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Abstract— Multimodal change detection (MCD) is an increas-
ingly interesting but very challenging topic in remote sensing,
which is due to the unavailability of detecting changes by
directly comparing multimodal images from different domains.
In this article, we first analyze the structural asymmetry between
multitemporal images and show their negative impact on the
previous MCD methods using image structures. Specifically,
when there is a structural asymmetry, previous structure-based
methods can only complete a structure comparison or image
regression in one direction and fail in the other direction; that is,
they cannot transform or convert from complex structural images
(with more categories) to simple structural images (with fewer
categories). To reduce the influence of structural asymmetry,
we propose a structural regression fusion (SRF)-based method
that simultaneously transforms the pre-event and post-event
images into the image domain of each other, calculating the
forward and backward changed images, respectively. Notewor-
thy, different from previous late fusion methods that fuse the
forward and backward changed images in the postprocessing
stage, SRF incorporates fusion into the regression process, which
can fully explore the connection between changed images and,
thus, improve image transformation performance and obtain
better changed images. Specifically, SRF yields three types of
constraints to perform the fused image transformation: struc-
ture consistency-based regression term, change smoothness and
alignment-based fusion term, and prior sparsity-based penalty
term. Finally, the changes can be extracted by comparing the
transformed and original images. The proposed SRF is verified
on six real datasets by comparing with some state-of-the-art
(SOTA) methods. Source code of the proposed method will be
made available at https://github.com/yulisun/SRF.

Index Terms— Change detection (CD), fusion, image regres-
sion, multimodal data, structural asymmetry.

I. INTRODUCTION

A. Background

CHANGE detection (CD) of remote sensing images aims
at identifying changes on the Earth’s surface by jointly

analyzing two or more co-registered images acquired over the
same geographical area but at different epochs [1]. CD plays
an important role in Earth observation applications, such
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as damage assessment [2], [3], urban development [4], and
environment monitoring [5].

Currently, most research in CD is focused on homogeneous
CD (or named monomodal CD); that is, it is relying on homo-
geneous data acquired from the same sensor under similar
sensing conditions and parameters, such as the homogeneous
CD of optical images [6], synthetic aperture radar (SAR)
images [7], and hyperspectral images [8]. With the rapid
development of remote sensing-related techniques (e.g., new
sensor systems and new data processing methods) and a
more open access mechanism to remote sensing data, current
Earth observation sensors (including satellite-based, airborne-
based, and unmanned aerial vehicle-based) can provide a vast
amount of data from different types of sensors with different
imaging mechanisms, e.g., multispectral images, SAR images,
and hyperspectral images. This places new demands on CD
technology, that is, the development of multimodal CD (or
named heterogeneous CD) [9], [10], [11].

Multimodal CD (MCD) identifies the changes based on
multimodal data, i.e., comparing images acquired by different
sensors, which mainly contains two categories [12]: multi-
source images acquired by different types of sensors, such as
a pair of SAR and multispectral images (e.g., images obtained
from Sentinel-1 and Sentinel-2, respectively), and multisensor
(or named cross sensor) images acquired by different sensors
with the same type, such as two multispectral images obtained
from Sentinel-2 and Landsat-5, or two SAR images obtained
from TerraSAR-X and COSMO-SkyMed, respectively. MCD
can be regarded as a promotion of conventional homogeneous
CD, which can relax the restriction of the homogeneous data
that has some limitations on many real-world applications,
especially in some emergency situations, such as earthquakes
and floods [13], [14], [15].

B. Related Work

Despite its great practical value, MCD encounters a greater
challenge, because it must be capable of comparing remote
sensing images of arbitrary different modalities to identify
changes [16]. Let X and Y be the compared multimodal
images acquired at time t1 (pre-event) and t2 (post-event),
respectively, and let x and y be the data samples drawn from
X and Y at the same position, respectively, which can be
pixels, square patches, or superpixels according to the basic
analysis unit. Since different sensors have different imaging
characteristics/parameters, the acquired multimodal images
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exhibit quite different statistical properties (such as SAR and
optical images), resulting in the inability to detect changes by
directly comparing x and y as in traditional homogeneous CD.
Therefore, MCD aims to make the “incomparable” multimodal
images “comparable,” which is related to the topic of image
transformation [17], [18].

The transformation-based MCD methods first transform the
multimodal images to the common domain and then compare
them in the transformed domain to obtain the difference image
(DI), which can be generalized with the paradigms formulated
as DI =M1(X)⊖M2(Y ) [19], withM1 andM2 denoting the
transform functions and ⊖ denoting the difference operator.

Based on the transformed domain, the MCD methods
can be divided into classification comparison-based, feature
transformation-based, and image regression-based. The classi-
fication comparison-based methods first transform the images
into a common category space by using classifiers of M1 and
M2 trained by samples, and then compare the classification
results [20], [21]. The feature transformation-based methods
first transform the images into a common constructed feature
space as M1 : X → Z or M2 : Y → Z ′ by using traditional
method [22], [23], [24], or latent learned feature space by
using deep neural networks [25], [26], [27], [28], and then
compare the features (i.e., Z and Z ′) to detect changes. The
image regression-based methods first transform one image
to the domain of the other image as M1 : X → Y ′ or
M2 : Y → X ′, and then compare the translated images Y ′

and X ′ and the target images Y and X , such as the traditional
image translation methods [17], [29], [30] and deep translation
methods [31], [32], [33], [34].

C. Motivations

There are three important unique issues of
transformation-based MCD compared with homogeneous CD.

First and foremost, how to obtain the transform functions
of M1 and M2 in the MCD, while the images can be
directly compared without transformation in the homogeneous
CD. Training M1 and M2 relies on the large training sets
under the supervised mode, such as homogeneous pixel trans-
formation (HPT) method [29], graph convolutional network
(GCN)-based method [35], semisupervised Siamese network
(S3N) [36], deep translation with generative adversarial net-
work (GAN)-based method [31], domain adaptation-based
neural network [37], [38], [39], and multiscale UNet-based
method [27]. However, labeling samples is labor-intensive in
practice, particularly for MCD problems, which also require
great expert knowledge. Alternatively, for methods under the
unsupervised mode, they tend to rely on the change prior,
such as the affinity matrix difference (AMD)-guided traditional
image regression [17], convolutional neural networks-based X-
Net and adversarial cyclic encoder network (ACE-Net) [18],
and code-aligned autoencoders (CAEs) [33], [40]. However,
how to obtain an accurate change prior is a challenge itself.

Recently, some unsupervised MCD methods using graph
models have been proposed, which exploit the structure con-
sistency of the multitemporal images in the unchanged regions

to construct the transform functions of M1 and M2. These
methods can be broadly classified into two categories: first,
the structure transformation and comparison-based methods,
which construct a graph for each image to capture the struc-
ture information and then compare the structures by graph
fusion [41], [42] or graph mapping [12], [24], [43], [44];
second, the structural regression-based methods, which require
the structures of the original image X (or Y ) and translated
image Y ′ (or X ′) that are similar [30], [45], [46]. The proposed
method in this article also fits into this subcategory.

However, for these image structure-based transformation
methods, they suffer a great drawback: ignoring the structural
asymmetry, that is, the structural complexity of the pre- and
post-event images is not the same, especially when a new
category of objects appears or when a category of objects
disappears completely between the two images. In these cases,
they can only complete a mapping comparison or image
regression in one direction and will fail in the other direction,
i.e., cannot map or convert from complex structural images
(with more categories) to simple structural images (with fewer
categories). As illustrated by Fig. 3, SCASC [30] can perform
the forward transformation that translates the pre-event image
to the domain of post-event image, but fails the backward
transformation. In this article, we first analyze the structural
asymmetry of compared images and show the reasons why the
previous structure-based methods fail (such as IST-CRF [12],
SCASC [30], FPMS [45], and AGSCC [46]), and then intro-
duce a structural regression fusion (SRF)-based method to
address this drawback.

Second, how to suppress the influence of unknown changed
samples in the transformation, including training the trans-
formation functions of M1 and M2 and completing the
transformation processes of X

M1
−−→ Y ′ and Y

M2
−−→ X ′ when

they are not the individual-pixel-based mappings. In particular,
this issue is rarely mentioned by other studies, probably for
two reasons: first, it is unique to MCD but not homogeneous
CD; second, previous works usually adopt a step-by-step
strategy, i.e., transformations followed by comparisons and
then segmentation, such as HPT [29], X-Net [18], CAE [33],
FPMS [45], INLPG [24], and GBF [41], which hides a
risk that the transformation will be affected by the changed
samples. Even though a few studies have focused on this
challenge, they still need to construct a complex, coarse-to-
refine iterative framework to reduce the changes influence [43],
[47]. For example, in IRG-McS, Sun et al. [43] show that
the changed samples will make the transformation unstable
and the DI confusing, and then, they propagate the detection
results of previous segmentation process back to the structure
transformation process of next round, to gradually alleviate the
influence of changes and correct the final CD results.

