graphs-based HeCD methods.

2) We conducted an analysis to elucidate how changes can
induce a bimodal distribution of vertex feature distances
in the original and transformed images. Subsequently,
we designed a distribution-induced RGLR for the image
transformation model, which enhances the accuracy and
robustness of the model.

3) We introduced a robust signed graph construction
method by leveraging adaptive weighting, negative sam-

4403618

pling, and neighborhood expansion strategies, which
bolster the ability of the signed graph to characterize
the similarity/dissimilarity structure information of the
image effectively.

II. LIMITATIONS OF UNSIGNED GRAPH IN THE HeCD
A. Problem Formulation and Structural Consistency

Given two co-registered images collected by different sen-
sors at times #; (pre- event) and 7, (post-event), denoted as
X € RMXNxBi and ¥ € RM*NxB: where the pixels are
defined as X, .5 and Y, .. respectively. We define the
feature matrix of the original pre-event image as X, whose
element x; ; represents the ith feature of the jth pixel (or
patch or superpixel depending on the underlying processing
unit). Similarly, we can also define the feature matrix Y for the
post-event image. The HeCD task is to enable the comparison
of heterogeneous images XandY to compute a CM indicating
the changes. The nomenclature section lists some important
notations for easy reference.

Image transformation-based HeCD methods first transform
one image to the domain of the other 1mage defined as
Mi:X — Y and M»:¥Y — X', where X' and Y  are
the transformed images, i.e., the assumed unchanged images.
Then, the changed regions can be detected by comparlng the
original and transformed images, such as X—X and¥Y-Y'.

To obtain the transformed images, some constraints are
added to the image transformation process, such as struc-
tural consistency constraints. Structural consistency between
heterogeneous images is referred to as follows: although
the heterogeneous images acquired by different sensors
in the same area are distinct in terms of their presentation, the
topological relationships between objects inside the images are
consistent [4]. Structural consistency is rooted in the imaging
mechanism of remote sensing, signifying that the same object
maintains the same topological relationships across images
captured under different conditions as long as the inherent
properties of the objects remain unchanged. For example,
suppose that the multitemporal images are divided into a series
of superpixels (or square patches), denoted as X, Y., i=
1, ..., Ns, then if both the i and jth superpixels are unchanged
during the event, their similarity/dissimilarity relationships can
be well preserved across the heterogeneous images. That is,
when X; and X; ; remain unchanged, and if they represent
the same or different kinds of objects in the pre-event image,
showing that X; and X are very similar or dissimilar, then Y;
and Y ; also represent the same or different kinds of objects
in the post -event image, showing that Y; and Y are also very
similar or not.

B. Unsigned Graph-Based Image Transformation Method

Using the structural consistency property, some image
transformation-based HeCD methods have been proposed [31],
[32], [33]. In these methods, they first construct unsigned
graph (e.g., KNN graphs) of G'! (or G'?) for pre-event image
(or post-event image) that connect each superpixel X; (or

Y;) with its similar neighbors X (or ]) with the positive
weight W/} (or W/}). Then, they decompose the original
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(c1) forward transformed
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forward DI
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detection

(c2) backward transformed  (c4) backward DI
proposed SGIT

(b2) backward transformed  (b4) backward DI
SCASC

(a2) post-event Y
Original imags

Fig. 2. HeCD example of SCASC [33] and proposed SGIT. (al) and (a2)
Original pre- and post-event images. (b1)—(b4) Detection results generated by
SCASC: forward transformed image, backward transformed image, forward
DI, and backward DI, respectively. (c1)—(c4) Detection results generated by
the proposed SGIT. During the forward transformation process, both SCASC
and SGIT are able to transform images and detect changes. However, in the
backward transformation process, only SGIT is capable of detecting changes,
while SCASC cannot, because SGIT uses a signed graph instead of an
unsigned graph.

feature matrices (Y and X) into transformed feature matrices
(Y’ and X’) and changed feature matrices (AY and AY),
denoted as Y =Y — AY and X = X' — A%, and named as
forward transformation (1) and backward transformation (2),
respectively,

Ns

i 30 WY = Y+ Al 50 ¥ = Y47 )
L, j=
Ny

gin > WX =X [+ M4 50 X =X+ 4% )
I,j=

where A > 0 is the balance parameter, and the ¢, ;-norm of
1A 2. = % 1A) 12 and [|A¥]lo,1 = Y%, [|AF|l2 represent
the change sparsity regularization.

In the transformation models of (1) and (2), the first terms of
ZN;_l WY, — Y3 and Z” 1W’2||X’ X/ |3 are used
to constrain the transformed images (Y', X’) and original
images (X , Y) to have the same similarity structure on the
unsigned graphs (G’!, G'?). The second terms of ||AY]
and [|[A¥|»,; are used to constrain the changed image to
be sparse in piratical HeCD problem. After completing the
transformation processes, the A and A* can be segmented to
extract the changed regions.

C. Limitations of Unsigned Graph-Based Transformation
Method

Fig. 2 gives a simple example of unsigned graph-based
SCASC [33] and the proposed signed graph base SGIT,
from which it can be seen that SCASC effectively generates
transformed images and DIs in the forward transformation
process. However, it encounters difficulties in the backward
transformation. Importantly, this phenomenon is not unique
to SCASC, there are other methods that also suffer from
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such issues of succeeding in one transformation process but
failing in the other, such as AMDIR [19] and ACE-Net [22],
as evidenced by our experimental results in the Section IV.

This diametrically different performance of forward and
backward transformations has also been noticed in recent
literature [30], [32]. Florez-Ospina et al. [32] found a negative
impact on change detection results when reversing the input
order of pre- and post-event images, prompting them to inquire
in the concluding section: “why is this happening in the first
place, and how can we maintain performance while making the
method invariant to such reversal?” In our previous study [30],
we have attributed this reversal inconsistency to the structural
asymmetry between heterogeneous images, i.e., the structural
complexities of heterogeneous images are different, resulting
in the failure of transforming from a complex structural image
to a simpler one. Furthermore, the recent work [34] has
analyzed this phenomenon from the perspectives of the trans-
formation model itself and the frequency property of the KNN
graph. Contrary to previous studies, this article develops an
analysis of the difference between unsigned and signed graphs
under the perspective of graph signal processing (GSP), and
then proposes a signed graph-induced transformation model,
which is more concise and generalizable. We believe that
our findings could well address the query posted by Florez-
Ospina et al. [32].

We take the failed backward transformation in Fig. 2
as an example for the limitation analysis. In the unsigned
graph G2, it uses the positive weight W,-’j2 to describe the
“similarity” or “attraction” relationships between the inter-
nal superpixels within the image Y. For example, for the
KNN graph, the vertices connected by its edges represent
the same class of objects (when an appropriate k is chosen);
for the fully connected unsigned graph, its edge weight Wl-’j2
reflect the similarity between vertices of Y; and ¥ j» typically
with W/? = exp(—||Y; — Y,[3/0). Based on the structural
cons1stency property, it requlres that the transformed image
(i.e., the unchanged image) X' share the same relationship as
the orlgmal post-event image Y. Therefore, in the unsigned
graph-based backward transformation model (2), it uses the
regularization term of Zle:] W{IX; — X/ 13 to constrain that
the connected vertices of X : and X ’J by graph G’ have the
same similarity relationship as Y; and Y Iz

If we treat the transformed image as a graph signal on
the defined graph, whose feature vector X; denotes the
signal on the ith vertex, then the regularization term of
Zl . W’2||X§ — X’j||% is equal to the total variation (TV) on
the graph G'> [35], which can be regarded as the smooth-
ness penalty term used to constrain the smoothness of the
transformed image )~(, on the graph G'>. However, when
the pre-event image X itself is a smooth signal on G2,
and taking into account the sparse constraint term, then the
output of backward transformation model (2) at this point is
A* = 0 and X’ = X. As shown in Fig. 2, for any Y; and
Y ; in the post-event image that represents the same class
of objects, their corresponding X; and X j in the pre-event
image also represent the same class of objects, implying that
X is smooth on graph G2, which thus leads to the failure of

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on February 21,2025 at 02:41:24 UTC from IEEE Xplore. Restrictions apply.



SUN et al.: SIGNED GRAPH-BASED IMAGE TRANSFORMATION FOR HETEROGENEOUS CHANGE DETECTION

SCASC on backward transformation. Furthermore, consider
an extreme case when the pre-event images entirely represent
the same class of objects (completely smooth on any unsigned
graph), i.e.,, X; = X, Vi, j € {I,--- Ns}, then the output of
model (2) is always A* = 0 and X' = X, which means that
it cannot detect any change at this point, no matter what the
post-event image is and what changes have occurred. It can
be concluded that when the unsigned graph model (e.g., G'?)
constructed on one image (e.g., Y) fails to distinguish between
two heterogeneous images, the transformation model fails in
that direction (e.g., MY — X).

From the above analysis, it can be seen that the rea-
son for the transformation failure is that only the unsigned
graph-induced smoothness penalty of the TV regularization
term (i.e., smoothness on the graph) is utilized, which only
exploits the similarity relationships in the structural consis-
tency between the heterogeneous images, but neglect the
dissimilarity consistency (i.e., variability on the graph). Oppo-
site to the “similarity” or “attraction” relationships within the
image is the notion of “dissimilarity” or “repulsion.” As shown
in Fig. 2, although X exhibits the same similarity relationships
as Y in the graph G2, its dissimilarity relationships differ
significantly from Y, which can be leveraged to detect the
changes.

In this article, when two superpixels represent different
kinds of objects, showing that they are very dissimilar, then we
model this “dissimilarity” with a negative edge. The meaning
of a negative edge is NOT any edge or edge with a small
positive weight; rather, the negative edge implies the connected
samples are expected to have different values. Intuitively,
the penalty term ZlNi:l W{]ZHX; - X |3 with zero (means no
edge) or very small positive weight Wi’j2 has little constraint
on the connected X} and X’. Conversely, the penalty term
ZQ/‘;ZI Wl»’jzllX; — X[ with negative weight W, jz will compel
X and X', to diverge from each other. By incorporating the
pairwise dissimilarity, the signed graph has achieved enhanced
performance across various fields, such as data mining [36]
and social relations analyzing [37]. In this article, we leverage
a signed graph to address the transformation failure or degra-
dation issue due to the unsigned graph, as shown in Fig. 3.

III. SIGNED GRAPH-BASED IMAGE TRANSFORMATION
METHOD FOR HeCD

A. Preprocessing

Since pairwise similarity/dissimilarity relationships need to
be considered, we opt for superpixel as the basic unit in the
proposed SGIT. This choice offers two main advantages: first,
it significantly reduces the number of graph vertices, thereby
decreasing the algorithm complexity; second, it can effectively
utilize the context information and retain the edge contours of
objects.

To segment the multitemporal images into superpixels,
we perform the superpixel co-segmentation procedure as
in [30]. It first constructs a pseudo-RGB image, where the
first two channels are the normalized gray values of the
multitemporal images, and the third channel is all zero-
valued. Then, it employs the GMMSP [38] to segment the
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6.} [ Superpixel segmentation ] 3
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Signed graph based Signed graph based
structure representation structure representation
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SGIT based;HeCD
Signed graph based
image transformation

Signed graph based ]

Transformed
image

Transformed
image

Change map

Fig. 3.  Framework of the SGIT for HeCD.

pseudo-RGB image into superpixels with the segmentation
map A. By mapping A into the multitemporal images, the
co-segmented superpixels of )~(i and f'i, i=1,2,..., Ny are
generated as

X~vi = {im,n,h'(m’n) €A, br=1, "”Bl}
Yi={Fmunlim,n) e Ai,by=1,..., By}. 3)

In this manner, X; and Y; belong to the same geographic area
and are each homogeneous inside with high probability. After
the superpixel co-segmentation, the median and mean values
are extracted as superpixel features to compose the feature
matrices of X € R?2>Ns and Y € R2B2xMs,

B. Structure Representation by Signed Graph

Previous structure-based HeCD methods focus on the use of
unsigned graph models to characterize the similarity relation-
ships of the image, such as the KNN graph [27], self-similarity
graph [33], adaptive local structure graph [33], and the graph
convolutional network [32], [39]. Here, we utilize a signed
graph to capture image structure, which uses positive edge
weights to portray similarity relationships and negative edge
weights to portray dissimilarity relationships within the image,
respectively.

We define the signed graph as G+ = (G4, G_), where G, =
WV,&:) and G- = (V,E_) are two subgraphs that encode
positive and negative links, respectively, with a common vertex
set V = {1,2,..., Ns}. The weighting matrix W of the
signed graph can be decomposed into Wy = W + W_ with

W:t,ijs lf W:I:,ij > O
W+,ij = .
0, otherwise
and
W _ WiJ'j, if Wi,[j <0
-y 0, otherwise.
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1) Graph G, With Positive Edge Weights: In the signed
graph G, it uses the positive edge weight to describe the
“similarity” or “attraction” relationships between superpixels,
i.e., the subgraph of G, . Starting with the pre-event image X
collected at time #;, we initially build a probabilistic graph
Qﬂ that connects each superpixel with similar neighbors with
positive weight matrix W’+1, which follows the model used in
SCASC [33] as:

N
. . 2
min > dist W +a (W)
W iim1
Ns
s.t. Z wili=1, 0<w{, <1 (4)
j=1

where dist;; represents the feature distance with dist;; = [|X; —
X j||§, and o > 0 is a control parameter that determines the
number of neighbors. The closed-form of W’+1 can be obtained
using the solution method in [33] with

- dist'f(j) .

A k . ) =
kdlstf(k+1) — > et dlstf(h)
03

disti )

Wi = )
j>k
where dist; ;, denotes the jth smallest distance in the vector
dist] = {distfj|j =1,..., N}, and the symbol (j) in W_fqi(_i)
and dist; ;) denotes the index of the jth smallest value.

Therefore, it can be noted that Qﬂrl is actually also a KNN
graph model. To choose an appropriate number of neighbors k&
for each superpixel, we use the following steps similar to [33].

1) Define the maximum and minimum number of possible
neighbors as kmax = [+/Ns] and kpin = [+/Ns/10],
where [-] denotes the upward rounding. Then, we find
the knyax nearest neighbors for each superpixel.
2) Compute the in-degree 1d(i) for the ith superpixel,
i.e., the number of times of X; appears in the Kkpax-
nearest neighbors of other superpixels.
Finally, the number of neighbors for each superpixel
is set to be k; = min{kyay, max{kmin, Id(i)}}. This
data-dependent neighbors selection and edge weights
calculation (5) can help the subgraph G| adaptively cap-
ture similarity relationships. Similarly, we can construct
the probabilistic graph G} for the post-event image Y
with the same step as G}, and obtain the positive edge
weights W’f

2) Graph G_ With Negative Edge Weights: In the signed
graph, it uses the negative edge weight to describe the “dis-
similarity” or “repulsion” relationships between superpixels,
i.e., the subgraph of G_. In the recent previous work of [34],
we have proposed a k-farthest neighbors (KFNs) graph to
capture the dissimilarity relationships within the image. For
example, in the pre-event image, the KFN graph G'"/ con-
nects each superpixel with its k-most different superpixels with
weight Wl.t(lj’)f . That is, if and only if distance dist; ;) belongs to
the k-largest values in the vector distﬁl, then the jth superpixel
will be connected with the ith superpixel, i.e.,

1
s )L
Wiy = {0’

2)

3)

Ns —k < j < Ng
J = Ns—k.
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By selecting the k-most different superpixels as neighbors,
the KFN graph is able to guarantee that the vertices connected
by its edges are all representing different kinds of objects.
However, this KFN graph also introduces a very serious
drawback: each vertex is likely to be connected to only a
very small number of classes or even to the same class of
superpixels. In other words, the ith superpixel connected k-
most different superpixels of {X’ j|Wit(1jf)‘ =1,j € V} have a
high probability of belonging to the same kind of objects. This
limitation hampers the graph model’s capacity to delineate
dissimilarity relationships effectively, as our primary intention
is to have each vertex connected to vertices representing a
diversity of different kinds of objects.