Different from the previous complex, redundant iterative
framework, we decompose the original image into a translated
image and changed image in the structural regression model
similar to [30], which can bring two benefits: first, it can
reduce the negative impact of changed samples on image
transformation and directly output the DI by combining the
transformations and comparisons in one model [46]; second,

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 28,2023 at 07:41:18 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: STRUCTURAL REGRESSION FUSION FOR UNSUPERVISED MULTIMODAL CHANGE DETECTION 4504018

it fuses the changes in the regression model with some
constraints to make the output changes more accurate, thus
mutually improving both regression performance and detection
performance.

Third, how to fuse the detection results calculated from
different transformed domains to improve MCD performance,
especially for the image regression-based methods. Intuitively,
for the regression-based MCD, we can compute two changed
images to measure the change level after obtaining the map-
ping functions of M1 : X → Y ′ or M2 : Y → X ′.
However, since the changed images are calculated in different
domains (i.e., X − X ′ and Y − Y ′), we cannot directly
add them as the final result. For the feature transformation-
based MCD, when there are two transformations, such as
the forward and backward transformations in NLPG [22] and
INLPG [24], and the local and nonlocal structural transfor-
mations in SRGRL [44], two corresponding DIs will also
be generated at this time. More importantly, sometimes fus-
ing the changed images is particularly important when the
mapping function is not accurate or robust enough due to
the complex scenarios, training sample limitations, and noise
influence.

In the previous studies, some MCD methods only perform
one transformation and neglect the fusion. For example, the
SCASC [30] and FPMS [45] only translate the pre-event
image to the domain of post-event image, the CDRL [48]
only translates the post-event image to the domain of pre-event
image, the CGAN [34] only translates the optical image to the
domain of SAR image, and the USCD [32] and DHFF [49]
based on image style transfer only translate the SAR image to
the domain of optical image. On the other hand, some methods
fuse the change results after the transformation process similar
to the late fusion; that is, the fusion and transformation are
two separate processes, for example, the direct linear fusion in
NLPG [22], HPT [29], AMD-IR [17], X-Net [18], CAE [33],
and SRGRL [44]; the discrete wavelet transform-based fusion
in INLPG [24]; and the Markov random field (MRF)-based
fusion in the segmentation process of IRG-McS [43] and
IST-CRF [12]. However, none of the fusion results of these
methods can be directly used to improve the transformation
performance (since they perform transformation first and then
fusion), which, in turn, limits the performance of image
transformation, change fusion, and change extraction.

In this article, we propose an SRF model, which fuses
the changes during the image transformation process. Specif-
ically, based on the inherent physical constraints between
changed images calculated from different domains (they are
both characterizing the same change event), we combine the
forward and backward transformations in a single optimization
model and add constraints between the transformations to fuse
the changes and improve the performance of forward and
backward transformations. This can bring two benefits: first,
it combines the two processes of fusion and transformation,
which avoids completing forward transformation, backward
transformation, and change fusion separately. Alternatively,
we only need to solve one regression fusion model. Second,
more importantly, by fusing the changes in the transforma-
tion, we can further reduce the impact of change on the

TABLE I
LIST OF IMPORTANT NOTATIONS

transformation and can overcome the one-way transformation
failure caused by structure asymmetry. That is, by putting
the two mutually reinforcing processes of fusion and trans-
formation in one model, we can simultaneously make the
transformation better and the change extraction more accurate.

D. Contributions

The main contributions of this article are summarized as
follows.

1) We analyze the structural asymmetry of compared
images in the MCD problem and explain why the
previous structure-based methods perform differently in
the forward and backward transformations, especially
for the structural regression-based MCD methods.

2) We propose an SRF-based method for unsupervised
MCD that incorporates the fusion into the combined
regression model of forward and backward transforma-
tions, which can overcome the drawback of the structural
regression caused by the structural asymmetry.

3) We use the HG instead of the normal graph to capture
the high-order information of the image, which can
improve the structure representation.

4) Extensive experiments demonstrate the effectiveness of
the proposed method by comparing with some state-of-
the-art (SOTA) methods.

E. Outline and Notation

The rest of this article is structured as follows. Section II
describes the related structure-based method and analyzes the
structure asymmetry of the images. Section III describes the
proposed SRF in detail. Section IV gives the experimental
results. Finally, we conclude this article in Section V. For
convenience, Table I lists some important notations used in
the rest of this article.

II. STRUCTURE-BASED MCD AND STRUCTURE
ASYMMETRY

Given a pair of co-registered images of different modalities
collected at times t1 (pre-event) and t2 (post-event), denoted as
X̃ ∈ RM×N×bx in domain X and Ỹ ∈ RM×N×by in domain Y ,
respectively, with pixels defined as x̃(m, n, b) and ỹ(m, n, b),
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Fig. 1. Illustration of structure consistency in multimodal images. (Left) SAR
image. (Right) Optical image. The similarity between image parts is reflected
by the thickness of connecting lines. The structures of the unchanged parts of
X̃1 and Ỹ1 are the same, while the structures of the changed parts of X̃2 and
Ỹ2 are different.

respectively, the purpose of MCD is to detect the changed
areas represented by the change map (CM).

Since the proposed method is to use the structure consis-
tency to complete the image regression fusion, we first briefly
review the transformation-based MCD methods using structure
consistency, which contain the structure comparison-based
and structure regression-based, and then analyze the structure
asymmetry in MCD problem.

A. Structure Consistency

As mentioned in Section I, because the multimodal images
show quite different characteristics for the same object,
we cannot directly compare the pixel values of x̃ and ỹ to
detect the changes. Therefore, we need to find the connection
between multimodal images and make them comparable.

The structure consistency [24] is based on the inherent
self-similarity property of images, where the “structure” is
characterized by the similarity relationships within the image.
As illustrated in Fig. 1, each image is divided into NS small
parts (such as square patches [22] or superpixels [43]) with
the same segmentation form. Then, for one of the images
(e.g., pre-event X̃), if the parts of X̃i and X̃ j represent the
same kind of objects, showing that they are very similar,
and neither of them has changed, then the corresponding
pair of Ỹi and Ỹ j in the other image is also very similar,
as they also represent the same kind of objects. On the
contrary, if X̃i has changed during the event, this similarity
relationship is no longer conformed by Ỹi . Since this nonlocal
similarity relationship within the image itself can eliminate the
discrepancy across different imaging modalities, the structure
can be well preserved between multimodal images and can be
used to establish the connection between multimodal images
to make them comparable, using structure comparison or
structure regression.

B. MCD Methods Using Structure Consistency

1) Structure Comparison: For the structure comparison-
based methods, such as INLPG [24], IRG-McS [43], and
IST-CRF [12], they first construct K -nearest neighbor (KNN)
graphs of G t1 and G t2 for images of X̃ and Ỹ to capture
the structure information, respectively, and then project one
graph to the domain of the other image to compute the DIs

Fig. 2. Illustration of structure regression-based SCASC [30].

similar to

f fw
i =

1
K

∣∣∣∣∣∣
NS∑
j=1

(
At1

i, j − At2
i, j

)∣∣Dt2
i, j

∣∣∣∣∣∣∣∣
f bw
i =

1
K

∣∣∣∣∣∣
NS∑
j=1

(
At1

i, j − At2
i, j

)∣∣Dt1
i, j

∣∣∣∣∣∣∣∣ (1)

where f fw
i and f bw

i represent the forward and backward
change level of the i th vertex (i.e., superpixel or square patch),
respectively; At1 and At2 represent the adjacent matrices of
G t1 and G t2, respectively; and Dt1

i, j and Dt2
i, j represent the

feature difference vectors (e.g., IST-CRF [12]) or feature
distance (e.g., INLPG [24] and IRG-McS [43]) between X̃i

and X̃ j , and Ỹi and Ỹ j , respectively. Intuitively, the forward
f fw
i and backward f bw

i calculate the structure difference by
measuring how different the adjacent matrices of At1 and At2

are in the image differential domain.
2) Structure Regression: For the structure regression-based

methods, such as SCASC [30] and AGSCC [46] in Fig. 2,
they first construct a KNN graph G t1 for the pre-event image
X̃, and then translate X̃ to the domain Y of post-event image
by a structural regression-based image decomposition model
as follows:

min
Y′,1y

NS∑
i, j=1

∥∥Y′i − Y′j
∥∥2

2
St1

i, j + λ
∥∥1y

∥∥
2,1

s.t. Y = Y′ −1y (2)

where Y′ represents the feature of regression image Ỹ′, 1y

represents changed feature matrix, St1 represents the weighing
matrix of G t1, and λ > 0 is a regularization parameter. The
first regularization term of

∑NS
i, j=1 ∥Y′i − Y′j∥2

2St1
i, j is used to

constrain the regression image Ỹ′ and the original image X̃ to
have the same structure, and the second regularization term of
∥1y
∥2,1 is based on the sparse change prior in the practical

CD problem.
In the previous structure regression-based methods of [30],

[46], and [45], they all only consider the forward regression
that translates the pre-event image to the domain of post-
event image. Similar to (2), we can complete the backward
regression by translating the post-event image Ỹ to the domain
X of pre-event image with the model as follows:

min
X′,1x

NS∑
i, j=1

∥∥X′i − X′j
∥∥2

2
St2

i, j + λ
∥∥1x

∥∥
2,1

s.t. X = X′ −1x (3)

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 28,2023 at 07:41:18 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: STRUCTURAL REGRESSION FUSION FOR UNSUPERVISED MULTIMODAL CHANGE DETECTION 4504018

Fig. 3. Three examples of INLPG [24], SCASC [30], and the proposed SRF. From top to bottom, they correspond to results on the first, second, and third
examples, respectively. From left to right are (a) pre-event image X̃, (b) post-event image Ỹ, (c) ground truth, (d) forward DI of INLPG, (e) backward DI
of INLPG, (f) forward regression Ỹ′ of SCASC, (g) forward DI of SCASC, (h) backward regression X̃′ of SCASC, (i) backward DI of SCASC, (j) forward
regression Ỹ′ of SRF, (k) forward DI of SRF, (l) backward regression X̃′ of SRF, and (m) backward DI of SRF. In Example 1, all three methods of INLPG,
SCASC, and SRF can detect changes, as there is no structural asymmetry in either pre-event image or post-event image. In Example 2, the forward and
backward comparisons of INLPG or regressions of SCASC can only detect partial changes because of the structural asymmetry between the pre-event and
post-event images. For the marked i in (a2)–(c2), there is Cx

i ⊆ C y
i , so the change of i cannot be detected in the forward DIs of INLPG and SCASC; for the

marked j in (a2)–(c2), there is C y
j ⊆ Cx

j , so the change of j cannot be detected in the backward DIs of INLPG and SCASC. In Example 3, because C y
i ⊆ Cx

i
holds for any i , the backward comparison of INLPG or regression of SCASC cannot detect changes at all. Meanwhile, in Examples 1–3, INLPG and SCASC
are able to detect changes for regions where there is no structural asymmetry. However, the proposed SRF can detect all changed regions in both forward
regression and backward regression, regardless of the presence of structural asymmetry.

where X′ represents the feature of regression image X̃′, 1x

represents the changed feature matrix, and St2 represents the
weighing matrix of KNN graph G t2 constructed for image Ỹ.

3) Simple MCD Example: In Fig. 3, we show three dif-
ferent MCD results of structure comparison-based method
of INLPG [24] and structure regression-based method of
SCASC [30]. In the first experiment, we can find that both
INLPG and SCASC can detect the changes well, both in
forward and backward comparisons or regressions. However,
in the second experiment, the forward and backward compar-
isons of INLPG or regressions of SCASC can only detect

partial changes, and in the third experiment, the backward
comparison of INLPG or regression of SCASC cannot detect
changes at all. The three examples in Fig. 3 also demonstrate
the importance of fusion (such as the transformation fusion,
regression fusion, and the DI fusion). Next, we will analyze
the reasons why these structure-based MCD approaches fail
in certain scenarios.

C. Structural Asymmetry

Taking a deeper analysis of the second and third experiments
in Fig. 3 again, we can find that there is a common factor
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where the structure comparison or regression fails: for the
undetected changed region, there is a structural asymmetry
between the compared multitemporal images.

Definition of Congeneric Sets: For X̃i , Ỹi , i ∈ I with I =
{1, . . . , NS}, we define the congeneric sets for X̃i and Ỹi as
the index sets of the following:

Cx
i =

{
j | j ∈I, X̃i and X̃ j represent the same type of object

}
C y

i =
{

j | j ∈I, Ỹi and Ỹ j represent the same type of object
}
.

(4)

Easily, we have X̃i and X̃ j , j ∈ Cx
i , that are very similar;

and Ỹi and Ỹ j , j ∈ C y
i , that are also very similar.

Definition of Structural Asymmetry: For the i th part of
images, if Cx

i ⊆ C
y
i , we say that the structure of X̃i is contained

in the structure of Ỹi ; on the contrary, if C y
i ⊆ Cx

i , we say
that the structure of Ỹi is contained in the structure of X̃i .
We define that there is a structural asymmetry between two
images if this structure containment phenomenon exists in
them, i.e., there exists i ∈ I, such that Cx

i ⊆ C
y
i or C y

i ⊆ Cx
i .

For the i th part of image, as At1 is the adjacent matrix
of the KNN graph G t1, then we have {h|h ∈ I, At1

i,h ̸= 0} ⊆
Cx

i . When Cx
i ⊆ C y

i , then we have Ỹi and Ỹ j , j ∈
{h|h ∈ I, At1

i,h ̸= 0} or j ∈ {h|h ∈ I, St1
i,h ̸= 0}, which also

represent the same type of object.
Then, we can find that if Cx

i ⊆ C y
i and the i th part of

image is changed, then the forward structure comparison and
regression will fail.

First, for the forward comparison of (1), if Cx
i ⊆ C

y
i , then

At1
i, j |D

t2
i, j | is very small, because Ỹi and Ỹ j , j ∈ {h|h ∈

I, At1
i,h ̸= 0}, represent the same type of object; then, the

change level of the changed i th vertex calculated by the
structure difference (1) is very small (because At2

i, j |D
t2
i, j | is very

small due to the nature of KNN graph). Therefore, the forward
comparison cannot detect the changes when the structure of
this changed X̃i is contained in the structure of Ỹi .

Second, for the forward regression of (2), if Cx
i ⊆ C

y
i , then∑NS

j=1 ∥Yi − Y j∥
2
2St1

i, j is very small, because Ỹi and Ỹ j , j ∈
{h|h ∈ I, St1

i,h ̸= 0}, represent the same type of object. With the
change penalty of ∥1y

∥2,1, we have Y′i = Yi and 1y
i = 0 for

the changed i . Therefore, the forward regression fails when
the structure of this changed X̃i is contained in the structure
of Ỹi .

Similarly, we can also find that if the structure of changed
Ỹi is contained in the structure of X̃i , then the backward
comparison and regression will also fail. At the same time,
as shown in Fig. 3, when the structure Ỹi is not contained in
the structure of X̃i , the backward comparison and regression
can detect the changes well.

D. Fusion of the Regressions

From the above analysis and experiments shown in Fig. 3,
we can find that there is an urgent need to fuse the forward and
backward transformations to eliminate the influence of struc-
tural asymmetric in the structure consistency-based methods.
In the previous methods, the forward and backward DIs are
fused after the transformation process, such as NLPG [22],
HPT [29], AMD-IR [17], X-Net [18], CAE [33], INLPG [24],

IRG-McS [43], and IST-CRF [12], which is a late fusion
process and may carry the risk of worse outcomes after the
fusion. In addition, based on the structural asymmetry, we can
also provide an alternative strategy for this late fusion of
DIs. For example, we can first find out these regions where
structural asymmetry exist, and then assign different weights
to the forward and backward DIs in the fusion according
to the asymmetry. However, regarding the late DIs fusion
in these methods is not the focus of this study. In this
article, we propose a change fusion-based regression method
that fuses the forward and backward regressions in a single
regression model, which means that the fusion and regression
are combined.

III. STRUCTURAL REGRESSION FUSION

In this section, we describe the proposed SRF in detail,
which contains two main parts: how to represent the image
structure and how to complete the fused structural regression
to obtain the DI. Fig. 4 shows the framework of the proposed
SRF.

A. Preprocessing

As aforementioned, we use the pairwise similarity relation-
ships to represent the structure of image. Here, we choose the
superpixel that internally belongs to the same object as the
analysis-based unit, which has two advantages compared with
the individual pixel or square patch: first, the superpixel can
capture the contextual information and preserve the edge of
object; second, the computational complexity can be greatly
reduced by reducing the graph size.