Different from the previous KFN graph, we employ the
negative sampling strategy to construct the dissimilarity graph
G'', which consists of two steps: 1) determine the range
of candidate dissimilar neighbors for the ith superpixel as
C = {X'(j)|q < j < Ns}, with (j) denoting the index of
the jth smallest value in distance vector dist] and g being
empirically set to 2Ns/3 and 2) set the sampling probability
of candidate neighbor superpixels for the ith superpixel as

Pi(j)
: X : X
dlStl»(j) — dlSti(q)
N . . s
Zniqﬂ distj,,) — (Ns — q)dlstf(q)
0,

Ny—q <j=<Ns

Jj<Ns—gq.
(6)

Then, we randomly sample kp,x superpixels from C; with this
Di¢j) as the neighbor to construct negative edge with weight
Wt l’i( 5y = —1/kmax. This negative sampling-based neighbor
selection strategy can help each vertex connect vertices rep-
resenting different classes of objects, which improves the
graph model’s ability to portray dissimilarity relationships.
In a similar manner, we can build the dissimilarity graph
G for the post-event image, and obtain the negative edge
weights W2,

3) High-Order Signed Graph: To capture the high-order
similarity/dissimilarity structure feature of image, we build
high-order signed graphs G,+ = (Gu4,Gy—) based on the
above subgraphs of G, and G_. We propose two neighborhood
expansion strategies based on the well-known balance theory
in social psychology [40], [41], which posits that social
relationships adhere to four rules: “the friend of my friend
is my friend,” “the enemy of my friend is my enemy,” “the
friend of my enemy is my enemy,” and “the enemy of my
enemy is my friend.”

For the high-order subgraph G, we use the neighborhood
expansion strategy of “the neighbors of neighbors are also
considered as neighbors” similar to the first rule in balance the-
ory, which helps to construct a high-order probabilistic graph
connecting more pairwise similar superpixels truly represent-
ing the same kind of objects. For example, the second-order
subgraph G5\ = (V, £11) is defined with

(., j)e&h; if @ ))&l

or (i,u)e&l, @ je&l. (7
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The weighting matrix of h-order graph Q’l
Wil = (@i,) " o, @®
where QIT Zh (Wil )" and @’14_ is a diagonal matrix
with dlagonal elements of D!! i = Z ! +ij
For the high-order subgraph Gj_, We use the neigh-
borhood expansion strategies of “the dissimilar-neighbors
of the similar-neighbors are also dissimilar-neighbors” and
“the similar-neighbors of the dissimilar-neighbors are also
dissimilar-neighbors” like the second and third rules in balance
theory, respectively, which helps each vertex to connect more
dissimilar vertices that represent different kinds of objects.
For example, the second-order subgraph of G U=y, 5517) is
defined with

(i, j) e &Y if (G, j)e&!

is computed as

or (i,u) €&, (u,j) e Eﬁ

or (,u) €&, (u,j)eé& ©)
The weighing matrix of A-order graph Gi!
—@ ) oAl

where A}l denotes the adjacent matrix, D). denotes the
diagonal degree matrix, and W!! represents the random walk
matrix of the graph g;ll_

Using these two neighborhood expansion strategies,
we obtain the high-order signed graph of Gi = (G}, Gil),
which can connect more similar and dissimilar neighbors with
positive and negative weights, respectively. In a similar man-
ner, we build the high-order signed graph Gi% = (gh i g;f_)
for the post -event image, and obtain the edge weights of Wﬁr
and W' | whose the positive and negative edge weights are
exploited to capture the attraction and repulsion relationships
within the image, respectively.

Furthermore, it is noteworthy that we do not use the
fourth rule of balance theory in our neighborhood expansion
strategies. This is due to the fact that in remote sensing
images, there are numerous object classes (much more than
just two), so we can’t judge whether the dissimilar-neighbor
of the vertex’s dissimilar-neighbor is a similar-neighbor or a
dissimilar-neighbor (i.e., whether it belongs to the same object
class as the vertex).

is computed as

W = (10)

C. Signed Graph-Based Transformation Model

For image transformation-based HeCD methods, they trans-
form image from one domain to the other domain to make
heterogeneous 1mage comparable, defined as M;: X >VY
and M»:Y — X'. In the proposed SGIT, since the super-
pixel features are employed for representing the images, it is
necessary to establish the transformation function between
feature matrices as 7;:X — Y and 75:Y — X/, with Y/
and X’ denoting the transformed feature matrices. By defin-
ing the operator for extracting the superpixel feature as
F and the operator for recovering pixel values from the
feature as F !, the image transformation process can be
described as

Forward ./\/lle/ = .7:_1’71]:()})
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Backward My:X = ]—"71’]5.7-'(17). (11)
Next, we detail these two transformations.

1) Signed Graph-Based SCR: Since the transformed images
can be regarded as the assumed unchanged images, they retain
the similarity/dissimilarity relationships within the original
images based on the structural consistency property between
tl~1e heterogeneous images. Therefore, the transformed images

X and Y' have the same property with the original images Y
and X on the signed graph G2 and G!'., respectively.

Take the forward transformation (11) as an example, accord-
ing to the signed graph construction process of Gil., if the
superpixel pairs X; and )~( in the original image are connected
with positive edge Wﬁ_ ;j (ie., connected by subgraph gt )
then they are most likely to belong to the same kind of objects
and accordingly the corresponding superpixel pairs Y ; and
Y/] in the transformed image also belong to the same kind
of objects, and the difference between their feature vectors
of Y; —Y; should be very small. On the contrary, if the
superpixel pairs in the original image are connected with the
negative edge (i.e., connected by subgraph G!!), then they
are most likely to belong to the different kinds of objects,
and accordingly the corresponding superpixel pairs in the
transformed image also belong to the different kinds of objects,
and showing very different feature vectors.

In Appendix A, we analyze that previous conventional
signed graph smoothness constraints cannot be used directly in
the image transformation-based HeCD. In this article, we use
the following signed graph-based structural consistency reg-
ularization (SCR), which contains similarity and dissimilarity
regularization terms by utilizing the positive and neglect edges,
respectively, defined as

Z h+ ij ’Y Y/ | + Z W/tl— 1] (HY; _Y/j||2) (12)

i,j=1 i,j=1

where f(-) is a defined function.

In (12), the first term is equal to 2Tr(Y/L;,1+Y’T), i.e., the
commonly used smoothness regularization for the unsigned
graph. This term also corresponds to the first regularization
term in the positive graph construction process of (4) which is
utilized to constrain that the transformed Y and Y connected
by g represent the same kind of objects.

In (12) the second term is used to penahze the similarity of
the transformed Y and Y connected by Gi! | which prompts
Yl and Y, ; to represent the different kinds of objects. There-
fore, when designing the penalty function f(d), it is necessary
to consider that its purpose is not to increase the difference
between Y; and Y/j without a clear rationale. In other words,
when Y/ and Y/ connected by Gi! are very similar (indicating
the same type of land cover), f(d) should 1mpose a large
penalty on them; however, when Y’ and Y are not very
similar (indicating they already belong to dlfferent land cover
classes), f(d) should no longer penahze them, otherwise it
will introduce errors if Y and Y were further separated
apart. So, the value of penalty functlon — f(d) should be large
around d = 0, and relatively stable and approaching O when d
is relatively larger. For example, the following penalty function
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Fig. 4. Histogram of vertex feature distance on the graph gthﬁ with different

images: (a) pre-event image x" , (b) post-event image X t2,

image ¥

and (c) post-event

can be used as a reference:

T ="

where € > 0 is a small parameter that tunes the gradient of
the penalty function. In this article, we set € being the average
feature distance between superplxels Y;and Y; i (@, ]) €eé
connected by the subgraph G2 et

2) Distribution-Induced Reweighted Graph Laplacian
Term: The signed graph-based SCR of (12) describes
the structure connection between the transformed image
and image from the source domain, that is, the structural
consistency between Y and X. Next, we consider the
structural associations between transformed images and
images from the target domain, that is, Y and 17', X' and X.