The Gaussian mixture model-based superpixel segmentation
method (GMMSP) [50] is selected to generate the superpixels,
which can efficiently produce superpixels that adhere to object
boundaries in linear complexity with respect to the number of
pixels. In order to obtain the co-segmentation map, we first
construct a false RGB image, where the channels are the gray
pre-event image, gray post-event image, and a zero channel.
Then, the GMMSP is employed to segment the false RGB
image into NS regions with the co-segmentation map 3. Then,
we can obtain the superpixels of X̃i and Ỹi , denoted as follows:

X̃i =
{

x̃(m, n, b)|(m, n) ∈ 3i , b = 1, . . . , bx
}

Ỹi =
{

ỹ(m, n, b)|(m, n) ∈ 3i , b = 1, . . . , by
}
. (5)

Then, X̃i and Ỹi represent the same region, and they are both
internally homogeneous in the multitemporal images of X̃ and
Ỹ, respectively.

Once the superpixels are obtained, different features can be
extracted to represent different information of the superpixels,
such as spectral (intensity), spatial, and textual information.
In this article, we simply extract the mean and median values
of each band as the feature of superpixel (other discriminative
features can also be added). Then, we can obtain the feature
matrices of the multitemporal images, denoted as X ∈ R2bx×NS

and Y ∈ R2by×NS , where each column (Xi and Yi ) represents
the feature vector of the superpixels (X̃i and Ỹi ).
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Fig. 4. Framework of the proposed SRF-based MCD method.

B. Structure Representation

In order to capture the structure information of images,
the KNN-type graphs are constructed. For example,
in SCASC [30], an adaptive KNN probabilistic graph
G t1 is constructed for pre-event image with the weighting
matrix St1, which connects each superpixel X̃i to its ki NNs
with weights St1

i, j , j = 1, . . . , NS . The St1 is calculated by
using the following minimization model:

min
St1

i, j

NS∑
j=1

Dt1
i, j St1

i, j + αi
(

St1
i, j

)2
s.t. 0≤ St1

i, j ≤ 1,
NS∑
j=1

St1
i, j = 1

(6)

where Dt1
i, j = ∥Xi − X j∥

2
2 denotes the distance between two

superpixels of X̃i and X̃ j , and αi > 0 is a balance parameter
that controls the NNs number ki of X̃i . According to the
SCASC, the closed-form solution of St1 can be calculated by

St1
i,( j) =


Dt1

i,(ki+1) − Dt1
i,( j)

ki Dt1
i,(ki+1) −

∑ki
h=1 Dt1

i,(h)

, j ≤ ki

0, j > ki

(7)

where we sort Dt1
i in ascending order as

Dt1
i,(1), Dt1

i,(2), . . . , Dt1
i,(NS)

, and then, ( j) of Dt1
i,( j) denotes

the position of the j th smallest value in Dt1
i . The ki

is adaptively determined by an in-degree-based strategy
proposed in SCASC [30].

In this article, we construct HGs of G t1 and G t2 for images
of X̃ and Ỹ on the basis of the adaptive KNN probabilistic
graphs of G t1 of (7) and G t2 (it is constructed similar to
G t1), respectively. In contrast to the pairwise graph, an HG
can link more than two vertices, which can preserve the
high-order neighborhood relationships between superpixels
and then capture more comprehensively structure informa-
tion [51], as shown in Fig. 4.

Denote V t1 and E t1 as the vertex set and hyperedge set of
the HG G t1

= {V t1, E t1, w}, respectively; we construct the
G t1 by setting each superpixel as a vertex v ∈ V t1 and link
each superpixel with its neighbors as a hyperedge et1

i ∈ E t1

with the associate hyperedge weight w(et1
i ), which is a subset

of the vertex set as et1
i ⊆ V t1. Specifically, with the St1 of (7),

the HG G t1 is constructed as follows:

V t1
= I; et1

i =
{

j |St1
j,i ̸= 0; j ∈ I

}
. (8)

We use a weighted incident matrix Ht1 as Ht1
= St1, which

gives different weights for superpixels X̃ j connected to the
center superpixel X̃i . We set the hyperedge weight w(et1) to be
the mean of heat kernel similarity of the intraclass superpixels
as follows:

w
(
et1

i

)
=

1
ki (ki − 1)

∑
j,l∈et1

i

exp
(
−

∥∥X j − Xl
∥∥2

2

)
. (9)

With this hyperedge weight w(et1), the constructed HG with a
larger average intraclass similarity is assigned a higher weight.
Based on Ht1 and w(et1), the vertex degree for each vertex is
d(v) =

∑NS
i=1w(e

t1
i )H

t1
v,i , and the hyperedge degree for each

hyperedge is ψ(et1
i ) =

∑NS
v=1 H t1

v,i .
Let dt1, ψ t1, and Wt1 denote the diagonal matrices of

the vertex degree, hyperedge degree, and hyperedge weight,
respectively. The unnormalized HG Laplacian matrix is
defined as follows [52], [53]:

Lt1
= dt1

−Ht1Wt1(ψ t1)−1(Ht1)T
. (10)

Similar to G t1 of pre-event image X̃, we also construct G t2
=

{V t2, E t2, w} for post-event image Ỹ and obtain the dt2, ψ t2,
Wt2, and Lt2.
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C. Fused Regression

For the image regression-based MCD, the main goal is to
transform one image to the domain of the other image and
obtain the DI between the transformed image and the target
image. In the structure consistency-based image regression
method, we require the transformed image and the original
image to have the same structure. Since we use the superpixel
as the vertex (basic unit) and extract the features to represent
the superpixel, then we need to find the regression functions
between the two feature matrices. Define the transformation
functions between the domains of feature matrices as M1 and
M2, define the feature extraction operator as F , and define
the pixel value extraction operator as F−1, e.g., extracting
the mean feature from the feature matrix as the pixel value
of each pixel inside the superpixel. Denote the X′ and Y′ as
the transformed feature matrices, and define X̃′ and Ỹ′ as the
translated image. Then, we have the forward transformation
as follows:

Ỹ′ = F−1(Y′
)
= F−1M1(X) = F−1M1F

(
X̃

)
(11)

and have the backward transformation as follows:

X̃′ = F−1(X′
)
= F−1M2(Y) = F−1M2F

(
Ỹ

)
. (12)

Next, we describe these two regression functions of M1 and
M2 and show how to fuse the two regression processes into
one model.

1) Forward Transformation: In (11), it needs to find the
connection between Ỹ′ and X̃. Based on the structure consis-
tency between multimodal images, we have that the similarity
relationships between superpixels within the images are the
same. That is, if two superpixels (X̃i and X̃ j ) in the pre-event
image represent the same kind of object (showing very sim-
ilar), then the transformed superpixels Ỹ′i and Ỹ′j should
represent the same kind of object (with very small differ-
ence/distance). Since the structure information of the pre-event
image is characterized by the HG G t1, then we require that the
transformed superpixels Ỹ′i and Ỹ′j corresponding to the X̃i

and X̃ j within the same hyperedge et1
l of G t1, i.e., i, j ∈ et1

l ,
should be similar to each other. Therefore, we can obtain the
HG Laplacian-based regularization (HGLR) as follows:

NS∑
l=1

∑
i, j∈et1

l

w
(
et1

l

)
H t1

i,l H t1
j,l

ψ
(
et1

l

) ∥∥Y′i − Y′j
∥∥2

2
= 2Tr

(
Y′Lt1Y′T

)
.

(13)

The detailed similar derivation of (13) can be found in the
Supplementary Material of [54]. The HGLR constrains that
the similarity relationships between superpixels of X̃ inside
the same hyperedge of G t1 are preserved by the regression
image Ỹ′.

For the post-event image Ỹ, we can decompose it into a
regression image Ỹ′ and a changed image 1̃y ; then, we have
Y = Y′ − 1y , where 1y

∈ R2by×NS represents the changed
feature matrix. For the changed image, we have a prior
sparsity-based regularization (PSR), which is based on the fact
that only a small part of objects are changed in the prac-
tice [30], [55]. In this article, we choose the ℓ2,1-norm-based

sparsity regularization defined as ∥1y
∥2,1 =

∑NS
i=1 ∥1

y
i ∥2,

which is a convex relaxation of the original ℓ2,0-norm ∥1y
∥2,0

that equals to the number of nonzero column of 1y (the
number of changed superpixels).

By combining the HGLR and the PSR, we have the forward
transformation model

min
Y′,1y

2Tr
(
Y′Lt1Y′T

)
+ λ

∥∥1y
∥∥

2,1 s.t. Y = Y′ −1y . (14)

2) Backward Transformation: Similar to the forward trans-
formation, we require that the similarity relationships within
the post-event image Ỹ characterized by the HG G t2 should be
preserved by the regression image X̃′; that is, the transformed
superpixels X̃′i and X̃′j corresponding to the Ỹi and Ỹ j within
the same hyperedge et2

l of G t2, i.e., i, j ∈ et2
l , should be similar

to each other. Then, we have the backward transformation
model

min
X′,1x

2Tr
(
X′Lt2X′T

)
+ λ

∥∥1x
∥∥

2,1 s.t. X = X′ −1x . (15)

3) Connection Between Changes: From the models of (14)
and (15), the backward and forward changed images 1̃x

=

F−1(1x ) and 1̃y
= F−1(1y) are from different domains, and

we cannot directly fuse them to obtain the detection results;
that is, directly fusing these changed images by taking the
mean value may not improve detection accuracy. Instead of
the late fusing of the changed images as in previous methods,
we fuse the forward and backward transformations in the
regression process to improve the regression performance and,
thus, obtain a more accurate changed image. Then, we need
to find the connections between the changed images.

First, the changed images are simultaneously smooth on
the fused HG G f . In [41], a signal smoothness representation
has been proposed to obtain a smoother DI, where the fused
graph is constructed by simply taking the minimum of the
two edge weights. In this article, we define the fused HG
G f
= {V f , E f , w} as follows: V f

= I; e f
i = et1

i ∩ et2
i ;

H f
v,i = 1 if v ∈ e f

i , and H f
v,i = 0, otherwise. We set the fused

hyperedge weight as follows:

w
(

e f
i

)
=

∑
j,l∈e f

i
exp

(
−

∥∥X j − Xl
∥∥2

2 −
∥∥Y j − Yl

∥∥2
2

)
(

card
(

e f
i

))2 (16)

where card(·) denotes the cardinality of a set.
Because e f

i ⊆ et1
i , then X̃i and X̃ j , j ∈ e f

i , represent the
same kind of object (from the construction of G t1), and Ỹ′i and
Ỹ′j , j ∈ e f

i , also represent the same kind of object (from the
constraint of structure consistency of forward transformation).
Similarly, because e f

i ⊆ et2
i , then Ỹi and Ỹ j , j ∈ e f

i ,
also represent the same kind of object (from the construction
of G t2), and X̃′i and X̃′j , j ∈ e f

i , also represent the same
kind of object (from the constraint of structure consistency
of backward transformation). Then, we have that 1̃x

i and
1̃

x
j , and 1̃

y
i and 1̃

y
j , j ∈ e f

i , also represent the same kind
of changes. A more intuitive mathematical description is as
follows: because ∥Xi − X j∥2 and ∥Yi − Y j∥2 are very small
due to e f

i ⊆ et1
i and e f

i ⊆ et2
i , respectively, and ∥X′i−X′j∥2 and

∥Y′i−Y′j∥2 are also very small due to the structure consistency-
based HGLR, then we have ∥1x

i − 1
x
j∥2 = ∥(X′i − X′j ) −
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(Xi −X j )∥2 and ∥1y
i −1

y
j∥2 = ∥(Y′i −Y′j )− (Yi −Y j )∥2 that

are also very small. Then, we can obtain the fused HG-based
smoothness regularization (FHSR) as follows:

NS∑
l=1

∑
i, j∈e f

l

w
(

e f
l

)
H f

i,l H f
j,l

ψ
(

e f
l

) (∥∥1x
i −1

x
j

∥∥2
2
+

∥∥∥1y
i −1

y
j

∥∥∥2

2

)
= 2Tr

(
1x L f1x T

)
+ 2Tr

(
1yL f1y T

)
(17)

where L f is the unnormalized HG Laplacian matrix of the G f .
Second, the changed images are aligned on the support

sets. Because the two changed images are describing the same
change event, i.e., the changed areas in the 1̃x and 1̃y are the
same, then we have the following constraint:{

i |i ∈ I,
∥∥1x

i

∥∥
2 ̸= 0

}
=

{
i |i ∈ I,

∥∥1y
i

∥∥
2 ̸= 0

}
. (18)

However, directly using this constraint in the regression
model is very difficult. Alternatively, we use the fol-
lowing change alignment-based regularization (CAR) of∑NS

i=1 φ(∥1
x
i ∥2, ∥1

y
i ∥2) with the function φ being defined as

follows:

φ1(∥∥1x
i

∥∥
2,

∥∥1y
i

∥∥
2

)
= −

∥∥1x
i

∥∥
2

∥∥1y
i

∥∥
2 (19a)

φ2(∥∥1x
i

∥∥
2,

∥∥1y
i

∥∥
2

)
= exp

(
−

∥∥1x
i

∥∥
2

∥∥1y
i

∥∥
2

)
. (19b)

In the CAR, we use ∥1x
i ∥2 and ∥1y

i ∥2 to represent the
change probability of the i th superpixel in X̃ and Ỹ, respec-
tively. If the region represented by the i th superpixel (X̃i or
Ỹi ) is changed during the event, then both the ∥1x

i ∥2 and
∥1

y
i ∥2 should be large, and then, we have a small CAR. On the

contrary, if this region is unchanged during the event, then both
the ∥1x

i ∥2 and ∥1y
i ∥2 should be close to zero; then, we have a

larger CAR. The minimization of CAR requires that whenever
either of the change levels of ∥1x

i ∥2 or ∥1y
i ∥2 is large, the

other one should also be large, which means that ∥1x
i ∥2 and

∥1
y
i ∥2 are aligned.

4) Fused Regression Model: By combining the forward
transformation (14), backward transformation (15), FHSR
(17), and the CAR (19a) or (19b), we have the fused regression
model as follows:

min
X′,Y′,1x ,1y

2Tr
(
X′Lt2X′T

)
+ 2Tr

(
Y′Lt1Y′T

)
+ 2βTr

(
1x L f1x T

)
+ 2βTr

(
1yL f1y T

)
+λ

∥∥1x
∥∥

2,1 + λ
∥∥1y

∥∥
2,1 + η

NS∑
i=1

φ
(∥∥1x

i

∥∥
2,

∥∥1y
i

∥∥
2

)
s.t. X = X′ −1x , Y = Y′ −1y (20)

where β,λ, η > 0 are balancing parameters.
Problem (20) can be efficiently solved by using the alternat-

ing direction method of multipliers (ADMM) in the Appendix.
From (20), we can find that the HGLR tends to obtain the
solution of X′ = Y′ = 0, and both the PSR and FHSR tend
to obtain the solution of 1x

= 1y
= 0, and the CAR tends

to obtain the nonzero solution of 1x and 1x , which means
that these regularization terms have an adversarial balancing
effect. From (20), it can also be found that the X and X′
are in the same domain based on two reasons: first, X′ is

Algorithm 1 SRF-Based MCD
Input: Images of X̃ and Ỹ, parameters of NS , β, λ, and η.
Structure representation:

Segment images into superpixels by GMMSP.
Extract the features to obtain X and Y.
Construct the graphs of G t1 and G t2 with (7).
Construct the hypergraphs of G t1, G t2 and G f .
Compute the hypergraph Laplacian matrices of Lt1, Lt2

and L f .
Structural regression fusion:

Initialize: set 1x , 1y , R1, R2, R3, and R4 = 0.
Repeat:

1: Update X′ and Y′ through (24) and (25), respectively.
2: Update 1x and 1y through (27) based on different φ.
3: Update P1 and P2 through (30) and (31), respectively.
4: Update R1, R2, R3, and R4 through (32).

Until the stopping criterion is met.
Change extraction:

Compute the difference images of DIx and DIy .
Segment the DIx and DIy to obtain the changed map.

decomposed from X, and only a few columns between them
are different (1x is column sparse), which means that X′i = Xi

ideally holds for most i ∈ I; second, for the change X j , the
regression model constrains it to be similar to its neighbors
of by the HGLR, which prevents anomalous X′j . Similarly, Y
and Y′ are also in the same domain.

From the fused regression model (20), it can be found
that forward and backward transformations are fused in one
model by using the CAR. Turning back to Example 2 in
Section II, the regression image and changed image obtained
by the SRF are shown in Fig. 3. We can find that due to
the structural asymmetry, there is always one failure and one
success in forward or backward regression of SCASC [30].
By introducing the CAR, the two changed images are aligned
in SRF, which can also be regarded as a change fusion.
Furthermore, with this change fusion in SRF, one regression
(e.g., forward) can use the supervised information (changed
information) from another regression (e.g., backward). There-
fore, this allows forward regression to overcome the influence
of structural asymmetry, thus improving the performance of
fused regression and obtaining more accurate changed images,
as illustrated by Fig. 3.