In the signal decomposition model, it decomposes the orig-
inal feature matrices (X, Y) into transformed feature matrices
(X', Y') and changed feature matrices (A*, AY), denoted as
X=X —-A"and Y =Y — A”. To explore the structural
associations/differences between the transformed images and
images from the target domain in a more rigorous mathemat-
ical manner, we further seek the statistical descriptions of the
feature distance between vertices. As an illustrative example,
Fig. 4 shows one pre-event image and two post-event image,
denoted as X tl, X [2, and f’tz, respectively, where X i and X'
are homogeneous images from the same domain. We construct
a high-order probabilistic graph g” for pre-event image
and then examine the vertex feature distance distributions of
different images on this graph G\t

The histogram of vertex feature distance on different images
is shown in Fig. 4, where the x-axis is the feature distances of
X4 X3, X2~ X213, and Y2~ Y2(3 with . /) € &)L,
and the y-axis is the fractions of feature distances for different
vertices. From Fig. 4, we can make the following important
observations.

Both the post-event images of X and Y have bimodal
distributions of vertex feature distances in the similarity graph
g,’q* constructed on pre-event image X' "

In the backward transformation process (11), it aims to
translate the post-event image to the domain of the pre-event
image to obtain the transformed image. Therefore, in Fig. 4,
the post-event X" can be regarded as the ideal transformed

13)
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Fig. 5. Curves of the RGLR.

image of the output of the backward transformation. Conse-
quently, we can obtain the following conclusion.

The transformed image should have a bimodal distribution
of vertex feature distances in the similarity graph constructed
on the image from the target domain.

The bimodal distribution property implies that the feature
distance between vertices is either very large or very small.
This property can be obtained by qualitative analysis in
addition to being visualized through Fig. 4. For the unchanged
vertices in the graph Q,’fJr based on the nature of structural
con51stency and 51m11ar1ty graph, it requires that the connected
vertices X and X in transformed image should be also very
similar, leadmg to a small feature distance. However, when one
of the vertices changes and the other does not, we have that X
and )~(/j in the transformed image should be very dissimilar,
leading to a large feature distance. In other words, it is the
change that causes this bimodal distribution.

To exploit this bimodal distribution property, we add
a distribution-induced RGLR to the transformation model,
defined as

X

||RGL = 2Tr(X/£ (X/)X/T)

2

(P

Z W(XG. X)X - X|
i,j=1

where £(X') is a functionalized Laplacian matrix of X' and
WX, X;-) is defined as
WX, X)) = Wik exp(=|X; = X [3/os). (15

Then, for the vertices connected by gh +» the regu-
larizer can be rewritten as W(X], X;)HX; - X3

Wl dist]; Cexp(— dlSt”/G ) with dlSt _, IX; — X3, which
has two minima at dlSt»» = 0 and dlSti ;. — +o0, and one
maximum at distjC = o0;}, as shown in the curve of Fig. 5.
Therefore, we can find that this reweighted graph Laplacian
term IX'|lrgL (14) prompts the backward transformed image
X' to follow a bimodal distribution of vertex feature distances
in the similarity graph Gi! » constructed on pre-event image,
which pushes for smaller values of distj‘; when dist)"f
and larger values of distfj’ when distfjf > o0;. In add1t10n o' y
can be regarded as a judgment threshold. In this article, we set
oj; = distyy . + distj ., that is, the sum of the kmaxth
smallest values of the feature distance vectors dist; and dist;
of the original pre-event image.

<c7~’“
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Similarly, for the forward transformation (11), we can define
the reweighted graph Laplacian term ||Y'||rgL as

1Y llrar, = 2Tr(Y’£(Y’)Y’T)

S WYY -

i,j=1

(16)

This ||Y'||rcL can prompt the transformed image Y' to follow a
bimodal distribution of vertex feature distances in the subgraph
G2 built on the post-event image.

3) Change Sparsity Term: Similar to the previous trans-
formation methods [33], we introduce a change sparsity
regularization (CSR) that constrains the change image to be
sparse, i.e., only a small number of pixel values are nonzero.
Intuitively, the ¢;¢-norm regularization, i.e., ||A*||20 and
| AY|2.0 that equals the number of changed superpixels, should
be used as the CSR. However, given that the nonconvexity
of ¢, p-norm will make it difficult to solve the optimization
model, we use the convex relaxation forms of ||A*|,; =
S IAT Iz and [[AY 12,1 = 3015, 1A [1> instead.

4) Objective Function and Change Extraction: By incorpo-
rating the SCR (12), RGLR (16) and CSR, we have the signed
graph model-based forward image transformation as

min 2Tr(Y'LY, YT) +ozljzl Wil i f (!Y/ Y}||z>
+ B [|ggr + Al A7),

st. Y=Y+A" (17)

where «, 8, A > 0 denote the weighting parameters.

It could be seen from (17) that the first term of similarity
regularization prefers to output smooth Y’ on the graph Q%L
such as Y’ = 0, the second term of dissimilarity regularization
prefers to output nonsmooth Y’ on the graph G!! | the third
term of distribution-induced RGLR prefers to output bimodal
Y’ on the graph g,gi, the last term of change sparsity reg-
ularization prefers to output the unchanged Y’ of Y =Y.
Therefore, we can observe that the regularization terms in (17)
are antagonistic to each other, which can help the model output
stable results.

Similarly, for the backward transformation process, we have
the following model:

min 2Tr (XL XT) +ozljzl Wit i f (!X/ X}||z>
+ BIX|ggr + Al AT,

st. X' =X+ A", (18)

The minimization problems of (17) and (18) can be
approximately solved by the alternating direction method of
multipliers (ADMM), which is detailed in Appendix A.

Once the transformed feature matrices and changed fea-
ture matrices are obtained from the transformation models
of (17) and (18), we can calculate the transformed images
as X' = FI(X), Y = F- 1(Y"), and compute the forward
and backward DIs as

DIY(m,n) =

DI*(m, n) =  Ns

19)

}(m nepn, i=1,...
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where [|AY||, and ||A}|, indicate the change level of the
ith superpixel in forward and backward transformation mod-
els, respectively. Since the forward and backward DIs both
describe the same change event, they can be fused to
improve change detection accuracy. We employ the MRF co-
segmentation [26] to calculate the final CM, which integrates
DI fusion and DI segmentation into a unified model to simulta-
neously improve the fusion and segmentation effects, yielding
more accurate binary CM. The framework of SGIT is outlined
in Algorithm 1.

Algorithm 1 SGIT-Based HeCD

Input: Heterogeneous images of X s 17, parameters of Ng,
o, B, and A.
Preprocessing:
Segment multitemporal images into superpixels.
Extract superpixel features to compose X and Y.
Structure representation:
Construct the subgraphs of G' and G'? using (5).
Construct the subgraphs of G’!' and G'> by negative
sampling.
Construct the high-order signed graphs of Gl
Image transformation:
Initialize: set A*, AY = 0.
Repeat:
1: Update X’ and Y’ using (25).
2: Update A* and A” using (28).
3: Update R using (29).
Until the stopping criterion is met.
Change extraction:
Calculate the DI* and DI” using (19).
Calculate the CM through MRF co-segmentation.

and ghi

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Experimental Setting

1) Datasets: To test the performance of the proposed
algorithm, we employ five widely used real HeCD datasets
listed in Table I, where the pre- and post-event images are
sourced from different optical sensors (i.e., Datasets #1-—#3) or
different types of sensors (i.e., Datasets #4 and #5). In addition,
these datasets cover different image sizes, different spatial res-
olutions, and different change events as shown in Fig. 6(a)—(c),
which can effectively verify the detection performance of
different methods in different HeCD task scenarios.

2) Evaluation Metrics: We employ two types of metrics to
assess DI and CM, respectively. For DI, we plot its receiver
operating characteristic (ROC) curve and precision—recall (PR)
curve and calculate the corresponding areas under the ROC
and PR curves, denoted as AUR and AUP, respectively. For
CM, we compute its confusion matrix to obtain the true
positive (TP), false positive (FP), true negative (TN), and false
negative (FN), from which we calculate the overall accuracy
(OA), F1-score, and Kappa coefficient ().

3) Parameter Setting: For all the experiment results of the
proposed SGIT, we set the superpixel number Ny ~ 2500, and
fix the weighting parameters as f§ = 4, A = 0.1, and adjust
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TABLE I
INTRODUCTION TO THE HETEROGENEOUS DATASETS

[ Dataset | Sensor (or source) | Date [ Image size (pixels) | Location | Spatial resolution | Change event
#1 Ggggfe Sellit;lsrth ?3]19; 119999 65 388 i ig i é Sardinia, Italy 30m Lake expansion
#2 W}(:ile(;z\l;iizzﬂ 1;1[1211}),/ 5811 32 3888 i 3888 i g Toulouse, France 0.52m Construction
#3 Bou AL ?:;ﬁ: 2011 | 155 x 808 x 10 texas, USA 30m Forest fire
#4 GRoi(;?;SE:rzth gzgf 22%?3 ggg i gg} i ;) Shuguang Village, China 8m Farmland changes
#5 ?;rlrcakSBAl{g _)% ;Eg %883 jﬂgg i gggg i i’ Gloucester, England 0.65m Flooding

the o with a € {2°,2!,22, 2%, 2%}. These parameters will be
discussed in Section IV-C.

B. Experimental Results

1) Difference Images: To fully assess the DI computed by
SGIT in distinguishing changes, we chose five state-of-the-
art (SOTA) comparison HeCD methods, including the AMD
base image regression (AMDIR) [19], sparse constrained
adaptive structural consistency-based method (SCASC) [33],
conditional generative adversarial network (CGAN) [8], the
adversarial cyclic encoder network (ACE-Net) [22], and the
similarity- and dissimilarity-based multimodal change detec-
tion method (SDMCD) [34]. Furthermore, for SCASC and
CGAN, which involve only unidirectional transformation pro-
cesses, we obtain DI for the other direction by swapping the
order of input images.

Fig. 6 shows DIs computed by different methods on the
forward and backward transformations, from which significant
performance differences can be noted between the forward
and backward DIs from the same method. Some methods
achieve good performance in one direction, obtaining high-
quality DI, while completely failing in the other direction,
resulting in poor DI performance. For example, SCASC can
detect changes in forward transformation on Datasets #1, #3,
and #5, but cannot distinguish changes in backward trans-
formation. In addition, ADMIR exhibits similar behavior on
Datasets #1 and #4. Conversely, the performance of backward
DIs of CGAN and ACE-Net on Dataset #5 is much better
than that of forward DIs. This also validates two aspects.
First, the challenge of forward and backward transformations
is different. For example, transformations from complex to
simple scenes and from simple to complex scenes, as well as
transformations from optical to SAR images and from SAR
to optical images, carry different difficulties. Second, it is
necessary to fuse forward and backward DIs, as they both
reflect the same change event and a reasonable fusion will
improve change detection accuracy.

At the same time, it is also found from Fig. 6 that SDMCD
and the proposed SGIT are able to achieve relatively consistent
detection results in both forward and backward transforma-
tions. This is due to the fact that compared to AMDIR,
SCASC, and ACE-Net, which only consider the similarity
relationship, SDMCD considers the dissimilarity relationship
within the image, and constructs a KFN graph to capture the

(a) (b) (© (d) (e) ® () (h)

Fig. 6. Heterogeneous datasets and DIs. From top to bottom, they are
corresponding to Datasets #1—#5, respectively. (a) Pre- and post-event images.
(b) Ground truth. From (c)—(h) are the forward DI’ and backward DI*
obtained by: (c) AMDIR, (d) SCASC, (e) CGAN, (f) ACE-Net, (g) SDMCD,
and (h) proposed SGIT, respectively.

high-frequency image structural features as a complement to
the KNN graph that characterizes the low-frequency structural
features. Different from SDMCD, the SGIT proposed in this
article starts from the difference between unsigned and signed
graphs under the perspective of the GSP, and then constructs a
signed graph model that describes the “attraction” and “repul-
sion” inside the image, which can more fully characterize the
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ROC curves (top row) and PR curves (bottom row) of DIs on different datasets. (al) ROC: Dataset #1. (a2) PR: Dataset #1. (b1) ROC: Dataset #2.

(b2) PR: Dataset #2. (c1) ROC: Dataset #3. (c2) PR: Dataset #3. (d1) ROC: Dataset #4. (d2) PR: Dataset #4. (el) ROC: Dataset #5. (¢2) PR: Dataset #5.

TABLE II
AUR AND AUP OF DIs. THE HIGHEST SCORES ARE HIGHLIGHTED IN BOLD

[ [ Dataset #1 [ Dataset #2 [ Dataset #3 [ Dataset #4 [ Dataset #5 [ Average |

‘ Methods ‘ Forward DI Backward DI ‘ Forward DI Backward DI ‘ Forward DI Backward DI ‘ Forward DI Backward DI ‘ Forward DI Backward DI ‘ Forward DI Backward DI ‘

‘ ‘ AUR AUP AUR AUP ‘ AUR AUP AUR AUP ‘ AUR AUP AUR AUP ‘ AUR AUP AUR AUP ‘ AUR AUP AUR AUP ‘ AUR AUP AUR AUP ‘
AMDIR [19] 0.7953  0.1550  0.4823  0.0598 | 0.7082 0.2636  0.6755 0.2365 | 0.9860 0.8564 0.9819 0.8332 | 0.9218 0.5643 0.6308 0.0898 | 0.6907 0.1033 04751 0.0570 | 0.8204 03885 0.6491 0.2553
SCASC [33] 0.8846  0.3831  0.6883  0.1325 | 0.7931 04575 0.6523 02760 | 0.9637 0.6990  0.5638  0.2689 | 0.9676  0.6947 0.8062 02181 | 0.9711 0.6814 03883  0.0477 | 0.9160 0.5831 0.6198 0.1887
CGAN [8] 0.9225 05505 09572 0.5896 | 0.7729 04362 0.6671 02842 | 0.7303  0.3085 0.9446 0.5968 | 0.8901 02734 0.8525 02701 | 0.5214 0.0726 0.8118 0.2865 | 0.7675 03282  0.8466  0.4055
ACE-Net [22] | 0.8865 0.3679 08769 04175 | 0.7787 04120 0.7193 03071 | 09695 0.7187 0.7768  0.3011 | 0.9336  0.4197 0.7824  0.2039 | 0.5887 0.0832 0.8594 0.3184 | 0.8314 0.4003 0.8030  0.3096
SDMCD [34] 0.9018  0.5850  0.8526  0.4681 | 0.7871 0.5536  0.7844  0.5432 | 09399 0.6906 09718 0.6932 | 0.9679 0.7911 0.8438 02740 | 09288 0.7836 09114 0.6178 | 0.9051 0.6808 0.8728 0.5193

| proposed SGIT | 0.9195 0.6244 09174  0.7143 | 0.8544 0.6379 0.8266 0.5728 | 0.9739 0.8229 09781

0.8289 | 0.9770 0.8165 0.9698 0.5808 | 0.9352 0.8248 0.9251 0.7734 | 0.9320 07453 0.9234  0.6940 |

image structural features. In turn, it can overcome the detection
inconsistency problem caused by the asymmetric represen-
tation of image structural information caused by unsigned
graph models in the pre- and post-event images. Furthermore,
in contrast to other methods, SGIT more fully exploits the
change prior information inherent in the HeCD problem and
introduces a bimodal distribution-induced regularization in
the transformation model, which improves the accuracy and
robustness of change detection, as verified by DIs obtained by
SGIT in Fig. 6(h).