D. Change Extraction

Once the regressed feature matrices of X′ and Y′ and the
changed feature matrices of 1x and 1y are output from (20),
the regression images can be calculated by X̃′ = F−1(X′) and
Ỹ′ = F−1(Y′), the change level vectors of px and py can be
computed by px

i = ∥1
x
i ∥2 and py

i = ∥1
y
i ∥2, i = 1, . . . , NS ,

and the corresponding DIs can be calculated by

DIx (m, n) = px
i ; (m, n) ∈ 3i , i = 1, . . . , NS

DIy(m, n) = py
i ; (m, n) ∈ 3i , i = 1, . . . , NS. (21)

Then, we can obtain the binary CM by segmenting the
DIs into two classes of changed and unchanged, which can
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TABLE II
DESCRIPTION OF THE SIX MULTIMODAL DATASETS

be obtained by employing thresholding methods, such as
Otsu threshold [56], or clustering methods, such as the K -
means [57], or the random field-based methods, such as
MRF [30], [43]. In this article, we directly use the MRF
co-segmentation method proposed in IRG-McS [43], where
the only hyperparameter is the balancing parameter.

The overall framework of the proposed SRF-based MCD
method is summarized in Algorithm 1. The stopping criteria
of the inner loop of updating 1x and 1y and the outer loop
of solving minimization of (20) in SRF are as follows: the
maximum numbers of iteration Ni and No are reached, or the
relative difference between two iteration results is less than
the tolerance.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The performance of the proposed SRF is verified on
six pairs of real multimodal datasets by comparing with
some SOTA methods, including six traditional methods (such
as SCASC [30], AMD-IR [17], AGSCC [46], FPMS [45],
M3CD [10], and IRG-McS [43]) and four deep-learning-based
methods (such as CGAN [34], SCCN [19], X-Net [18], and
ACE-Net [18]).

A. Experimental Setting

1) Multimodal Datasets: Six real datasets are employed in
the experiments, as shown in Figs. 5 and 6, which includes
two different multimodal cases: 1) the cross-sensor case, that
is, the multitemporal images are acquired by different sensors
but with the same sensor type, e.g., the images in Datasets
1–3 and 2) the multisource case, that is, the multitemporal
images are acquired by different types of sensors, e.g., the
images in Datasets 4–6. As listed in Table II, these datasets
also cover different spatial resolutions (from 0.52 to 30 m),
image sizes (from 300 to 4135 pixels in width or length), and
types of change events (such as flooding, construction, and
lake overflow), which can adequately evaluate the performance
of comparison methods.

2) Metric: Two types of evaluation metrics are selected:
1) to evaluate the DI, the empirical receiver operating char-
acteristics (ROCs) curve and the precision–recall (PR) curve
are employed, and the corresponding areas under ROC curve
(AUR) and PR curve (AUP) are also used and 2) to evaluate the
binary CM, seven widely used metrics are adopted for assess-
ment, including true positives (TPs), false positives (FPs), true
negatives (TNs), false negatives (FNs), overall accuracy (OA),
Kappa coefficient (κ), and F1 score (F1), where the TP, FP,

TN, and FN are marked in different colors in the qualitative
results, and OA, κ , and F1 are listed in quantitative results.

3) Implementation Detail: For all the experiments of SRF,
we adjust the scale parameter of GMMSP1 to make the number
of segmented superpixels NS ≈ 5000; and choose the CAR
with function φ1 (19a), and fix the balancing parameters
in the fused regression model (20) as β = 1 and λ =
0.1 for all the datasets, and adjust the η by varying η ∈

{0.1, 0.3, 0.5, 0.7, 0.9} and selecting the best one as the result.
The impact of these parameters will be analyzed in detail in
Section IV-C.

B. Experimental Results

1) Regression Images: We compare the proposed SRF with
four image regression-based MCD methods to evaluate the
forward and backward regression images.

SCASC [30]: A sparse constrained adaptive structure
Consistency-based regression method based on the image
decomposition model (2), where only one-way (forward)
regression is considered in the original paper.

AMD-IR [17]: An AMD-based image regression method
that uses the AMD to construct the pseudo-training set, where
both the forward and backward regressions are performed, but
the change results are simply averaged for fusion.

CGAN [34]: A deep translation method that uses a con-
ditional GAN, where only one-way image translation is
performed in this article.

AGSCC [46]: An adaptive graph and structure cycle
consistency-based regression method, which also only per-
forms a one-way regression.

To show the difference between forward and backward
regressions and to demonstrate the effect of structural asym-
metry on the image regression, we present the forward
regression image and backward regression image of each
method separately, as shown in Figs. 5(c)–(g) and 6(c)–(g). For
the one-way regression-based SCASC, CGAN, and AGSCC,
we swap the order of the input images (pre- and post-event
images) to get another regression image.

From the regression images of X̃′ and Ỹ′ in Figs. 5 and 6,
we can find that most methods can achieve image translation
with a certain degree, i.e., the translated image is similar in
style to the target image, such as the X̃′ and X̃, and Ỹ′ and
Ỹ. However, when we carefully compare the translated image
with the original image, we find that some of the methods
fail to preserve the structure of the original image, although

1Available at https://github.com/ahban/GMMSP-superpixel.
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Fig. 5. Multimodal datasets, forward and backward regression images, and DIs on Datasets 1–3. From top to bottom, they correspond to Datasets 1–3,
respectively. From left to right are (a) ground truth; (b) pre-event image X̃ and post-event image Ỹ; (c)–(g) backward and forward regression images of X̃′ and
Ỹ′ generated by (c) SCASC, (d) AMD-IR, (e) CGAN, (f) AGSCC, and (g) proposed SRF; and (h)–(n) backward and forward DIs of DIx and DIy generated
by (h) SCASC, (i) AMD-IR, (j) CGAN, (k) AGSCC, (l) FPMS, (m) IRG-McS, and (n) proposed SRF.

Fig. 6. Multimodal datasets, forward and backward regression images, and DIs on Datasets 4–6. From top to bottom, they correspond to Datasets 4–6,
respectively. From left to right are (a) ground truth; (b) pre-event image X̃ and post-event image Ỹ; (c)–(g) backward and forward regression images of X̃′ and
Ỹ′ generated by (c) SCASC, (d) AMD-IR, (e) CGAN, (f) AGSCC, and (g) proposed SRF; and (h)–(n) backward and forward DIs of DIx and DIy generated
by (h) SCASC, (i) AMD-IR, (j) CGAN, (k) AGSCC, (l) FPMS, (m) IRG-McS, and (n) proposed SRF.

the image style is transferred, for example, the backward X̃′
of AMD-IR in Dataset 1, AGSCC in Dataset 2, CGAN in
Dataset 3, and SCASC in Dataset 6 as shown in Figs. 5 and 6.

In particular, this regression error is most pronounced for
Datasets 2 and 6, where the structural asymmetry is prominent.
At the same time, it can be seen that the proposed SRF can
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Fig. 7. ROC and PR curves of DIs generated by different methods. (Top row) ROC curves. (Bottom row) PR curves. (a)–(f) Results on Datasets 1–6,
respectively.

TABLE III
QUANTITATIVE MEASURES OF DIS ON THE MULTIMODAL DATASETS. THE HIGHEST SCORES ARE HIGHLIGHTED IN BOLD

not only overcome this structural asymmetry on these two
datasets (2 and 6), but also achieve better regression results
on other datasets by combining the forward and backward
transformation processes, e.g., the regression images of SRF in
Datasets 1 and 4. Also, we can find that the superpixel-based
regression methods have a block smoothing effect, such as the
regression images of SCASC, AGSCC, and SRF on Datasets 1,
4, and 6.

2) Difference Images: In order to assess the ability of for-
ward regression (or transformation) and backward regression
(or transformation) to measure change, we show the forward
DI and backward DI generated by different methods, which
not only contain the four methods compared above (in Figs. 5
and 6), but also two additional ones as follows.

FPMS [45]: A fractal projection and Markovian
segmentation-based method that translates the image by
using a spatial fractal decomposition and a contractive
projection, which only performs a forward translation and
neglects the fusion.

IRG-McS [43]: An iterative robust graph and MRF co-
segmentation-based MCD method, which calculates the for-
ward and backward DIs (1) by transforming images into the
same image differential domain and fuses the DIs in the
segmentation process.

Figs. 5(h)–(n) and 6(h)–(n) show the forward and back-
ward DIs generated by different methods. Four facets can be
observed: first, there is a difference between the forward and
backward results of each method, which is because these DIs
are computed in different domains and the performances of the
forward and backward regressions (or transformations) are also
different. This once again confirms the importance of fusing
forward and backward regressions. Second, the backward

regression of some methods cannot obtain a useful DI because
of the structural asymmetry between the multimodal images,
such as the backward DIx of SCASC, AMD-IR, and AGSCC
in Dataset 1; DIx of SCASC, AGSCC, and FPMS in Dataset 2;
and DIx of SCASC, AMD-IR, AGSCC, FPMS, and IRG-McS
in Dataset 6. Third, the proposed SRF can obtain both forward
and backward DIs with good performance that overcomes
the effect of structural asymmetry. Moreover, the forward
and backward DIs of SRF are aligned, i.e., the regions they
highlighted are mostly identical, which is attributed to the
CAR regularization term of (19a). Fourth, the DIs of SRF
are sparse by using the sparsity regularization of ∥1x

∥2,1
and ∥1y

∥2,1 in the model (20), which means that satisfactory
segmentation maps can be directly obtained even by the
simple thresholding methods (such as Otsu threshold [56]) or
clustering methods (such as K -means [57]).