Fig. 7 plots the ROC and PR curves of DIs generated by
different methods in Fig. 6, where the corresponding AUR
and AUP are presented in Table II. It can be found that
the DIs generated by SGIT can well discriminate between
changed and unchanged. SGIT gains the average AUR and
AUP values of 0.9320 and 0.7453 on forward DI, respectively,
which are 1.60% and 6.45% higher than those of the second-
ranked (SCASC and SDMCD), respectively. At the same time,
the average AUR and AUP values for the backward DI of
SGIT are 0.9234 and 0.6940, which are 5.06% and 17.47%
higher than those of the second-ranked SDMCD, respectively.
From Figs. 6 and 7 and Table II, it can be noted that the DI
obtained by SGIT provides a high capability of distinguishing
between changed/unchanged, which in turn leads to a promis-
ing CM using simple threshold segmentation or clustering
methods.

2) Change Maps: To more fully assess the ability of SGIT
to detect changes, we compared the CMs produced by different
methods, including not only the five methods of AMDIR,
SCASC, CGAN, ACE-Net, and SDMCD in the DI comparison
but also another five HeCD methods of the fractal projection

and MRF segmentation-based method (FPMS) [18], the circu-
lar invariant convolution model (CICM) [5], the unsupervised
spatial self-similarity difference-based method (USSD) [13],
two fully convolutional networks-based X-Net [22], the code-
aligned autoencoders-based method (CAAE) [21]. For a more
adequate comparison, for those methods that only consider
one-way transformation processes in the original papers (such
as FPMS, CGAN, and SCASC), we use the best results
in their forward and backward transformation processes for
comparison.

Fig. 8 shows the CMs of different methods on Datasets #1—
#5, where the TP, FP, TN, and FN are marked with different
colors for better visual comparison. Table III reports the OA, «,
and F1 of these CMs. Specifically, Dataset #1 reflects changes
in lake expansion, with challenges including “pseudo-changes”
caused by land areas and the loss of details in lake change
contours. Visually, AMDIR, FPMS, and CAAE exhibit more
false alarms, while SDMCD and CICM lose many change
details, resulting in a high miss detection. In comparison,
SGIT, USSD, CGAN, and X-Net detect more change areas
with relatively fewer false alarms. Dataset #2 has a higher
image resolution (0.52 m), richer image details and textures,
and includes more land cover categories (e.g., roads, houses,
trees, ball fields, construction sites, etc.) with an imbalanced
percentage. The change scenarios in this dataset are more
complex, resulting in low accuracy for most methods. For
example, AMD and USSD exhibit a large number of false
alarms, while SCASCC, CGAN, and CICM miss a lot of
detections. Nevertheless, the proposed SGIT still achieves
satisfactory results on this dataset, with an F'1 score reaching
0.6868. Dataset #3 reflects changes in forests before and after
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(a)

() () (d)

Fig. 8.

CMs generated by different methods. From top to bottom, they are corresponding to Datasets #1—#5, respectively. From (a) to (k) are the CMs
generated by: (a) AMDIR, (b) SCASC, (c) CGAN, (d) ACE-Net, (¢) SDMCD,

(f) FPMS, (g) CICM, (h) USSD, (i) X-Net, (j) CAAE, and (k) proposed SGIT,

respectively. In the CM, white, red, black, and cyan mark the TP, FP, TN, and FN, respectively.

TABLE III

OA, Kk AND F1 OF CMs.

THE BEST SCORES ARE MARKED IN RED

‘ M ‘ Dataset #1 ‘ Dataset #2 ‘ Dataset #3 ‘ Dataset #4 ‘ Dataset #5 ‘ Average ‘
ethods

\ | oa K FI | OA K FI | OA K FI | OA K FI | OA ” FI | OA K Fl |
AMDIR [19] 0.7994  0.2551 0.3280 | 0.7244  0.2588  0.4106 | 0.9845 0.9188  0.9275 | 0.9502 0.5722 0.5969 | 0.7821 0.1709  0.2538 | 0.8481 0.4352  0.5034
SCASC [33] 0.9468  0.5933  0.6214 | 0.8917 0.4638 0.5163 | 0.9703 0.8453 0.8620 | 0.9792 0.7407 0.7514 | 0.9725 0.7738 0.7885 | 0.9521 0.6834  0.7079
CGAN [&] 0.9653  0.7235 0.7420 | 0.8629 0.3382  0.4025 | 0.9204 04819 0.5216 | 0.9426 0.4020 0.4321 | 09110 0.3645 04123 | 0.9204 04620 0.5021
ACE-Net [22] 0.9584  0.6740 0.6961 | 0.8643 0.3893  0.4605 | 0.9608 0.7896 0.8114 | 0.9539  0.5858  0.6091 | 0.9009 0.4469 0.4968 | 0.9277 0.5771 0.6148
SDMCD [34] 09642  0.6716  0.6905 | 0.9189 0.6381  0.6828 | 0.9540 0.7434 0.7688 | 0.9823 0.8102 0.8194 | 0.9820 0.8432 0.8528 | 0.9603  0.7413  0.7629
FPMS [18] 09385 05932 0.6245 | 0.8265 0.2688  0.3681 | 0.8300 0.0195 0.1122 | 09382 0.5692 0.5970 | 0.9703 0.7705 0.7863 | 0.9007  0.4443  0.4976
CICM [5] 0.9425 0.4509 0.4809 | 0.8666 0.2702  0.3208 | 0.9834 0.9091 09183 | 09739 0.7453  0.7588 | 0.8960 0.3711  0.4230 | 0.9325 0.5493  0.5804
USSD [13] 0.9645 0.7257 0.7445 | 0.6939 0.2144  0.3793 | 09161 0.6317 0.6781 | 0.9422 03756  0.4059 | 0.5780 0.0837 0.1865 | 0.8189  0.4062  0.4789
X-Net [22] 0.9671 0.7226  0.7401 | 0.8683  0.4626  0.5382 | 0.9661 0.8147 0.8335 | 0.9639 0.6513 0.6699 | 0.8777 0.3407 0.4014 | 0.9286 0.5984  0.6366
CAAE [21] 09301 0.5335 0.5692 | 0.8609  0.3731  0.4459 | 09745 0.8606 0.8748 | 0.9432 0.5403 0.5679 | 0.8444 0.0136 0.0688 | 0.9106 0.4588  0.5053

‘ proposed SGIT ‘ 0.9708 0.7386  0.7542 ‘ 0.9197  0.6425  0.6868 ‘ 0.9839 09179  0.9269 ‘ 0.9824  0.8174  0.8267 ‘ 0.9833  0.8545  0.8633 ‘ 0.9680  0.7942  0.8116 ‘

wildfires. With the exception of CGAN and FPMS, which
exhibit a high false-negative rate, most methods could detect
change areas well. The challenges of Dataset #4 lie in detect-
ing changes in farmland and river contours. From Fig. 8, it can
be seen that some methods ignore changes in the river at the
bottom right corner, such as AMDIR, SCASC, SDMCD, and
X-Net. Dataset #5 reflects changes in rivers, whose challenges
include wide image coverage, complex texture features of
objects, and susceptibility to pseudo-changes. As shown in
Fig. 8, SCASC, ACE-Net, SDMCD, FPMS, and SGIT are all
able to detect changes comprehensively, but there are also a
few errors.

Generally, from both Fig. 8 and Table III, the proposed
SGIT not only detects more complete change areas but also
exhibits relatively low false-negative rates. The average «
and F1 values of SGIT are 0.7942 and 0.8116, respectively,

which are higher than those of the second-ranked SDMCD
at 5.29%, and 4.87%, respectively. This can be attributed to
two factors: first, SGIT utilizes a high-order unsigned graph
model for a more comprehensive representation of image
structures; second, it employs bimodal distribution-induced
regularization in the image transformation model for more
effective utilization of change prior information.

In addition, apart from the ten comparison methods in Fig. 8
and Table III, we also list the x values obtained by some other
SOTA methods in Table IV, where we directly quote the results
from their original published papers for the sake of fairness.
Due to the different datasets used in each paper, Table IV is
not aligned. Among these approaches, COMIC [20], C3D [16],
DADR [17], SDCGAE [39], MDCTNet [23], IOECL [9],
and GCDG [32] are deep learning-based methods. As can be
seen from Table V, the proposed SGIT consistently achieves
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(a) (®) (c) (d)

Fig. 9. Transformed images of SGIT on_ dlfferent datasets. (a) Original
pre-event X. (b) Backward transformed X . (¢) Original post-event Y.
(d) Forward transformed Y.

better or highly competitive k across various datasets, further
demonstrating the effectiveness of the signed graph-based
HeCD method.

C. Discussions

1) Similarity Between Transformed and Original Images:
Fig. 9 shows the transformed images obtained by SGIT on
Datasets #1—#5. Comparing the forward/backward transformed
images with the original pre-event/post-event images in Fig. 9,
it can be found that: first, the internal structural relation-
ships between the transformed images and the orlglnal source
domain images are consistent, i.e., X and Y, Y and X
share the similarity/dissimilarity relationships, respectively.
Second, the style of the transformed images is consistent
with that of the original 1mages from target domain, i.e., the
image pixel values of X and X, Y', and Y are comparable,
demonstrating that SGIT can achieve cross-domain image
transformation. Third, the differences between the transformed
images and the original target domain images reflect change
information, indicating that SGIT can utilize the image struc-
ture to accomplish change detection between heterogeneous
images.

2) Parameters Analysis: The main parameters used in SGIT
are the superpixel number of Ny and the weighting parameters
of o and .
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Fig. 10. Sensitivity analysis of parameter Ns.

For the parameter N, it should be determined according
to the image spatial resolution and timeliness requirement
of the change detection task. We vary Ng from 1500 to
6500 with steps of 1000, and plot the corresponding F1
values obtained by SGIT on different datasets in Fig. 10.
Generally, it can be found that the F1 initially rises signif-
icantly as Ny increases from 1500 to 2500, rises slowly as Ng
increases from 2500 to 4500, and stabilizes as Ng increases
from 4500 to 6500. When the Ny is too small, it will result
in the segmented superpixel containing different land cover
types internally, i.e., compromising the homogeneity within
the superpixels. This will make it difficult to extract superpixel
features and lead to inaccurate characterization of the image
structure, which in turn affects the performance of the image
structure-based SGIT. On the contrary, when the value of Nj
increases, although it improves change detection accuracy,
it also increases the size of the graph model, resulting in
increased computational complexity and affecting algorithm
efficiency. As shown in Fig. 10, SGIT is relatively robust
to Ng, which can be attributed to two factors: First, SGIT
is a topological structure-based method that focuses on the
overall structure of the image (i.e., the relationships between
superpixels) rather than the internal features of individual
superpixels. Second, SGIT employs strategies such as adaptive
weighting, negative sampling and neighborhood expansion,
which enhance the representational capability and robustness
of the graph model, reducing its sensitivity to the parameter
Ns. Comprehensively considering the accuracy and timeliness
requirements of the HeCD task, we set Ny = 2500 as a
compromise in SGIT.

For the weighting parameters of « and B, they are employed
for balancing different regularization in the image transforma-
tion model (17). Fig. 11 shows the performance of SGIT with
varying o and B (from 27! to 2° with ratio 2). It can be
found that both forward and backward image transformation
models are relatively robust to the parameter B, which is
suggested to take a reference range from 2° to 23 (we fix
B = 4 in this article). As can be seen from Fig. 11, the
forward and backward image transformations of SGIT require
different values for the «. Taking Dataset #3 as an example,
SGIT needs a larger « in the backward transformation and a
smaller « in the forward transformation. This is because in
Dataset #3, the pre-event image and post-event image exhibit
the same similarity relationships on the unsigned subgraph
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TABLE IV
k OF CMS GENERATED BY DIFFERENT METHODS, WHICH ARE DIRECTLY QUOTED FROM THEIR ORIGINAL PUBLISHED PAPERS

— s e e
COMIC [20] 0.761 IOECL [9] 0.553 serr 0918 C3D [16] 0.877 C3D [16] 0.912
SGIT 0.739 AOSG [27] 0.513 MDCTNet [27] 0902 SGIT 0.817 SGIT 0.854
DADR [17] 0.739 EGSR [29] 0.503 FDMCD [25) 0880 MDCTNet [23] 0.810 SDCGAE [39] 0.795
SDCGAE [39] 0.719 SDCGAE [39] 0.493 COMIC [20] 0.878 FDMCD [25] 0.804 AGSCC [24] 0.766
FDMCD [25] 0.714 AGSCC [24] 0.490 DADR [17] 0878 AGSCC [24] 0.773 AOSG [27] 0.759
GBFCD [42] 0.888

AGSCC [24] 0.658 MDCTNet [23] 0.416 KCCA ] 0,650 GCDG [32] 0.750 GBFCD [42] 0.156
MDCTNet [23] 0.618 GCDG [32] 0.350

(@2)

(b2)

Fig. 11.

(c2)

(d2) (e2)

Sensitivity analysis of parameters « and B. The top and bottom rows are the AUP for forward and backward DIs, respectively. (al) Dataset #1:

forward. (a2) Dataset #1: backward. (b1) Dataset #2: forward. (b2) Dataset #2: backward. (c1) Dataset #3: forward. (c2) Dataset #3: backward. (d1) Dataset
#4: forward. (d2) Dataset #4: backward. (el) Dataset #5: forward. (e2) Dataset #5: backward.

model gf, but exhibit quite different similarity relationships
on the unsigned subgraph model gﬂ. Therefore, in forward
transformation, it is possible to detect part of the change region
using only the unsigned graph model, such as the forward DI
of SCASC in Fig. 6, whereas in the backward transformation,
it is hard to detect changes using only the unsigned graph
model. Consequently, a larger « is needed to enhance the role
of negative edges of the signed graph model in the backward
transformation process.

3) Ablation Study: SGIT mainly contains the structure
representation based on the signed graph and image trans-
formation based on the structural consistency. Compared to
the previous image structure-based HeCD methods (such as
SCASC, SDMCD), the key techniques of SGIT are: the
exploitation of signed graph, i.e., the negative edge-induced
penalty (NEP) in the transformation model (17), and the
exploitation of change-induced bimodal distribution, i.e., the
distribution-induced reweighted RGLR of (14). To analyze the
role of NEP and RGLR in the proposed method, we build a
baseline model: an image transformation model without using
NEP and RGLR, which is similar to the previous SCASC
of (1) and (2).

Table V reports the average quantitative results of Datasets
#1-#5 from the image transformation models with/without
NEP and RGLR. From the results in Table V, it can be found
that the change detection performance of SGIT significantly

TABLE V
ABLATION STUDY OF SGIT, WHERE “BASE” REPRESENTS THE BASELINE

H Forward DI Backward DI Final CM
Settings | AUR AUP | AUR AUP || OA K Fl
Base 09190 05891 || 0.6358 02146 || 09529 06907 07140
Base+RGLR 09231 06433 || 07417 03389 || 09582 07334 07528
Base+NEP 09287 07215 || 09001 0.6260 || 09611 07713 07902
Base+RGLR+NEP || 09320 07453 || 09234 06940 || 0.9680 07942 08116

decreases when NEP and RGLR are not used. Specifically,
by constructing the signed graph proposed in Section III-B
for characterizing the image structure, which uses posi-
tive/negative edge weights to depict the attractive/repulsive
forces between superpixels within an image, respectively, the
image structure can be more adequately represented than
using only unsigned graph model with positive edge weights,
thereby enabling a more accurate image transformation model.
As listed in Table V, when the NEP is employed, SGIT’s
detection performance is greatly improved, especially on the
DI obtained from backward transformation. For example,
the average AUP of backward DI is improved by almost
0.4114 compared to the baseline. This can also be verified
from Fig. 6, where the backward transformation for Datasets
#3 and #5 would entirely fail when only using the unsigned
KNN graph with positive edge weight. By introducing the
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change-induced bimodal distribution-based RGLR into the
image transformation model, the structure of the transformed
image fits the actual distribution better, leading to more
accurate transformed images and DIs. To be specific, when
incorporating the RGLR into the baseline model, the AUP
of forward and backward DIs are improved by 0.0542 and
0.1243, respectively. Furthermore, when both NEP and RGLR
are used, the change detection performance of SGIT is
enhanced even more, with an average « improvement of nearly
0.1035 over the baseline model.