Fig. 7 plots the ROC and PR curves of DIs generated by
the comparison methods, and Table III lists the corresponding
AUR and AUP. Although SRF is not optimal in terms of
metrics on some datasets, such as the AUR and AUP of
forward DIs on Datasets 4 and 6, SRF is able to consistently
obtain high-quality DIs across different datasets, both in the
forward and backward transformations. The average AUR of
the forward and backward DIs generated by SRF is 0.940 and
0.926, respectively, and the corresponding average AUP is
0.740 and 0.727, respectively, which are all higher than that
of other methods. For example, the average forward AUP
is 6.8% higher than the second-ranked AGSCC, and the
average backward AUP is 26.2% higher than the second-
ranked CGAN. This once again demonstrates the benefits
of structure regression fusion: first, the ability to overcome
the influence of structural asymmetry (e.g., the performance
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Fig. 8. Binary CMs of different methods on multimodal datasets. From top to bottom, they correspond to Datasets 1–6, respectively. From left to right are
binary CMs generated by (a) SCASC, (b) AMD-IR, (c) CGAN, (d) AGSCC, (e) FPMS, (f) IRG-McS, (g) M3CD, (h) SCCN, (i) X-Net, (j) ACE-Net, and (k)
proposed SRF. In the binary CM, white: TPs, red: FPs, black: TNs, and green: FNs.

improvement of backward DI), and second, the ability to gain
better regression images and more accurate changed images
by fusion (e.g., the performance improvement of forward DI).

3) Change Maps: In the third experiment, we compare the
final CMs generated by different methods, including the six
methods of SCASC, AMD-IR, CGAN, AGSCC, IRG-McS,
and FPMS compared above (in Figs. 5–7) and another four
methods as follows.

M3CD [10]: An MRF-based method that builds up the
observation field from a pixel pairwise modeling and solves
the energy minimization problem by using iterative conditional
estimation.

SCCN [19]: A deep-learning-based method that uses a
symmetric convolutional coupling network to transform the
multimodal images into a common feature space.

X-Net [18]: A weighted translation network that consists of
two fully convolutional networks, each dedicated to mapping
the data from one domain to the other.

ACE-Net [18]: A deep image translation method that uses
an ACE-Net consisting of two autoencoders. Both the X-Net
and ACE-Net use the affinity-based change prior to train the
network.

For the sake of fair comparison, for these methods with
only one-way regression or transformation (such as SCASC,

CGAN, AGSCC, M3CD, and FPMS) in their original papers,
we choose the better of the forward and backward results for
the comparison.

Fig. 8 shows the final CMs generated by different methods,
and Table IV lists the quantitative measures of these CMs.
Because we choose the better results of the forward and
backward CMs of some comparison methods, most of the CMs
in Fig. 8 can roughly reflect the change information, i.e., detect
the changed regions. However, some methods do not perform
robustly enough. For example, the AMD-IR introduces a large
number of FPs in Datasets 3, 5, and 6; the M3CD and SCCN
gain a lot of FPs in Dataset 5, resulting in κ = 0.158 and
κ = 0.183, respectively. In addition, we can see that most
methods do not perform well on Dataset 3, mainly for the
following reasons: the resolution of the multitemporal images
of Dataset 3 is very high (0.52 m); it contains more types of
objects in the images than other datasets (such as buildings,
grass, trees, roads, and pitches), and the proportion of these
ground objects is quite uneven; the changed region in Dataset
3 is also relatively larger than other datasets, as shown in
Figs. 5(a) and (b) and 6(a) and (b), which poses difficulties
for accurate detection of changes. Nevertheless, the proposed
SRF can still detect most of the changes for Dataset 3 (F1 =
0.703). The average κ and F1 of the proposed SRF on these
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TABLE IV
QUANTITATIVE MEASURES OF CMS ON THE MULTIMODAL DATASETS. THE HIGHEST SCORES ARE HIGHLIGHTED IN BOLD

TABLE V
ABLATION STUDY OF SRF MEASURED THE AVERAGE SCORES

six datasets are about 0.773 and 0.792, respectively, which
are 7.3% and 7.0% higher than that of the second-ranked
AGSCC, respectively. This shows that the proposed SRF is
very effective and competitive, even compared with some
deep-learning-based methods.

C. Discussions

1) Ablation Study: The proposed SRF mainly contains two
processes: structure representation and SRF. Then, we investi-
gate the contributions of different components in these two
processes for the MCD problem, i.e., the HGs of G t1 and
G t2 in the structure representation, and the regularization
terms of FHSR and CAR in the fused regression model (20).
We construct a baseline by replacing the HG with the graph
G t1 learned by model (6) and deleting the FHSR and CAR in
the regression model (20). The detection performances of the
SRF with and without the HGs, FHSR, and CAR are reported
in Table V.

According to Table V, it is clear that the performance of
SRF degrades without HGs, FHSR, and CAR. To be specific,
by using the HG that links more than two vertices, the
high-order neighborhood relationship can be preserved by G t1,
G t2, and G f , which helps the graphs capture more compre-
hensively structure information of images, thus improving the
performance of structural regression. Specifically, when adding
HGs to the baseline model, the average AUP of forward DI
increases by about 2.1%. By applying the FHSR of (17) that
constrains the smoothness of changed images on the fused
HG, the scores of average AUP of forward DI and κ of CM
are about 4.8% and 1.8% higher than that without the FHSR
of baseline. By introducing the CAR of (19a) to the baseline
model that requires the forward and backward changed images
that are aligned on the support sets, the SRF-based model (20)

can obtain much better regression images and more accurate
DIs, especially for the backward regression process (e.g., the
AUR and AUP of the backward DI). As can be seen from
Table V, a significant improvement in detection performance
is achieved when CAR is employed, e.g., the average κ is
improved by 6.4% compared with that without CAR. In addi-
tion, when two combinations of HGs, FHSR, and CAR are
used, the detection performance improvement is even more
pronounced. Finally, the performance improvement is greatest
when all modules are introduced, e.g., a 9.6% improvement
on the average κ compared with the baseline.

2) Parameter Analysis: The main parameters in the pro-
posed SRF are as follows: the number of superpixels NS;
and the balancing parameters of β, λ, and η that control
the weights of FHSR, PSR, and CAR in the fused regression
model (20), respectively.

In general, the number of superpixels NS should be selected
according to the resolution of dataset and taking into account
the computational efficiency requirements of CD task. A large
NS can improve the detection granularity while increasing
the computational burden of the algorithm as analyzed in
Section IV-C3. The computational time of each process of
SRF with different values of NS on Datasets 2 and 6 is listed
in Table VI.

The parameters of β, λ, and η are used to balance the
regularization terms of the fused regression model (20). For
the parameter β, it controls the weight of FHSR that constrains
the smoothness of changed images (1̃x and 1̃y) on the fused
HG (G f ). From its formulation of (17), we can see that FHSR
is very similar to the HGLR that constrains the smoothness of
regression images (Ỹ′ and X̃′) on the HGs (G t1 and G t2) as in
(13). Since FHSR and HGLR are similar in form and have a
similar magnitude of values, we set β = 1 for simplicity.

To measure the impact of λ and η on SRF, we adjust the
λ from 2−8 to 1 with the ratio of 2 and adjust the η from
0.1 to 0.9 with the step of 0.1, and plot the OA generated by
SRF with different values of λ and η in Fig. 9. The λ is used
to control the sparsity level of changed images in the model
(20), which should be adjusted according to the percentage of
the changed region. Based on Fig. 9(a), we fix λ = 0.1 (i.e.,
λ ≈ 2−3.3) in our experiments for simplicity.

For the parameter η, it is used to control the CAR that
constrains the change alignment in the model (20). From
Fig. 9(b), we can find that too small and too large η are
not suitable: first, if η is very small, then CAR does not

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 28,2023 at 07:41:18 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: STRUCTURAL REGRESSION FUSION FOR UNSUPERVISED MULTIMODAL CHANGE DETECTION 4504018

Fig. 9. Sensitivity analysis of parameters in SRF. (a) λ. (b) η.