4) Computational Complexity: The main computational
burden of SGIT is concentrated in the structure representation
and image transformation stages. For the former, it requires
O(B; + BZ)NS2) and (9(st log Ns) for computing and sorting
the feature distance matrix, respectively, it requires O(N2)
for computing the positive weighting matrix and negative
sampling probabilities, additionally, it also requires O(N3)
for computing the high-order positive and negative weighting
matrices. For the latter, it requires O((B; + Bz)NSZ) for solving
the X’ and Y’-subproblems, it requires O((B; + B)Ns) for
solving the A* and AY-subproblems, and it also requires
O((B;1 + By)Ns) for updating the Lagrange multipliers. The
computational times (in seconds) for traditional comparison
methods on Dataset #2 (with image size of 2000 x 2000 x 3)
are as follows: AMDIR: 109.6; SCASC: 26.7; SDMCD: 49.1;
FPMS: 92.4; CICM: 113.0; USSD: 795.2; and SGIT: 61.5. The
C++ implementations of FPMS and CICM were executed
on a Linux computer with an Intel Xeon Silver 4110 CPU,
while AMDIR, SCASC, SDMCD, USSD, and SGIT were run
in MATLAB 2016a on a Windows desktop equipped with
an Intel Core 17-8700K CPU. It can be observed that SGIT
demonstrates a moderate level of computational efficiency.
In the future, we will consider employing more efficient
optimization algorithms to solve the image transformation
model, aiming to further enhance the detection efficiency of
SGIT.

V. CONCLUSION

This article focuses on the issue of unsupervised HeCD of
heterogeneous remote sensing images. We first analyze the
limitations of previous methods based on unsigned graphs in
addressing the HeCD problem and find that in some scenarios,
using only unsigned graphs will lead to failure in change
detection due to the limited capability in capturing image
structures. Based on this analysis, this article proposes a signed
graph-based image transformation method for HeCD, which
mainly consists of two processes: structure representation and
image transformation. First, it constructs a signed graph model,
which utilizes positive/negative weights to portray the simi-
larity/dissimilarity relationships within an image, respectively.
Additionally, adaptive weights, negative sampling, and balance
theory-based neighbor expansion strategies are employed to
enhance the structure representation capability of the signed
graph. Subsequently, a structural consistency-based image
transformation model is proposed to decompose the target
images into transformed and changed images, which requires
the transformed image and original image to have the same
structural property on the signed graph. Moreover, this article
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reveals that changes can induce a bimodal distribution of
vertex feature distances in the transformed images, which
is then incorporated as a constraint into the image trans-
formation model to further enhance the model’s accuracy.
Extensive comparative experiments validate the effectiveness
of the proposed method across various HeCD scenarios. In the
future, we will further analyze the properties of different
signed graph models in the graph spectral domain, serving
to guide the construction of signed graphs and propose more
accurate structural constraints to improve the change detection
performance.

APPENDIX A
GRAPH SIGNAL SMOOTHNESS FOR SIGNED GRAPH

In the GSP, for the graph signal Y’ and signed graph with
weight Wil there are three commonly used graph signal
smoothness constraints.

1) The first one is Tr(Y'L}!, Y'T), defined as

Z LA A 1

l]l

Tr(YLLYT) = (20)

where Li!, = DL — (Wil + (Wi')T)/2 denotes
the conventional graph Laplacnan matrix, with D},
being a dragonal degree matrix with D}, =
(1/2) Z Wil ij WhjE ji- This smoothness prior pro-
motes a small difference between the vertices connected
by the positive edges with Wﬁi,i ; >0, and a large dif-
ference between the vertices connected by the negative
edges with W}A_Hi ; < 0. Intuitively, this prior agrees with
the structural consistency property. However, directly
using this smoothness constraint will pose numerical
problems in the transformation model. For example,
it would result in Y; — 400 and Y; — —oo when
WL ;; is negative.

2) The second commonly wused constraint utilizes
the signed graph Lapla01an Lh 4 deﬁned in [36],
where Dhi — (WL + (WiL)HTy /2
with Dh . being a dlagonal degree matrix with
Dy = (DX IWik il + Wik I, Using this
Tr(Y'L

11
Lhi =

t1
4+ Y'T) as the smoothness constraint, we have

Tr(Y’LhiY’T) Z\ Wik | |[Y;—sen(Wik ;)Y |,

1]]

2

where sgn(-) denotes the sign function. Since the signed
Laplacian matrix L, ne 18 positive-semidefinite, the func-
tion of (21) is convex, which is beneficial for the
solution of the image transformation model. However,
the penalty term of [|Y; — sgn(W}L DY [5 with nega-
tive edge weight only requires that Y; and Y’ be of the
similar magnitude but of opposite Signs. For example,
Y; = p and Y; = —p will compute this penalty term
to 0, which does not satisfy the requirement of structural
consistency property.
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3) The third alternative constraint uses a generalized graph
Laplacian Lj', , defined in [43], where Lj!, , = Lj' +
Eand Eis a perturbatlon matrix to make Lj!, ¢ to be
positive-semidefinite, and it is setto be & = tI with t =
—Amin and Apip being the smallest eigenvalue of Lh 1
Using this Tr(Y’Lhi, gY’T) as the smoothness constraint,
we have

Tr(YLL Y') =

Z h:l:leY/

1]_1

Ns )
+72_[Yill-

i=1

Yill;

(22)

It can be seen that to make the smoothness constraint
numerically stable, (22) adds a feature energy penalty term
to prevent Y, — 400 and Y, — —oo with negative
WL, ; as in (20). At the same time, it ensures the convex
property of the constraint function because Lzli ¢ 18 positive-
semidefinite. However, this smoothness constraint suffers from
two drawbacks: first, it carries a bias for Y/, i.e., it makes Y’
tend to small amplitude values, which is physically unfounded
and harmful to the image transformation model; second, the
value of Ay, is difficult to determine, i.e., solving for the
minimum eigenvalue of the matrix L', introduces additional
computational complexity.

APPENDIX B
OPTIMIZATION OF TRANSFORMATION MODEL

We utilize the ADMM to solve the transformation model
of (17), whose augmented Lagrangian function is

©(Y', A", R)

=2TI‘<YLh+ ,T +0[Z ]—tj (HY;_Y/JHZ)
i,j=1

+ ﬂHY/HRGL + /\HA)NZ,] + Tr(RT(Y/ -Y- Ay))
+ %HY’ —Y-A3 (23)

where > 0 is a penalty parameter and R € R2B:*Ms i g
Lagrange multiplier. The minimization problem of (23) can
be written as three subproblems.

A. Y'-Subproblem

Minimizing function (23) with respect to Y’ is given by

m1n2Tr(YL Y'T +az /7” (|Y/ Y;Hz)
i,j=1
~Y - A+ R/ulf.

+BY g ++5 1Y 24)

Using the gradient descent method, we can iteratively update
Y’ with an inner loop. Take penalty function f(d)
—(1/(d* + €)) as an example, we have

o(Y) =4Y' (L, +¥) + pn(Y -
Y <Y —£¢(Y)

Y-A')+R
(25)
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where & is a step size, and ¥ = W' — W? with @' ¢ RM*N
being a diagonal matrix with W} = Z (‘~IJ2 + \1'2 )/2 and
W7 being computed by

V3 = pe” 2 (=1 =Y /)

2
—aW' ./ (||Y; ~Yj|[+e) (26)

B. AY-Subproblem

Minimizing function (23) with respect to AY is given by

min &7, 4+ + ¥ ¥~ Ry}

whose closed-form solution is given by Yang et al. [44, Lemma

27)

3.3] as
, A ;
Al = maX{IIQi o ——, 0} Q (28)
wo ) Qill,
where Q = — Y + R/u and we follow the convention
0-(/0)=0.

C. R-Subproblem
Finally, the Lagrangian multiplier is updated by

R<—R+;1,(Y'—Y—Ay). (29)
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