TABLE VI
COMPUTATIONAL TIME (S) OF SRF, WHERE tSR , tRF , tCE , AND tTOTAL

DENOTE THE COMPUTATIONAL TIME OF STRUCTURAL REPRESENTATION,
REGRESSION FUSION, CHANGE EXTRACTION, AND THE

WHOLE SRF, RESPECTIVELY

play a noticeable effect in the structural regression, which will
limit the regression and detection performance of the model;
second, if η is very large, the CAR tends to generate changed
superpixels; i.e., it will break the balance between different
regularization terms in the model (20). It can be seen from
Fig. 9(b) that SRF is a little sensitive to the parameter η, and
how to reduce this sensitivity, i.e., how to make SRF robust
to η needs to be further investigated.

3) Complexity Analysis: The main computational complex-
ity of the proposed SRF is concentrating on the structure
representation, regression fusion by solving the minimization
model (20), and the change extraction by using the MRF co-
segmentation method.

In the structure representation, calculating distance matri-
ces of Dt1 and Dt2 requires O((bx + by)N 2

S ), sorting the
distance matrices by column requires O(N 2

S log NS), calcu-
lating the adaptive k by an in-degree-based strategy [30]
requires O(N 2

S log NS), calculating the closed-form solution
of St1 and St2 requires O(N 2

S ), and constructing the HG
requires O((bx + by)N 2

S ). Therefore, the structure representa-
tion requires O(N 2

S log NS). In the regression fusion, updating
X′ and Y′ through (24) and (25) requires O(N 3

S ), updating
1x and 1y through (27) requires O((bx + by)NS), updat-
ing P1 and P2 through (30) and (31) requires O(N 3

S ),
and updating the Lagrange multipliers through (32) requires
O((bx + by)NS). Therefore, the regression fusion requires
O(N 3

S ). In the change extraction, the MRF co-segmentation
requires O(2NR N 2

S ) for the worst case, where NR is the
number of edges in the R-adjacency neighbor system of the
MRF co-segmentation model proposed in [43].

Although the SRF requires O(N 3
S ) for each iteration in the

solving model (20), two acceleration strategies are available

to improve the efficiency of updating X′, Y′, P1, and P2 as
introduced in [30]. Taking X′ update as an example, we can
compute the matrix inversion of (µ1INS + 4Lt2)−1 offline in
advance or solving the X′ subproblem (23) with precondi-
tioned conjugate gradient (PCG) method.

The computational time of each process of SRF with
different values of NS on Datasets 2 and 6 is listed in Table VI,
where the SRF is performed in MATLAB 2016a running with
Intel Core i9-10980HK CPU. As can be seen in Table VI, the
number of superpixels is the main factor affecting the running
time rather than the image size, and the regression fusion is the
most time-consuming process in SRF, which is in accordance
with the theoretical analysis.

V. CONCLUSION

In this article, we focus on the CD of multimodal
remote sensing images. We first investigate the previous
structure-based MCD approaches and show the negative
effects of structural asymmetry on these approaches. Then,
to address the challenge posed by structural asymmetry,
we propose an SRF method to fuse the forward and backward
transformation processes. Specifically, the proposed method
first segments the images into superpixels and constructs HGs
to represent the structure information, which can capture the
high-order information. Then, based on the inherent con-
nection between forward and backward transformations, the
proposed method uses three types of constraints to perform
the SRF: structural regression term, change fusion term, and
sparse penalty term. By putting the two mutually reinforcing
processes of transformation and fusion in one model, it can
obtain better regression images and changed images and, thus,
improve the accuracy of CD. The experimental results on six
real datasets confirm the effectiveness of the proposed method
by comparing with other related methods.

The analysis of structural asymmetry has motivated us
to propose the SRF in this article. However, the structural
asymmetry can also be used for the fusion of structure
comparison and the late fusion of DIs generated by some
other structure-based MCD methods, especially for the graph
neural networks-based methods, thus improving the perfor-
mance of these methods. In addition, this article analyzes
the impact of structural asymmetry from the perspective of
structure comparison and structure regression models, but it
does not provide an insight into structural asymmetry from the
perspective of graph representation capability or the spectral
domain properties of graphs. Besides, the proposed method
is a little sensitive to the CAR. Our future work is to fur-
ther analyze the structural asymmetry for the MCD problem
and consider a more robust regularization or adopt some
parameter adaptive strategies to improve the robustness of the
algorithm.

APPENDIX

We use the ADMM for solving the minimization problem
of (20). By introducing the auxiliary constraints of P1 = 1

x
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and P2 = 1
y , the augmented Lagrangian function of (20) is

2
(
X′,Y′,1x ,1y)
= 2Tr

(
X′Lt2X′T

)
+ 2Tr

(
Y′Lt1Y′T

)
+ 2βTr

(
P1L f PT

1

)
+ 2βTr

(
P2L f PT

2

)
+λ

∥∥1x
∥∥

2,1 + λ
∥∥1y

∥∥
2,1 + η

NS∑
i=1

φ
(∥∥1x

i

∥∥
2,

∥∥1y
i

∥∥
2

)
+Tr

(
RT

1

(
X′ − X−1x))

+ Tr
(
RT

2

(
1x
− P1

))
+Tr

(
RT

3

(
Y′ − Y−1y))

+ Tr
(
RT

4

(
1y
− P2

))
+
µ1

2

∥∥X′ − X−1x
∥∥2

F +
µ2

2

∥∥1x
− P1

∥∥2
F

+
µ3

2

∥∥Y′ − Y−1y
∥∥2

F +
µ4

2

∥∥1y
− P2

∥∥2
F (22)

where R1,R2 ∈ R2bx×NS and R3,R4 ∈ R2by×NS are Lagrangian
multipliers, and µ1, µ2, µ3, µ4 > 0 are penalty parameters.
The minimization of (22) can be divided into the following
subproblems.

1) X′ and Y′ Subproblems: The minimization of (22) with
respect to X′ can be written as follows:

min
X′

2Tr
(
X′Lt2X′T

)
+
µ1

2

∥∥∥∥X′ − X−1x
+

R1

µ1

∥∥∥∥2

F
(23)

which can be solved by taking the first-order derivative of the
objective function to zero. Then, we can update X′ as follows:

X′ =
(
µ1X+ µ11

x
− R1

)
×

(
µ1INS + 4Lt2)−1

(24)

where INS denotes an NS × NS identity matrix. Similarly, for
the regressed Y′, we can update it as follows:

Y′ =
(
µ3Y+ µ31

y
− R3

)
×

(
µ3INS + 4Lt1)−1

. (25)

2) 1x and 1y Subproblems: The minimization of (22) with
respect to 1x can be written as follows:

min
1x

λ
∥∥1x

∥∥
2,1 + η

NS∑
i=1

φ
(∥∥1x

i

∥∥
2,

∥∥1y
i

∥∥
2

)
+
µ1

2

∥∥∥∥X′ − X−1x
+

R1

µ1

∥∥∥∥2

F
+
µ2

2

∥∥∥∥1x
−P1+

R2

µ2

∥∥∥∥2

F
. (26)

The gradient descent method is used for this minimization
problem. We set the iteration number of inner loop for 1x as
Ni and the step size as τ ; then, we have

g
(
1x)
= ϱ ⊙1x

+ µ1X− µ1X′ − R1 − µ2P1 + R2

1x
← 1x

− τg
(
1x) (27)

where ⊙ denotes the Hadamard product and ϱ ∈ R2bx×NS is
calculated by

ϱ1
i, j =

λ− η
∥∥1y

i

∥∥
2∥∥1x

i

∥∥
2

+ µ1 + µ2 (28a)

ϱ2
i, j =

λ− η
∥∥1y

i

∥∥
2 exp

(
−

∥∥1x
i

∥∥
2

∥∥1y
i

∥∥
2

)∥∥1x
i

∥∥
2

+ µ1 + µ2 (28b)

according to the choice of φ1 (19a) or φ2 (19b). Similarly,
we can update 1y in the same way as updating 1x .

3) P1 and P2 Subproblems: The minimization of (22) with
respect to P1 can be written as follows:

min
P1

2βTr
(
P1L f PT

1

)
+
µ2

2

∥∥∥∥1x
− P1 +

R2

µ2

∥∥∥∥2

F
(29)

which can be solved as follows:

P1 =
(
µ21

x
+ R2

)
×

(
µ2INS + 4βL f )−1

. (30)

Similarly, for the P2, we can update it as follows:

P2 =
(
µ41

y
+ R4

)
×

(
µ4INS + 4βL f )−1

. (31)

Finally, the Lagrangian multipliers of R1,R2,R3, and
R4 can be updated as follows:

R1 ← R1 + µ1
(
X′ − X−1x)

R2 ← R2 + µ2
(
1x
− P1

)
R3 ← R3 + µ3

(
Y′ − Y−1y)

R4 ← R4 + µ4
(
1y
− P2

)
. (32)
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